Policy '§earch: Methods and Applications

v Y A Jan Peters
Gerhard Neumann

] L=
¥
¥
"
\ - -
"4 f":|
i % TECHMNISCHE
* IHE f"i*, UNIVERSITAT
- ' ?’% DARMSTADT
Honzon 2020 v

Motivation

In the next few years, we will see a dramatic increase of robot applications

Today: Tomorrow:

Robot Assistants Nano-Robots

http://news.softpedia.com/

Industrial Robots

dia.de

http://www.Wikipe

> 7 —
| ~— -
&_% ——

Household

2

Reinforcement Learning

Most of these tasks can not be programmed by hand
Easier: Specifying a reward function) Markov Decision Processes

A Markov Decision Process (MDP) is defined by:

* itsstatespace s &€ S s 1
* itsaction space a € A Tt :[Agent)
* itstransition dynamics P(s;11|s¢, ay) a
. . | Ttr1(
* itsreward function 7(s,a ——— :
(5,a) » Stﬂ\Enwronment}f

e and its initial state probabilities fo(s)

Reinforcement Learning

Most of these tasks can not be programmed by hand

Easier: Specifying a reward function) Markov Decision Processes

A Markov Decision Process (MDP) is defined by:

its state space s € S

S
its action space a € A -
its transition dynamics P(s;y1|s:, a;)

its reward function r(s,a) e

and its initial state probabilities ()

Learning: Adapting the policy 7(a|s) of the agent

Reinforcement Learning

Objective: Find policy that maximizes long term reward J,

0

Infinite Horizon MDP:

Jﬂ- = Euojp’ﬂ- Z')/tTt
_t=0 _
Tasks:
e Stabilizing movements: .

Balancing, Pendulum Swing-up...
 Rhythmic movements:

Locomotion (tevine & koltun, ICML 2014], Ball

Padding[Kober etal, 2011], Juggling [Schaal et al.,

1994]

m° = argmax J
T

Finite Horizon MDP:

Jﬂ' — Euo,P,ﬂ'

N
Dt
| t=0 |

Tasks:

Stroke-based movements:
Table-tennis muiingetal, urr 20137, Ball-
in—a—Cup [Kober & Peters., NIPS 2008], PaN-

F||pp|ng [Kormushev et al., IROS 2010], ObJeCt
Manipulation wmer etal, icra2015)

Kormushev et. al.

Peters et. al.

Robot Reinforcement Learning

Challenges:
Dimensionality:

* High-dimensional continuous
state and action space

* Huge variety of tasks
Real world environments:
* High-costs of generating data
* Noisy measurements
Exploration:

* Do not damage the robot

* Need to generate smooth
trajectories

Robot Reinforcement Learning

Challenges: Value-based Reinforcement Learning:
Dimensionality Estimate value function:
Real world environments e.g.: Q(s,a) =r(s,a)+~Ep[V(s')|s,al
Exploration * Global estimate for all reachable states

* Hard to scale to high-D
* Approximations might ,destroy” policy
Estimate global policy:
e.g.. T (s) = arg max Q(s,a)
e Greedy policy update for all states
e Policy update might get unstable

Explore the whole state space:
exp(Q(s, a))
Za,’ €Xp (Q(Sv CL’))

* Uncorrelated exploration in each step

e.g.. m(als) =

7 * Might damage the robot

Robot Reinforcement Learning

Challenges: Value-based Reinforcement Learning:
Dimensionality Estimate value function
Real world environments Estimate global policy
Exploration Explore the whole state space

POI icy Sea rCh M EthOdS [Deisenroth, Neumann &Peters, A Survey of Policy Search for Robotics, FNT 2013]

Use parametrized policy Correlated local exploration
a~ w(als;0), O ... parameter vector e.g.: 0; ~ N8|y, Xg)

 Compact parametrizations for

. . * Explore in parameter space
high-D exists

_ * Generates smooth trajectories
* Encode prior knowledge

Locally optimal solutions

 Safe policy updates
* No global value function estimation

Policy Search Classification

Yet, it's a grey zone...

