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Motivation

In the next few years, we will see a dramatic increase of robot applications
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Industrial Robots

Today:

Nano-RobotsRobot Assistants Dangerous Env.

Tomorrow:

http://news.softpedia.com/

Household Robot AthletesHousehold Transportation

http://www.Wikipedia.de http://zackkanter.com/



Reinforcement Learning

Most of these tasks can not be programmed by hand

Easier: Specifying a reward function         Markov Decision Processes

A Markov Decision Process (MDP) is defined by:

• its state space 

• its action space

• its transition dynamics  

• its reward function

• and its initial state probabilities

Agent

Environment



Reinforcement Learning

Most of these tasks can not be programmed by hand

Easier: Specifying a reward function         Markov Decision Processes

A Markov Decision Process (MDP) is defined by:

• its state space 

• its action space

• its transition dynamics  

• its reward function

• and its initial state probabilities

Learning: Adapting the policy of the agent



Reinforcement Learning

Objective: Find policy that maximizes long term reward

Infinite Horizon MDP:

Tasks:
• Stabilizing movements:

Balancing, Pendulum Swing-up… 

• Rhythmic movements:
Locomotion [Levine & Koltun., ICML 2014], Ball 
Padding [Kober et al, 2011], Juggling [Schaal et al., 

1994]

Finite Horizon MDP:

Tasks:
• Stroke-based movements:

Table-tennis [Mülling et al., IJRR 2013], Ball-
in-a-Cup [Kober & Peters., NIPS 2008], Pan-
Flipping [Kormushev et al., IROS 2010], Object 
Manipulation [Krömer et al, ICRA 2015]

Deisenroth et. al.Stanford

Kormushev et. al.Peters et. al.

Peters et. al.



Robot Reinforcement Learning

Challenges:

Dimensionality: 

• High-dimensional continuous
state and action space

• Huge variety of tasks

Real world environments:

• High-costs of generating data

• Noisy measurements

Exploration: 

• Do not damage the robot

• Need to generate smooth 
trajectories
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Robot Reinforcement Learning
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Value-based Reinforcement Learning:

Estimate value function: 

• Global estimate for all reachable states

• Hard to scale to high-D

• Approximations might „destroy“ policy

Estimate global policy:

• Greedy policy update for all states

• Policy update might get unstable

Explore the whole state space: 

• Uncorrelated exploration in each step

• Might damage the robot

Challenges:

Dimensionality

Real world environments

Exploration



Correlated local exploration

• Explore in parameter space

• Generates smooth trajectories

Robot Reinforcement Learning
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Policy Search Methods [Deisenroth, Neumann &Peters, A Survey of Policy Search for Robotics, FNT 2013]

Use parametrized policy

• Compact parametrizations for
high-D exists

• Encode prior knowledge

Locally optimal solutions

• Safe policy updates

• No global value function estimation

Challenges:

Dimensionality

Real world environments

Exploration

Value-based Reinforcement Learning:

Estimate value function

Estimate global policy

Explore the whole state space



Policy Search Classification

Yet, it’s a grey zone…

Important Extensions:

• Contextual Policy Search [Kupscik, Deisenroth, Peters & Neumann, AAAI 2013], [Silva, Konidaris & Barto, ICML 2012], [Kober & Peters, IJCAI 2011], [Paresi & 

Peters et al., IROS 2015] 

• Hierarchical Policy Search [Daniel, Neumann & Peters., AISTATS 2012], [Wingate et al., IJCAI 2011], [Ghavamzadeh & Mahedevan, ICML 2003]

9

Direct Policy
Search

Value-Based
RL

Evolutionary
Strategies, 

CMA-ES

Episodic
REPS

Policy 
Gradients,

eNAC

Actor Critic,
Natural Actor Critic

Model-based REPS
PS by Trajectory 

Optimization

Q-Learning,
Fitted Q

LSPIPILCO

Advantage
Weighted

Regression

Conservative 
Policy Iteration



Used policy representations

Parametrized Trajectory Generators

• Returns a desired trajectory

• Compute controls       by the use of 
trajectory tracking controllers 

• Compact representation for high-D 
state spaces

• Can only represent local solutions

Examples:

• Splines, Bezier Curves [Kohl & Stone., ICRA 2004], …

• Movement Primitives [Peters & Schaal, IROS 2006], [Kober & Peters., NIPS 2008], [Kormushev et al., IROS 2010], [Kober & Peters, IJCA 2011] [Theodorou, 

Buchli & Schaal., JMLR 2010]

Other Representations:

• Linear Controllers [Williams et. al., 1992]

• RBF-Networks [Deisenroth & Rasmussen., ICML 2011]

• (Deep) Neural Networks [Levine & Koltun., ICML 2014][Levine & Abbeel, NIPS 2014, ICRA 2015]10



Outline

Taxonomy of Policy Search Algorithms

Model-Free Policy Search Methods

• Policy Gradients

• Likelihood Gradients: REINFORCE [Williams, 1992], PGPE [Rückstiess et al, 2009]

• Natural Gradients: episodic Natural Actor Critic (eNAC), [Peters & Schaal, 2006]

• Weighted Maximum Likelihood Approaches

• Success-Matching Principle [Kober & Peters, 2006]

• Information Theoretic Methods [Daniel, Neumann & Peters, 2012]

• Extensions: Contextual and Hierarchical Policy Search

Model-Based Policy Search Methods 

• Greedy Updates: PILCO [Deisenroth & Rasmussen, 2011]

• Bounded Updates: Model-Based REPS [Peters at al., 2010], Guided Policy Search by Trajectory 
Optimization [Levine & Koltun, 2010]
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Taxonomy of Policy Search Algorithms
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Model-Based Policy Search

Use samples

to estimate a model

Properties:

• Sample efficient

• Only works if a good model can be
learned

• Optimization of inaccurate models might
lead to disaster

Model-Free Policy Search

Use samples

to directly update the policy

Properties:

• No model approximations required

• Applicable in many situations

• Requires a lot of samples

model-free vs. model-based 



Taxonomy of Policy Search Algorithms
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Model-Based Policy Search

Use samples

to estimate a model

Optimization methods:

• Any model-free method with artificial
samples [Kupscik , Deisenroth, Peters & Neumann, 2013]

• Analytic Policy Gradients [Deisenroth & Rasmussen 2011]

• Trajectory Optimization [Levine & Koltun 2014]

Model-Free Policy Search

Use samples

to directly update the policy

Optimization methods:

• Policy Gradients [Williams et al. 992, Peters & Schaal 2006, 

Rückstiess et al 2008]

• Natural Gradients [Peters & Schaal  2006, Peters & Schaal 2008, 

Su, Wiestra & Peters 2009]

• Expectation Maximization [Kober & Peters 2008, Vlassis & 

Toussaint 2009]

• Information-Theoretic Policy Search [Daniel, 

Neumann & Peters 2012, Daniel, Neumann & Peters, 2013]

• Path Integral Control [Theoudorou, Buchli & Schaal 2010, Stulp

& Sigaud 2012]

• Stochastic Search Methods [Hansen 2012, Mannor 2004]

model-free vs. model-based 



Model-free policy search

Pseudo-Algorithm: 3 basic steps

Repeat 

1. Explore: Generate trajectories          following the current policy

2. Evaluate: Assess quality of trajectory or actions

3. Update: Compute new policy            from trajectories and evaluations

Until convergence

14



Episode-based

Explore: in parameter space at the 
beginning of an episode

• Learn a search distribution
over the parameter space

• parameter vector of search 
distribution

• deterministic control 
policy

Evaluate: quality of parameter vectors            
by the returns  

Taxonomy of Model-Free Policy Search Algorithms
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Step-Based

Explore: in action-space at each time 
step

• stochastic control policy

Evaluate: quality of state-action pairs                   
by reward to come

episode-based vs. step-based



Episode-based

Explore: in parameter space at the 
beginning of an episode

Evaluate: quality of parameter vectors         
by the returns  

Properties: 

• General formulation, no Markov 
assumption

• Correlated exploration, smooth trajectories

• Efficient for small parameter spaces (< 100)

• E.g. movement primitives

Structure-less optimization

„Black-Box Optimizer“

Taxonomy of Model-Free Policy Search Algorithms
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Step-Based

Explore: in action-space at each time 
step

Evaluate: quality of state-action pairs                   
by reward to come

Properties:

• Less variance in quality assessment.

• More data-efficient (in theory)

• Jerky trajectories due to exploration

• Can produce unreproducible trajectories for 
exploration-free policy

Use structure of the RL problem

decomposition in single timesteps

episode-based vs. step-based



Episode-based

Explore: in parameter space at the
beginning of an episode

Evaluate: quality of parameter vectors
by the returns

Algorithms:

• Episodic REPS [Daniel, Neumann & Peters, 2012]

• PI2-CMA [Stulp & Sigaud, 2012]

• CMA-ES [Hansen et al., 2003]

• NES [Su, Wiestra,  Schaul & Schmidhuber, 2009]

• PE-PG [Rückstiess, Sehnke, et al.2008]

• Cross-Entropy Search [Mannor et al. 2004]

Taxonomy of Model-Free Policy Search Algorithms
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Step-Based

Explore: in action-space at each time 
step

Evaluate: quality of state-action pairs
by reward to come

Algorithms:

• Reinforce [Williams 1992]

• Policy Gradient Theorem / GPOMDP [Baxter & 

Bartlett , 2001]

• Episodic Natural Actor Critic [Peters & Schaal, 2003]

• 2nd Order Policy Gradients [Furmston & Barber 2011]

• Deterministic Policy Gradients [Silver, Lever et al,  

2014]

episode-based vs. step-based



Episode-based

Explore: in parameter space at the
beginning of an episode

Evaluate: quality of parameter vectors
by the returns

Algorithms:

Episodic REPS [CITE]

PI2-CMA [CITE]

CMA-ES [CITE]

NES [CITE]

PE-PG [CITE]

Cross-Entropy Search [CITE]

Taxonomy of Model-Free Policy Search Algorithms
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Step-Based

Explore: in action-space at each time 
step

Evaluate: quality of state-action pairs
by reward to come

Algorithms:

Reinforce [CITE]

Policy Gradient Theorem / GPOMDP [CITE]

Episodic Natural Actor Critic [CITE]

2nd Order Policy Gradients [CITE]

episode-based vs. step-based

Hybrid

Explore: in parameter space at each
time step

Evaluate: quality of state-action pairs
by reward to come

Properties:

• State dependent exploration

• Can be reproduced by noise-free policy

Algorithms:

• Power [Kober & Peters, 2008]

• PI2 [Theoudorou, Buchli & Schaal, 2010]

More recent versions of these algorithms are
episode-based



Model-Free Policy Updates

Use samples 

to directly update the policy

• Different optimization methods

• Gradients: Reinforce [Williams 1992], Natural Actor Critic [Peters & Schaal, 2003][Peters & Schaal, 2006], PGPE 
[Rückstiess et al. 2009]

• Success matching by weighted maximum likelihood: POWER [Kober & Peters 2008], 

Episodic REPS [Daniel , Neumann & Peters, 2012], Path Integrals [Theodorou, Buchli & Schaal 2010]

• Evolutionary strategies [Hansen 2003], Cross-entropy [Mannor 2004], …

• Many of them can be used for step-based and episode-based policy search

• Different metrics to define the step-size of update

• Euclidian (distance in parameter space) [Williams 1992][Rückstiess et al., 2009]

• Relative Entropy (“distance” in probability space) [Bagnell et al. 2003], [Peters & Schaal 2006], 

[Peters et al. 2010], [Daniel, Neumann & Peters 2012]

• Heuristics [Kober & Peters 2008, Theoudorou, Buchli & Schaal,2010, Hansen et al., 2003]

• Before discussion of algorithms: Analyze consequence of step size
19



Model-Free Policy Updates

• Reproduce trajectories with high quality / Avoid trajectories with low 
quality

• We learn stochastic policies:

• Used for exploration!

• Efficient Learning: also update exploration rate!

• E.g. For Gaussian policies:

• Update mean and covariance!

• Mean     : easy!

• Covariance      : hard!

20

Example: 2-D parameter space

Episode-based Step-based



Desired Properties for the Policy Update

Desired properties:

• Invariance to parameter or reward transformations

• Regularize policy update

• Update is computed based on data        

stay close to data!

• Smooth learning progress

• Controllable exploration-exploitation trade-off

Which policy update should we use?

21

Conservative Update
Small “step size”

Moderate Update,
Moderate “step size”

Greedy update
Large “step size”



Illustration of Policy Updates
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Iteration 1

Iteration 1

Iteration 1

2 3 4 5 10

2 3 4 5 10

2 3 4 5 10

small step-size       high exploration       slow convergence

large step-size         exploration vanishes        premature convergence

step-size about right       moderate exploration       fast convergence



Metrics used for the Policy Update

Desired properties:

• Invariance to parameter or reward transformations

• Regularize policy update

• Update is computed based on data        

stay close to data

• Smooth learning progress

• Controllable exploration-exploitation trade-off

• Explore: Higher reward in future / Lower reward now

• Exploit: Higher reward now / Lower reward in the future

• Which one to choose? Do not know… problem specific

• But: algorithm should allow us to choose the greediness

Metric used for the policy update

• Different metrics are used to define the step-size of the update

• Need metric that can measure the greediness of the update

23
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Outline

Taxonomy of Policy Search Algorithms

Model-Free Policy Search Methods

• Policy Gradients

• Likelihood Gradients: REINFORCE [Williams, 1992], PGPE [Rückstiess et al, 2009]

• Natural Gradients: episodic Natural Actor Critic (eNAC), [Peters & Schaal, 2006]

• Weighted Maximum Likelihood Approaches

• Success-Matching Principle [Kober & Peters, 2006]

• Information Theoretic Methods [Daniel, Neumann & Peters, 2012]

• Extensions: Contextual and Hierarchical Policy Search

Model-Based Policy Search Methods 

• Greedy Updates: PILCO [Deisenroth & Rasmussen, 2011]

• Bounded Updates: Model-Based REPS [Peters at al., 2010], Guided Policy Search by Trajectory 
Optimization [Levine & Koltun, 2010]
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Policy Gradients

Optimization Method: Gradient Ascent

• Compute gradient from samples

• Update policy parameters in the direction of the gradient

• learning rate

25
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Likelihood Policy Gradients

Episode-Based: Policy 

We can use the  log-ratio trick to compute the policy gradient

Gradient of the expected return:

• Only needs samples!

• This gradient is called Parameter Exploring Policy Gradient 
(PGPE) [Rückstiess et al., 2009]
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We can always subtract a baseline b from the gradient…

Why? 

• The gradient estimate can have a high variance

• Subtracting a baseline can reduce the variance

• Its still unbiased…

Good baselines: 

• Average reward

• but there are optimal baselines for each algorithm that minimize the
variance [Peters & Schaal, 2006], [Deisenroth, Neumann & Peters, 2013]

Baselines…



Step-based Policy Gradient Methods

The returns can still have a lot of variance

… as it is the sum over T random variables

There is less variance in the rewards to come:

• Step-based algorithms can be more efficient when estimating the gradient

• We have to compute the gradient           for the low-level policy 

28



Step-based Policy Gradient Methods

Plug in the temporal structure of the RL problem

• Trajectory distribution:

• Return for a single trajectory:   

Expected long term reward can be written as expectation over
the trajectory distribution

29
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Step-Based Likelihood Ratio Gradient

Using the log-ratio trick, we arrive at

How do we compute ?