Episodic Actor Critic,
REPS Natural Actor Critic

Conservative
Policy Iteration

LSPI

PILCO
Direct Policy <
Search

Evolutionary Policy I\/Iodel—basfed REPS
Strategies, Gradients, PS by Trajectory
CMA-ES eNAC Optimization

Important Extensions:

Advantage
Weighted
Regression

> Value-Based
RL

Q-Learning,
Fitted Q

o CO nteXt U a | PO | | Cy Sea I'C h [Kupscik, Deisenroth, Peters & Neumann, AAAI 2013], [Silva, Konidaris & Barto, ICML 2012], [Kober & Peters, IJCAlI 2011], [Paresi &

Peters et al., IROS 2015]

* H |e ra rC h | Ca | POl |Cy Sea I'C h [Daniel, Neumann & Peters., AISTATS 2012], [Wingate et al., JCAlI 2011], [Ghavamzadeh & Mahedevan, ICML 2003]

Used policy representations

Parametrized Trajectory Generators

e Returns a desired trajectory 7
" =qi.r = f(0)
* Compute controls u¢ by the use of
trajectory tracking controllers

 Compact representation for high-D
state spaces

* Can only represent local solutions

Examples: P

, , 0 0.2 0.4 0.6 0.8 1
* Splines, Bezier Curves o & stone. icra 20041, .. _ t)

¢ M oveme ﬂt PI’I m |t|VeS [Peters & Schaal, IROS 2006], [Kober & Peters., NIPS 2008], [Kormushev et al., IROS 2010], [Kober & Peters, IJCA 2011] [Theodorou,
Buchli & Schaal., JMLR 2010]

Other Representations:
e Linear Controllers witiamset ar, 1992]
¢ RBF‘NEtWO rkS [Deisenroth & Rasmussen., ICML 2011]

1 O ¢ (Dee p) Neural Networks itevine & koltun., 1cmL 2014](Levine & Abbeel, NiPs 2014, ICRA 2015]

Outline

Taxonomy of Policy Search Algorithms

Model-Free Policy Search Methods

* Policy Gradients
e Likelihood Gradients: REINFORCE [Williams, 1992], PGPE [Riickstiess et al, 2009]

e Natural Gradients: episodic Natural Actor Critic (eNAC), [peters & Schaal, 2006]

* Weighted Maximum Likelihood Approaches
e Success-Matching Principle [kober & peters, 2006]

e Information Theoretic Methods [paniel, Neumann & Peters, 2012]

e Extensions: Contextual and Hierarchical Policy Search

Model-Based Policy Search Methods

* G reedy U pd ateS P I LCO [Deisenroth & Rasmussen, 2011]

* Bounded Updates: Model-Based REPS (peters at al, 2010, Guided Policy Search by Trajectory
Optimization [Levine & Koltun, 2010]

11

Taxonomy of Policy Search Algorithms

model-free vs. model-based

Model-Free Policy Search Model-Based Policy Search
Use samples Use samples
_ [4] (4] [4] _ [4] (4]
D = {(Slvaa’l:T—lﬂrlzT)} D = {(81:T7a1:T—1)}
to directly update the policy to estimate a model
Properties: Properties:
* No model approximations required * Sample efficient
° App“cable N many situations ¢ Oﬂ|y WOI’kS |f d gOOd mOdel can be
learned

* Requires a lot of samples
e Optimization of inaccurate models might

lead to disaster

12

Taxonomy of Policy Search Algorithms

model-free vs. model-based

Model-Free Policy Search

Use samples

D= { (3[1%:}:117 a’[lzz]T—lﬂ TEL:]T) }

to directly update the policy
Optimization methods:

d POl |Cy G a d e ntS [Williams et al. 992, Peters & Schaal 2006,
Rlckstiess et al 2008]

d N atu Fa | G a d e ntS [Peters & Schaal 2006, Peters & Schaal 2008,
Su, Wiestra & Peters 2009]

* Expectation Maximization ikober & peters 2008, Viassis &
Toussaint 2009]

* Information-Theoretic Policy Search aniel,

Neumann & Peters 2012, Daniel, Neumann & Peters, 2013]

i Path |ntegra| Contr0| [Theoudorou, Buchli & Schaal 2010, Stulp
& Sigaud 2012]

i StOChaSt|C Sea I’Ch MethOdS [Hansen 2012, Mannor 2004]

13

Model-Based Policy Search

Use samples

D = { (3[1?::]% af[li:]T—l) }

to estimate a model
Optimization methods:
* Any model-free method with artificial

Sam p | es [Kupscik , Deisenroth, Peters & Neumann, 2013]
i Aﬂa |ytIC PO“Cy G radientS [Deisenroth & Rasmussen 2011]