Model-dependent terms cancel due to the derivative
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Step-Based Policy Gradients

Plug it back in… 

This algorithm is called the REINFORCE Policy Gradient [Williams 1992]

• Wait... we still use the returns

high variance…

• What did we gain with our step-based version? Not too much yet...
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Using the rewards to come…

Simple Observation: Rewards in the past are not correlated with actions in the
future

This observation leads to the Policy Gradient Theorem [Sutton 1999]

• The rewards to come have less variance

• Can also be done with a baseline...
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Metric in standard gradients

Ok, how can we choose the learning rate    ?

Metric used for policy gradients:

• Standard gradients use euclidian distance
in parameter space as metric

• Episode-based:

• Step-based:

• Invariance to reward transformations

• Choose learning rate, such that

• Resulting learning rate:

• No Invariance to parameter transformations

• Euclidian metric can not capture the greediness
of the update

C
o

n
se

rv
at

iv
e

M
o

d
er

at
e

G
re

ed
y 

U
p

d
at

e



34

We need to find a better metric…

Policies are probabilty distributions

We can measure „distances“ of distributions

Better Metric: Relative Entropy  or Kullback-Leibler divergence

• Information-theoretic „distance“ measure between distributions

• Properties:

• Always larger 0:

• Only 0 iff both distributions are equal:

• Not symetric, so not a real distance
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Kullback-Leibler Divergences

2 types of KLs that can be minimized:

Moment projection: 

• p is large where ever q is large

• Match the moments of q with the moments of p

• Same as Maximum Likelihood estimate !

Bishop, 2006
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Kullback-Leibler Divergence

2 types of KLs that can be minimized:

Information projection: 

• p is zero wherever q is zero (zero forcing): no wild exploration

• not unique for most distributions

• Contains the entropy of p: important for exploration

Bishop, 2006
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The Kullback Leibler divergence can be approximated by the Fisher information
matrix (2nd order Taylor approximation)

where      is the Fisher information matrix (FIM)

Captures information how a single parameter influences the distribution

KL divergences and the Fisher information matrix
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The natural gradient [Amari 1998] uses the Fisher information matrix as metric

• Find direction maximally correlated with gradient

• Constraint: (approximated) KL should be bounded

The solution to this optimization problem is given as:

• Inverse of the FIM: every parameter has the same influence!

• Invariant to linear transformations of the parameter space!

Natural Gradients
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Are they useful?

Two-State

Problem

[Peters et al. 2003, 2005]

Linear Quadratic 

Regulation

The standard gradient reduces the exploration too quickly!
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Computing the Natural Gradient

Episode-Based: 

• Natural Evolution Strategy [Sun, Wiestra, Schaul & Schmidhuber, 2009], Rock-Star [Hwangbo & Buchli, 2014]

• FIM can be computed in closed form for Gaussians

Step-Based: 

• Natural actor critic [Peters & Schaal, 2006,2008]

• Episodic natural actor critic [Peters & Schaal,  2006]

• Avoid FIM computation due to compatible value function approximation
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Back to Policy Gradient Theorem with baseline

Estimate the reward to come (minus baseline) by function approximation

and use

as gradient

It can be shown that this gradient is still unbiased if:

• Called compatible function approximation [Sutton 1999]

• Log-gradient of the policy defines optimal features

Computing the NG (step-based)
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Compatible Function Approximation:

The compatible function approximation is mean-zero!

• Thus, it can only represent the Advantage Function:

• The advantage function tells us, how much better an action is in comparison 
to the expected performance

Compatible Function Approximation

Baseline
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Can the Compatible FA be learned?

The compatible function approximation represents an advantage function

The advantage function is very different from the value functions

In order to learn                    we need to learn 

[Peters et al. 2003, 2005]
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Gradient with Compatible Function Approximation:

It can be shown that [Peters & Schaal, 2008]:

Compatible Function Approximation
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Lets put the parts together:

• Combatible Function Approximation:

• [Peters & Schaal, 2008] showed: F is the Fisher information matrix!

• That makes the natural gradient very simple !

So we just have to learn

Connection to V-Function approximation
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What about this additional FA?

In many cases, we don’t have a good basis functions for 

For one rollout i, if we sum up the Bellman Equations 

for each time step

[Peters et al. 2003, 2005]
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What about this additional FA?

We can now eliminate the values of the intermediate states, we obtain

ONE offset parameter J suffices as additional function approximation!

at least if we have only one initial state
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Episodic Natural Actor-Critic

Actor: Natural 

Policy Gradient 

Improvement

Critic: Episodic Evaluation

In order to get , we can use linear regression
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Results…

Toy Task: Optimal point to point movements with DMPs

GPOMP: Standard Gradient (Equivalent to Policy Gradient Theorem)
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Learning T-Ball

Good 
performance 
often after 

150-300 trials.

1) Teach motor primitives by imitation

2) Improve movement by Episodic Natural-Actor Critic
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What we have seen from the policy gradients

• Policy gradients dominated policy search for a long time and solidly working 
methods exist.

• They still need a lot of samples

• We need to tune the learning rate

• Learning the exploration rate / variance is still difficult



Outline

Taxonomy of Policy Search Algorithms

Model-Free Policy Search Methods

• Policy Gradients

• Likelihood Gradients: REINFORCE [Williams, 1992], PGPE [Rückstiess et al, 2009]

• Natural Gradients: episodic Natural Actor Critic (eNAC), [Peters & Schaal, 2006]

• Weighted Maximum Likelihood Approaches

• Success-Matching Principle [Kober & Peters, 2006]

• Information Theoretic Methods [Daniel, Neumann & Peters, 2012]

• Extensions: Contextual and Hierarchical Policy Search

Model-Based Policy Search Methods 

• Greedy Updates: PILCO [Deisenroth & Rasmussen, 2011]

• Bounded Updates: Model-Based REPS [Peters at al., 2010], Guided Policy Search by Trajectory 
Optimization [Levine & Koltun, 2010]
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Success Matching Principle

Success-Matching: policy reweighting by success probability f(r)

“When learning from a set of their own trials in iterated decision problems, 
humans attempt to match not the best taken action but the reward-weighted 
frequency of their actions and outcomes” [Arrow, 1958].

States

+ Succes (high reward)   - Failure (low reward)

Policy

+ +
++
+

++

-- -

- -Reward

+ +
++
+

++

--
-

- - States

New Policy



Success Matching Principle

Success-Matching: policy reweighting by success probability f(r)

Can be derived in many ways:

• Expectation maximization [Kober & Peters., 2008][Vlassis & Toussaint., 2009]

• Optimal Control [Theodorou, Buchli & Schaal, 2010]

• Information Theory [Peters et al, 2010, Daniel, Neumann & Peters, 2012]

Basic principles of all algorithms are similar

• Success probability computation might differ

• Have been derived for step-based (hybrid) and episode-based policy search
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Episode-Based Sucess Matching

Iterate:

Sample and evaluate parameters:

Compute „success probability“ for each sample

Transform reward in a non-negative weight (improper probability distribution)

Compute „success“ weighted  policy on the samples

Fit new parametric policy that best approximates

56



So where are the weights coming from?

Transform the returns in an improper probability distribution

Exponential transformation [Peters 2005]:

• Temperature of the distribution

• Often set by heuristics [Kober & Peters, 2008][Theodorou, Buchli, & Schaal, 2010], e.g.: 

• Or information theoretic principles [Daniel, Neumann & Peters, 2012]

57

Computing the weights...



Policy Fitting

Problem: We want to find a parametric distribution that best fits the 
distribution 

We can do that by computing the M-projection of :

Optimization: weighted maximum likelihood estimate!

• Closed form solutions exists, no learning rates!

58

We sampled from
the old policy



Weighted Maximum Likelihood Solutions…

For a Gaussian policy:                  

• But more general: Also for mixture models, GPs and so on…

• Invariant to transformations of the parameters

59

Weighted mean: Weighted covariance:
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Underactuated Swing-Up

swing heavy pendulum up

• motor torques limited, Policy: DMPs

• reward function

(Schaal, NIPS 1997; Atkeson, ICML 1997)
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Underactuated Swing-Up

(Peters & Schaal, IROS 2006; Peters & Schaal, ICML 2007)
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Ball-in-a-Cup [Kober & Peters, 2008]

Reward function:

Policy: DMPs
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Ball-in-a-Cup



Table Tennis [Mülling, Kober, Krömer & Peters, 2013]
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Weighted ML estimates

• Invariant to transformations of the parameters

• No learning rate needs to be tuned

• Controllable exploration-exploitation tradeoff?

• Difficult… but can be adjusted with temperature 
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Outline

Taxonomy of Policy Search Algorithms

Model-Free Policy Search Methods

• Policy Gradients

• Likelihood Gradients: REINFORCE [Williams, 1992], PGPE [Rückstiess et al, 2009]

• Natural Gradients: episodic Natural Actor Critic (eNAC), [Peters & Schaal, 2006]

• Weighted Maximum Likelihood Approaches

• Success-Matching Principle [Kober & Peters, 2006]

• Information Theoretic Methods [Daniel, Neumann & Peters, 2012]

• Extensions: Contextual and Hierarchical Policy Search

Model-Based Policy Search Methods 

• Greedy Updates: PILCO [Deisenroth & Rasmussen, 2011]

• Bounded Updates: Model-Based REPS [Peters at al., 2010], Guided Policy Search by Trajectory 
Optimization [Levine & Koltun, 2010]
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For success matching, directly use relative entropy as metric between two
policies

We get the following optimization problem:

• Stay close to the data

• Epsilon directly controls the exploration-exploitation trade-off

• continue to explore with policy

• greedily jump to best sample

69

Episodic Relative Entropy Policy Search

Maximize Reward

It‘s a distribution

Stay close to the old policy



Which has the following analytic solution:

• That‘s exactly sucess matching with exponential transformation!