* Trajectory Optimization [tevine & koltun 2014]

Model-free policy search

Pseudo-Algorithm: 3 basic steps

Repeat
1. Explore: Generate trajectories 7] following the current policy 7
2. Evaluate: Assess quality of trajectory or actions
3. Update: Compute new policy mg+1 from trajectories and evaluations
Until convergence

14

Taxonomy of Model-Free Policy Search Algorithms -

episode-based vs. step-based

Episode-based
Explore: in parameter space at the
beginning of an episode
0; ~ m(0;w)

* Learn a search distribution 7(8; w)
over the parameter space

e W... parameter vector of search
distribution

* a = 7(s;0)... deterministic control
policy

Evaluate: quality of parameter vectors
0; by the returns Rl
T

R =", D= {g[i],R[i]}

t=1

15

Step-Based

Explore: in action-space at each time
step

a; ~ m(als:; 0)
e stochastic control policy

Evaluate: quality of state-action pairs
(s @\ by reward to come

T

1= n. D= {sll.al.0f')

h=t

Taxonomy of Model-Free Policy Search Algorithms

episode-based vs. step-based

Episode-based

Explore: in parameter space at the
beginning of an episode

Evaluate: quality of parameter vectors
0; by the returns Rl

Properties:

e General formulation, no Markov
assumption

* Correlated exploration, smooth trajectories
* Efficient for small parameter spaces (< 100)

* E.g. movement primitives
Structure-less optimization
= ,Black-Box Optimizer”

16

Step-Based

Explore: in action-space at each time
step

Evaluate: quality of state-action pairs

(si). a\!y by reward to come QF
Properties:

* Less variance in quality assessment.

* More data-efficient (in theory)

* Jerky trajectories due to exploration

e Can produce unreproducible trajectories for
exploration-free policy

Use structure of the RL problem
=decomposition in single timesteps

Taxonomy of Model-Free Policy Search Algorithm o

episode-based vs. step-based

Episode-based Step-Based
Explore: in parameter space at the Explore: in action-space at each time
beginning of an episode step
Evaluate: quality of parameter vectors Evaluate: quality of state-action pairs
6; by the returns Rl (s, ai!y by reward to come Q¥
Algorithms: Algorithms:
e Episodic REPS ipaniel, neumann & peters, 2012] e Reinforce wiiams 19921
* PI2-CMA iswip & sigaud, 2012] * Policy Gradient Theorem / GPOMDP (gaxter &
o CMA-ES ponsencral, 2009 o

 Episodic Natural Actor Critic peters & schaal, 2003)

® N ES [Su, Wiestra, Schaul & Schmidhuber, 2009] . .
 2nd Order Policy Gradients irurmston & Barber 2011]
° PE‘PG [Rickstiess, Sehnke, et al.2008] .. ; . .
 Deterministic Policy Gradients siver, Leveret al,
 Cross-Entropy Search mannoret al. 200 2014]

17

Taxonomy of Model-Free Policy Search Algorithms

18

$§ 4$ 3 3 33

episode-based vs. step-based

Hybrid
Explore: in parameter space at each
time step

Evaluate: quality of state-action pairs
(s¢),a)by reward to come QY

Properties:
e State dependent exploration
* Can be reproduced by noise-free policy

Algorithms:
° Powe I [Kober & Peters, 2008]
° P | 2 [Theoudorou, Buchli & Schaal, 2010]

More recent versions of these algorithms are
episode-based

t

Model-Free Policy Updates

Use samples o o
Dy = {0, R} or D = {5l af!, Q1)

to directly update the policy
 Different optimization methods

* Gradients: Reinforce witiams 19921 Natural Actor Critic (peters & schaal, 2003][Peters & Schaal, 2006], PGPE
[Ruckstiess et al. 2009]

* Success matching by weighted maximum likelihood: POWER keber & peters 2008],

EpiSOdiC REPS [Daniel , Neumann & Peters, 2012], Path Integrals [Theodorou, Buchli & Schaal 2010]
* Evolutionary strategies (ransen 2003, Cross-entropy mannor 20041, ...