• Scalingfactor :

• Automatically chosen from optimization (Lagrange Multiplier)

• Specified by KL-bound

• How to compute    ?

• Solve the dual problem [Boyd&Vandenberghe, 2004] 

• Convex Optimization

70

Relative Entropy Policy Search



Outline

Taxonomy of Policy Search Algorithms

Model-Free Policy Search Methods

• Policy Gradients

• Likelihood Gradients: REINFORCE [Williams, 1992], PGPE [Rückstiess et al, 2009]

• Natural Gradients: episodic Natural Actor Critic (eNAC), [Peters & Schaal, 2006]

• Weighted Maximum Likelihood Approaches

• Success-Matching Principle [Kober & Peters, 2006]

• Information Theoretic Methods [Daniel, Neumann & Peters, 2012]

• Extensions: Contextual and Hierarchical Policy Search

Model-Based Policy Search Methods 

• Greedy Updates: PILCO [Deisenroth & Rasmussen, 2011]

• Bounded Updates: Model-Based REPS [Peters at al., 2010], Guided Policy Search by Trajectory 
Optimization [Levine & Koltun, 2010]
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Extension: Contextual Policy Search with REPS

Context:

• Context x describes objectives of the task (fixed before task execution)

• E.g.: Target location to throw a ball

• Adapt the control policy parameters to the target location x

72



Contextual Policy Search with REPS 
[Kupscik, Deisenroth, Peters & Neumann, 2013]

Context:

• Context x describes objectives of the task (fixed before task execution)

• E.g.: Target location to throw a ball

• Adapt the control policy parameters to the target location x

• Learn an upper level policy

Objective:

• Average reward over all contexts

• …context distribution

Dataset for policy update:

• Also contains context vectors
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Contextual Policy Search with REPS 
[Kupscik, Deisenroth, Peters & Neumann, 2013]

Optimize over the joint distribution

• Otherwise independent optimization problems for each context

We get the following optimization problem [CITE]:

maximize rewards

it’s a distribution

stay close to the data

reproduce given context 
distribution
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Contextual Policy Search with REPS 
[Kupscik, Deisenroth, Peters & Neumann, 2013]

Closed form solution:

• We automatically get a baseline V(x) for the returns

• Function approximation  for V(x) achieved by matching feature averages instead of 
distributions

• given by Lagrangian multipliers

• Obtain      again by optimizing the dual

Policy                           again obtained by a weighted maximum likelihood estimate

• E.g. weighted linear regression in the simplest case
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Results: Thetherball

Tetherball:

• Six degrees of freedom

• Highly dynamic behavior due to springs

• Cable driven lightweight robots

• Very complex forward dynamics model

• High dimensional context space (TODO!)
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[Parisi, Peters, et. al, IROS 2015]



Real Robot Experiment
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Extension: Learning Hierarchical 
Policies with REPS [Daniel, Neumann & Peters, 2012]

Iteration 0 Iteration 3 Iteration 6 Iteration 9

Motivation:

• Many motor tasks have multiple solutions. 

• We want to learn all of them

Illustration: The weighted ML update averages over all solutions!
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Introduce Hierarchy

Upper-level policy                  as hierarchical policy

• Selection of the sub-policy: Gating-policy

• Selection of the parameters: Sub-policy

• Structure of the hierarchical policy:

Gating-Policy

Sub-Policies
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Learning versatile Sub-Policies

Sub-Policies should represent distinct solutions.

Limit the overlap of the options

• Responsibilities                    tell us whether we can identify an option, given  

• High entropy of responsibilities                            high overlap

• Limit the entropy less overlap

Entropy

Iteration 6 Iteration 9Iteration 0 Iteration 3
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Hierarchical REPS

Bounding the overlap of sub-policies:

Iteration 3 Iteration 6 Iteration 9Iteration 0

Learning of versatile, distinct solutions due to separation of sub-policies.
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Video



Outline

Taxonomy of Policy Search Algorithms

Model-Free Policy Search Methods

• Policy Gradients

• Likelihood Gradients: REINFORCE [Williams, 1992], PGPE [Rückstiess et al, 2009]

• Natural Gradients: episodic Natural Actor Critic (eNAC), [Peters & Schaal, 2006]

• Weighted Maximum Likelihood Approaches

• Success-Matching Principle [Kober & Peters, 2006]

• Information Theoretic Methods [Daniel, Neumann & Peters, 2012]

• Extensions: Contextual and Hierarchical Policy Search

Model-Based Policy Search Methods 

• Greedy Updates: PILCO [Deisenroth & Rasmussen, 2011]

• Bounded Updates: Model-Based REPS [Peters at al., 2010], Guided Policy Search by Trajectory 
Optimization [Levine & Koltun, 2010]
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Model-Based Policy Search Methods
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Learn dynamics model from data-set

+ More data efficient than model-free methods

+ More complex policies can be optimized

• RBF networks [Deisenroth & Rasmussen, 2011]

• Time-dependent feedback controllers [Levine  & Koltun, 2014]

• Gaussian Processes [Von Hoof, Peters & Nemann, 2015]

• Deep neural nets [Levine & Koltun, 2014][Levine & Abbeel, 2014]

Limitations:

- Learning good models is often very hard

- Small model errors can have drastic damage 
on the resulting policy (due to optimization)

- Some models are hard to scale

- Computational Complexity



Model-Based Policy Search Methods
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Learn dynamics model from data-set

• Gaussian Processes [Deisenroth & Rasmussen 2011]

[Kupcsik, Deisenroth, Peters & Neumann,  2013]

• Bayesian Locally Weighted Regression [Bagnell & Schneider, 2001]

• Time-Dependent Linear Models [Lioutikov, Peters, Neumann 2014]

[Levine & Abbeel 2014]

Use learned model as simulator 

• Sampling [Kupcsik, Diesenroth, Peters & Neumann 2013][Ng 2000]

• (Approximate) probabilistic Inference [Deisenroth & Rasmussen 2011, Levine & Koltun, 2014]

Update Policy

• Model-free methods on virtual sample trajectories [Kupcsik, Diesenroth, Peters & Neumann 2013]

• Analytic Policy Gradients [Deisenroth &  Rasmussen, 2011]

• Trajectory optimization [Levine & Koltun, 2014]



Metrics used in Model-Based Policy Search

Bound the policy update for model-based policy search?

• Greedy methods: [Deisenroth & Rasmussen, 2011, Ng et al. 2001]

• Deterministic policy

• Compute optimal policy based on current model

• Exploration: Optimistic UCB like exploration bonus can be used

• “Bounded” methods: [Kupcsik Deisenroth, Peters & Neumann, 2013][Levine  & Koltun 2014][Lioutikov, Peters, Neumann 2014]

• Stochastic Policy

• The model is only correct in the vicinity of the data-set

Stay close to the data!

• All these methods use some sort of KL-bound

Ideas from model-free PS directly transfer

• Exploration: Step-size of the policy update is bounded
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Greedy Policy Updates: PILCO [Deisenroth & Rasmussen 2011]

Model Learning:

• Use Bayesian models which integrate out model 
uncertainty        Gaussian Processes

• Reward predictions are not specialized to a single model

Internal Stimulation:

• Iteratively compute

• Moment matching: deterministic approximate inference 

Policy Update:

• Analytically compute expected return and its gradient

• Greedily Optimize with BFGS
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PILCO: some results

• Swing up and balance a freely swinging pendulum on a cart

• No knowledge about nonlinear dynamics Learn from scratch

• Unprecedented learning speed compared to state-of-the-art (2011)

More applications:
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Learning to Pick up Objects [Bischoff et al.  2013]

.
Controlling Throttle Valves in Combustion Engines [Bischoff et al.  2014]



PILCO: some results

• Swing up and balance a freely swinging pendulum on a cart

• No knowledge about nonlinear dynamics Learn from scratch

• Unprecedented learning speed compared to state-of-the-art (2011)

Also some limitations:

• GP-models are hard to scale to high-D

• Computationally very demanding

• Can only be used for specific parametrizations of the policy and the reward function

90



Metrics used in Model-Based Policy Search

Bound the policy update for model-based policy search?

• Greedy methods: [Deisenroth & Rasmussen, 2011, Ng et al. 2001]

• “Bounded” methods: [Kupcsik Deisenroth, Peters & Neumann, 2013][Levine  & Koltun 2014][Lioutikov, Peters, Neumann 2014]

• Stochastic Policy

• The model is only an approximation

• Do not fully trust it!

• The model is only good in the vicinity of the data-set

Stay close to the data!

• All these methods use some sort of KL-bound

Ideas from model-free PS directly transfer

• Exploration: Step-size of the policy update is bounded
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GP-REPS [Kupcsik, Deisenroth, Peters & Neumann, 2013]

Model-based extension used for contextual 
policy search

Model Learning:

• Gaussian Processes for learning the dynamics 
of robot and environment

Internal Stimulation:

• Sampling trajectories from 
following policy 

• Generate a high number of trajectories for 
different parameter vectors     and context 
vectors

Policy Update:

• Use contextual REPS on the artificial samples

• Trajectories will stay in the area where we 
have dynamics data
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Table tennis experiment 
[Kupcsik, Deisenroth, Peters & Neumann et al. 2015]

93 [Kupscik, Neumann et al, Artificial Intelligence, 2013]

19 Policy Parameters (DMPs)
5 context variables (initial ball velocities, desired target location)



Table tennis experiments
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Learn GP models for:

• Ball contact on landing zone

• Ball trajectory from contact

• Racket trajectory from policy 
parameters

• Detect contact with racket 
(yes/no)

• If contact, predict return 
position on opponents field

A lot of prior knowledge is 
needed to decompose this 
MDP into simpler models



Table tennis experiments

REPS with learned forward models

• Complex behavior can be learned 
within 100 episodes

• 2 order of magnitudes faster than 
model-free REPS
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Table tennis experiments
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Illustration: 2 shots for different contexts

• Works well for trajectory generators (small number of parameters)
• For more complex policies we need a step-based policy update!