* Many of them can be used for step-based and episode-based policy search

e Different metrics to define the step-size of update
* Euclidian (distance N pdra meter space) [Williams 1992][Riickstiess et al., 2009]

* Relative Entropy (“distance” in probability space) (agnei et al. 2003), (peters & schaal 2006}

[Peters et al. 2010], [Daniel, Neumann & Peters 2012]

¢ H eu I’IStICS [Kober & Peters 2008, Theoudorou, Buchli & Schaal,2010, Hansen et al., 2003]

* Before discussion of algorithms: Analyze consequence of step size

19

Model-Free Policy Updates

* Reproduce trajectories with high quality / Avoid trajectories with low
quality
* We |learn stochastic policies:

0, ~n(0;w) a; ~ m(a|s:; 0)
Episode-based Step-based

e Used for exploration!

e Efficient Learning: also update exploration rate!

e £.g. For Gaussian policies:

e Update mean and covariance!
* Mean p : easy!
* Covariance X : hard!

20

Desired Properties for the Policy Update

Desired properties:
* [nvariance to parameter or reward transformations
* Regularize policy update
* Update is computed based on data

= stay close to data!
* Smooth learning progress

* Controllable exploration-exploitation trade-off

[]old policy

[]new policy
© samples

-

e1
Conservitive Updgte Moderate Update, Greedy update
Small “step size Moderate “step size” Large “step size”
Which policy update should we use?

21

Moderate Conservative

Greedy Update

Illustration of Policy Updates

S

-

small step-size = hi

7

gh exploration = slow convergence

gz

\

(4 E
/v ﬁ %

§

) 1)

([

large step-size = exploration vanishes = premature convergence

22

Metrics used for the Policy Update

Desired properties:
* [nvariance to parameter or reward transformations

Conservative

* Regularize policy update

* Update is computed based on data
=) stay close to data

* Smooth learning progress

* Controllable exploration-exploitation trade-off

e2

* Explore: Higher reward in future / Lower reward now

Moderate

* Exploit: Higher reward now / Lower reward in the future

* Which one to choose? Do not know... problem specific
* But: algorithm should allow us to choose the greediness

Metric used for the policy update
 Different metrics are used to define the step-size of the update

* Need metric that can measure the greediness of the update

23

Greedy Update

Outline

Taxonomy of Policy Search Algorithms

Model-Free Policy Search Methods

* Policy Gradients
e Likelihood Gradients: REINFORCE [Williams, 1992], PGPE [Riickstiess et al, 2009]

e Natural Gradients: episodic Natural Actor Critic (eNAC), [peters & Schaal, 2006]

* Weighted Maximum Likelihood Approaches
e Success-Matching Principle [kober & peters, 2006]

e Information Theoretic Methods [paniel, Neumann & Peters, 2012]

e Extensions: Contextual and Hierarchical Policy Search

Model-Based Policy Search Methods

* G reedy U pd ateS P I LCO [Deisenroth & Rasmussen, 2011]

* Bounded Updates: Model-Based REPS (peters at al, 2010, Guided Policy Search by Trajectory
Optimization [Levine & Koltun, 2010]

24

Policy Gradients

Optimization Method: Gradient Ascent
 Compute gradient from samples

D= {01 B} or Dy = {sll,all Ql")
8J9/8w = Vwa or 8J9/89 = VQJQ
e Update policy parameters in the direction of the gradient
Wit1 = Wgt1 + aVdy, or Orp =0 +aVely,

e «... learningrate

25

Likelihood Policy Gradients

Episode-Based: Policy 6 ~ 7(0; w)

We can use the log-ratio trick to compute the policy gradient
1
Viog f(2) = 75VI@) By V()= f()Vlog f()

Gradient of the expected return:
Vod, = Vw/W(Q;w)RgdB = /Vwﬂ(ﬂgw)RgdB

= /71'(9; w)V logm(0;w)Redb

N
~ Y Vi logm(0i;w)R
i=1
 Only needs samples!

* This gradient is called Parameter Exploring Policy Gradient

2 6 (P G P E) [Rickstiess et al., 2009]

Baselines...

We can always subtract a baseline b from the gradient...

N
Vodo =Y Vlogm(0i;w)(R; — b)

Why? =

 The gradient estimate can have a high variance
* Subtracting a baseline can reduce the variance
* |ts still unbiased...

Ep(z:w) Ve logp(x; w)b| = b/ Vaep(x; w) = bV, /p(w;w) =0

Good baselines:
 Average reward
* Dbut there are optimal baselines for each algorithm that minimize the

Va rl a ﬂ Ce [Peters & Schaal, 2006], [Deisenroth, Neumann & Peters, 2013]

217

Step-based Policy Gradient Methods

The returns can still have a lot of variance
T

Rog = E Z T
Lt=1

...as itis the sum over T random variables

0

There is less variance in the rewards to come:
2] T []
Qt — Zh:t Th

 Step-based algorithms can be more efficient when estimating the gradient
* We have to compute the gradient VgJ for the low-level policy = (als; 6)

28

Step-based Policy Gradient Methods

Plug in the temporal structure of the RL problem

* Trajectory distribution: T
p(7;0) = p(s1) H m(ai|se; 0)p(Si+1]se, ar)

e Return for a single trajectory: - =1
R(T) = Z’rt
t=1

m Expected long term reward Jg can be written as expectation over
the trajectory distribution

Jo = Eyma [R(T)] = / p(r:0)R(T)dr

29

Step-Based Likelihood Ratio Gradient

Using the log-ratio trick, we arrive at

VeJo = » Velogp(r'l;0)R(r!")
i=1

How do we compute Vg logp(Tl1;0) ?
T

log p(7;0) Zlogw a;|s:; @) + const

Model-dependent terms cancel due to the derivative

T
Velogp(T;0) = > Veglogm(as|s;6)

t=1

30

Step-Based Policy Gradients

Plug it back in... N7 o
Vol =33 Velogn(al'|s;0)R(r)
1=1 t=1
N T o T
= > > Vplog (a5 6) (Z ’I“P])
i=1 t=1 t=1
This algorithm is called the REINFORCE Policy Gradient wiims 1952

* Wait... we still use the returns R(7)
= high variance...
* What did we gain with our step-based version? Not too much yet...

31

Using the rewards to come...

Simple Observation: Rewards in the past are not correlated with actions in the
future

Epry|rilog m(an|sy)] = 0,Vt < h

This observation leads to the Policy Gradient Theorem sutonsss)

N T-—1 ' | T—1 | |
VECT = >: >: Vo log 7'('(0,7[;]‘81[52]; 0) (Z TE’] + réﬂ)
1=1 t=1 h=t
N T-1 | . .
=33 " Velogn(a|si;0)Q;

i=1 t=1
* The rewards to come have less variance

e Can also be done with a baseline...

32

Metric in standard gradients

Ok, how can we choose the learning rate a.?

Metric used for policy gradients:

e Standard gradients use euclidian distance
in parameter space as metric

* Episode-based: Lg(ﬂ'k_|_1,ﬂ'k) — Hwk-l—l — wk“
* Step-based: L2(7Tk-|—1,7Tk;) — y|9k+1 — BkH

* |nvariance to reward transformations

* Choose learning rate, such that L2(7Tk-|-1; 7Tk) <e€

1
IVJ|

e Resulting learning rate: o =

€

* No Invariance to parameter transformations

* Euclidian metric can not capture the greediness
of the update

33

Moderate Conservative

Greedy Update

%

We need to find a better metric...

Policies are probabilty distributions
=»\We can measure ,distances” of distributions

Better Metric: Relative Entropy or Kullback-Leibler divergence

B) loe P(E)
-KMMM)—E;p()lgﬂw)

* Information-theoretic , distance” measure between distributions

* Properties:

* Always larger O: K]
* Only 0 iff both distributions are equal: KI
* Not symetric, so not a real distance KI

34

q) >0

q) =0&p=g
q) # KL(q||p)

Kullback-Leibler Divergences

2 types of KLs that can be minimized:

Moment projection: argmin KL(q||p) = argmin, > _ q(x)log

35

* pislarge where ever g is large
* Match the moments of g with the moments of p

e Same as Maximum Likelihood estimate !

Bishop, 2006

q()
p(x)

Kullback-Leibler Divergence

2 types of KLs that can be minimized:

Information projection: ~ argmin, KL(p||q) = argmin,,) . p(x) log st

| q(x)
* pis zero wherever g is zero (zero forcing): no wild exploration
* not unique for most distributions
* Contains the entropy of p: important for exploration
— q(x)
— p(z)
Bishop, 2006

36

&

| 4>

\ \\‘J Q7

KL divergences and the Fisher information matrix;

The Kullback Leibler divergence can be approximated by the Fisher information
matrix (2nd order Taylor approximation)

KL(po+aollpe) =~ AT G(0)A8
where G(0)is the Fisher information matrix (FIM)
G(0) = E,[Vglogpe(x)Velogpg(x)]

= Captures information how a single parameter influences the distribution

37

Natural Gradients

The natural gradient mmwi0s USES the Fisher information matrix as metric
* Find direction maximally correlated with gradient
* Constraint: (approximated) KL should be bounded

S.U.: KL(p9+A9||p9) ~ AOTG(B)AH é €
The solution to this optimization problem is given as:

VNG J G(8)~1VgJ

* Inverse of the FIM: every parameter has the same influence!
* Invariant to linear transformations of the parameter space!