Step-based REPS [Peters et al., 2010]

We can also formulate the REPS with states and actions

• Original formulation can be found in [Peters et al., 2010]

2 different formulations:

• Infinite Horizon: Average reward formulation using a stationary state 
distribution

• Original REPS paper [Peters et al., 2010]

• Non-parametric REPS [Von Hoof, Peters & Neumann, 2015]

• Finite Horizon: Accumulated reward formulation using trajectories

• Guided policy search with trajectory optimization [Levine & Koltun, 2014], [Levine & Abeel, 2014]

• Time-Indexed REPS [Daniel  Neumann, Kroemer & Peters, 2013][Lioutikov, Paraschos, Peters & Neumann, 2014]
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Infinite Horizon Formulation

Bound the change in the resulting state action distribution

Maximize average reward

KL should be bounded to old 
state action distribution

It’s a distribution

State distribution needs to be 
consistent with  policy and 
learned dynamics model
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Infinite Horizon Formulation

Closed form solution:

• We automatically get a softmax over the advantage function

• V(s)… Lagrangian multiplier, resembles a value function

• Linear function approximation [Peters et al. 2010]:

• Put in a reproducing kernel Hilbert space (RKHS): 
[Von Hoof, Peters, Neumann 2015]

• The model is needed to evaluate expectation 

• Either approximated by single sample outcomes [Peters et al., 2010, Daniel , Neumann & Peters, 2013]

• or conditional operators in an RKHS [Von Hoof, Peters & Neumann, 2015]
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Image-based pendulum swing-up

Learn pendulum swing-up based on 

image data [Von Hoof, Neumann & Peters, 2015]

• Policy is a GP defined on images

• Policy is obtained via weighted ML
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Trajectory-based formulation

Guided Policy Search via Trajectory 
Optimization [Levine & Koltun, 2014]

• Use trajectory optimization to learn local policies

• Policy is a time-varying stochastic feedback 
controller

• Time-varying linear model is learned

• Bounded policy update critical for the stability of 
the algorithm

Use learned local policies to train global, 
complex policy

• Deep Neural Nets

• “Guidance”: 

• Local policy might have more information on the current 
situation than the global one

• Joint values versus camera image [Levine 2015]

• Global policy learns to infer which situation we are in

101

Levine et. al

Levine et. al



Bounded Trajectory Optimization

Bound the change in the resulting trajectory distribution

Maximize average reward

KL should be bounded to old 
trajectory distribution

It’s a distribution
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Bounded Trajectory Optimization

Plugging in the factorization of the trajectory distribution:

Maximize average reward

KL on the policies should be 
bounded at each time step

It’s a distribution

Time-dependent state 
distributions need to be 
consistent

Initial distribution is given
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Infinite Horizon Formulation

Closed form solution:

• V(s)… Lagrangian multiplier, 

• can be computed by dynamic programming 

• Time-dependent temperature 

• Linear systems, quadratic costs and Gaussian noise:

• Standard LQR equations, solved by dynamic programming

• The policy is a (stochastic) linear feed back controller

• Implements exploration

• Similar to iLQG [Todorov & Li, 2005], but more stable due to KL-bound
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Time-varying linear models

Linear models: 

• Generalize well locally

• Scale well

Time-varying: 

• Enforces locality

• At the same time step, the robot will be in 
similar states in different trials

Learning time-varying linear models:

• Learn a GMM of linear models

• Fit an own model for each time step

• Use GMM as prior
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Levine et. al



Constrained Guided Policy Search [Levine 2014]

Train Deep Neural Net:

• Supervised learning: reproduce the optimized 
trajectories

• Linearization of the neural net should be close to 
linear feedback controller

• Can train several thousand parameters

Trajectory optimization:

• Trajectories should stay close to trajectories 
generated by neural net

• No time dependence in the neural net 
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Simulated Results

Learning walking gaits [Levine & Koltun, 2014]:

• Simulator: Mojoco

• Planar walking robot
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Real Robot Results

Learning different manipulation tasks [Levine 2015]:
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Outlook

Learning from high-dimensional sensory data

• Tactile and vision data

• Deep Learning

• Kernel-based methods

Hierarchical Policy Search

• Identify set of re-useable skills

• Learn to select, adapt, sequence and combine these skills

• Deep hierarchical policy search?

Incorporate human feedback

• Inverse RL and Preference Learning

• Autonomous learning from imitation

POMDPs and Multi-Agent Policy Search
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Conclusion

Policy Search Methods have made a tremendous development 

• Model free methods can learn trajectory-based policies for complex skills

• Trajectory-based representations provide an compact representation of a skill but lack flexibility

• Step-based vs episode-based formulation

• Different optimization methods with different policy metrics

• Complex policies with thousands of parameters can be learned with model-based methods

• But might be less appropriate for execution on a real robot

Robot-RL is still a challenging problem

• Learning efficient exploration policies is a major challenge

• Exploration-Exploitation tradeoff can be controlled by bounding the relative entropy

• Bounded policy updates are useful for model-free and model-based methods

• We can solve mainly monolithic problems

• Hierarchical policy search methods should help
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