38

Are they useful?

. . (b) LQR natural gradient

Linear Quadratic - OS[T T VAN AY

. ., |~/ = : A

Regulation ':*En. VNN T~ A

Saa|l./ . '- |

Ti11 = Az + Buy 2 A
g ~ wlulze) = N(ulkz,, o) (/o s
ry = —x] Qz; — ul Ruy A A) BOAff < o\ o
0 #ﬁs : = ==
=2 =1.5 =1) 0 =2 =1.5 =1) 0

TWO- State Controller exploitation & =k Controller exploitation & =&

¢) Two state policy gradient
Problem - e

] 1 ——————]
__‘__-' I SR I((rr_';l.--i -__-__- v ot cow g fon _Ir‘r::'r-i
u=0,r=0 o SN N v i S B
= TPt \'-. I -'r I - e SR \'-. .||I [lh
.o 0‘ A N -h LT
E \‘ li - = l— I|—.| E - \" - I'i |. Il_ll
0.4 - T il 04f - < X = 4 — - |1

=0 u=1 u=1 & \ A N R |j & \\\ S N I_|
L ﬁ"-. - ',I_. -l = |= _,_| *"., . ',I . S | |

R 0 A I N W I e I
i 0.2 04 0.6 0.8 i 0.2 04 0.6 0.8 -

PHIE.ITI-EIE!['HJI Pa.ra.meterﬂ}

[Peters et al. 2003, 2005]

39 The standard gradient reduces the exploration too quickly!

Computing the Natural Gradient

Episode-Based:
e Natural Evolution Strategy [Sun, Wiestra, Schaul & Schmidhuber, 2009], Rock-Star [Hwangbo & Buchli, 2014]
 FIM can be computed in closed form for Gaussians

Step-Based:
* Natural actor critic eters & schasi, 2006,2008
e Episodic natural actor critic rpetera schaa, 2008
* Avoid FIM computation due to compatible value function approximation

41

Computing the NG (step-based)

Back to Policy Gradient Theorem with baseline

N T-1

VECT =3"%" Velogn(al!s!; 0)(QN — bu(s))

1=1 t=1

Estimate the reward to come (minus baseline) by function approximation

fw(s,a) = (s, a)Tw ~ (Q — by (s1))

N T-1
and use Vi J = >: >: Vg log W(a}g@”sk]; 0) fuw (s, al)

1=1 t=1

as gradient
It can be shown that this gradient is still unbiased if: ¥ (s,a) = Vg logm(a|s)

 C(Called compatible function approximation isutton 1999
 Log-gradient of the policy defines optimal features

42

Compatible Function Approximation

Compatible Function Approximation:
fw(s,a) =1(s,a)lw ~ (QE’] — by (sli)) LD(S, a,) = Vg log 7T(a|8)
The compatible function approximation is mean-zero!

E, |Viegn(als; 0) w] =0

 Thus, it can only represent the Advantage Function:

 The advantage function tells us, how much better an action is in comparison

to the expected performance _
Baseline

fw(s,a) = Vglogn(als;0)'w = Q7 (s, a) @

43

Can the Compatible FA be learned?

The compatible function approximation represents an advantage function petes ets. 2003, 2005)

fw(s,a) =Q"(s,a) —V7™(s) = A"(s,a)
The advantage function is very different from the value functions

Value Function Q™ (x, u) Advantage Function A™(x, u)

Aﬂtiﬂﬂ 1L Stﬂtﬂ € Aﬂtiﬂﬂ U

State x

In order to learn f,(s,a) we need to learn V™ (s)

44

Compatible Function Approximation

Gradient with Compatible Function Approximation:
N T-1
VAT = ;: S: Vo log w(a][f] \3?]; 0)V g log ﬂ(a,[f’] \s,[f]; 0)" w

1=1 t=1

Vet =E, [Vg log W(aEf] \sr]; 0)Ve log W(a,[f] \sl[f]; 0)!'| w
Vit = F(0)w
It can be shown that e & sciaal 2000

F(0) = Ey() |Vologn(a}'|s}’;0)Volog m(al'|s}"; 0)" |
= Ey(r) [Vologp(T;0)Velogp(T;0)" | = G(6)

45

Connection to V-Function approximation

Lets put the parts together:

 Combatible Function Approximation:
VEAT = F(0)w

 [Peters & Schaal, 2008] showed: F is the Fisher information matrix!
F () = G(6)

 That makes the natural gradient very simple !

VICT =G(0) VAT =GO) 1 F(O)w = w

So we just have to learn w

46

What about this additional FA?

In many cases, we don’t have a good basis functions for V'™ (s)
For one rollout /, it we sum up the Bellman Equations

Q7 (s, alhy = r(si @iy + vy (sy))
VI (81) + fw(st, @ty = r(st”, at?) + Vi (s5")
V7 (st)) + Velogm(a)’|s)); 0)w = r(s}), a)) + Vi (s3)

for each time step

Vlw(s[li]) + Vg log W(a[f] 3[1i]39)w = ""(8[1], a[f]) + VQ"T(.S[;]) -+ both sides
VQW(S[Zi]) + Vg log W(a[zi] 85];9)%0 = ?”(8[2], CL[;]) + Vgﬁ(sz[;]) + both sides

+ both sides
Vilzr—l(s’_[lé]—l) + Ve logw(agﬂ_l\sf[;]_l; 0)w = 7”(3’_[1”] 1 ag*] 1) T Vj’ﬂf(sg’i})
47

[Peters et al. 2003, 2005]

What about this additional FA?

T-1
VW(S[f]) + (Z Vo log W(a,[f]|.s£7’]; 9)) w = Zr(sy], ag"])
7 \i=1 .

-~

o7

ONE offset parameter J suffices as additional function approximation!
at least if we have only one initial state

48

Episodic Natural Actor-Critic

In order to get W) we can use linear regression

T—1
V7 (st]) + (Z Vologr(a)|s); 9)) w =
HJ,—/ tIl

o7

49

Results...

—_ & 20
% 1000 1 -~ T g !
I —_ .
GPOMDP T ’ g |
o SO0t @ 08 / = 1o\
o = .‘,l o J]
O 6o 5 06 = \
e} / © |
e -
. n 0.4 / Q)
400t 1] - 0 - - —_=
g" L“‘“\““‘ 2 ! 3 R] - ;’:-
o o \ d
'ﬁ oL sttt 027 %] _
Episodic Natural Actor-Critic / ©
[1]]] 1 1] 1 1] U L —1{3 !
0 200 400 600 800 1000 0 0.5 1 0 0.5 1
Number of Episodes time [s] time [s]

a) Expected Cost b) Position of motor (¢c) Controls of motor
P
primitives primitives

Toy Task: Optimal point to point movements with DMPs

GPOMP: Standard Gradient (Equivalent to Policy Gradient Theorem)

50

Learning T-Ball

1) Teach motor primitives by imitation
2) Improve movement by Episodic Natural-Actor Critic

Good
performance
often after
150-300 trials.

51

What we have seen from the policy gradients

* Policy gradients dominated policy search for a long time and solidly working
methods exist.

* They still need a lot of samples
* We need to tune the learning rate
* Learning the exploration rate / variance is still difficult

52

Outline

Taxonomy of Policy Search Algorithms
Model-Free Policy Search Methods

* Policy Gradients
e Likelihood Gradients: REINFORCE [Williams, 1992], PGPE [Riickstiess et al, 2009]

e Natural Gradients: episodic Natural Actor Critic (eNAC), [peters & Schaal, 2006]

* Weighted Maximum Likelihood Approaches
e Success-Matching Principle [kober & peters, 2006]

e Information Theoretic Methods [paniel, Neumann & Peters, 2012]

e Extensions: Contextual and Hierarchical Policy Search

Model-Based Policy Search Methods

* G reedy U pd ateS P I LCO [Deisenroth & Rasmussen, 2011]

* Bounded Updates: Model-Based REPS (peters at al, 2010, Guided Policy Search by Trajectory
Optimization [Levine & Koltun, 2010]

53

Success Matching Principle

(-)

“When learning from a set of their own trials in iterated decision problems,
humans attempt to match not the best taken action but the reward-weighted

frequency of their actions and outcomes” [Arrow, 1958].
. J

Success-Matching: policy reweighting by success probability f(r)

Tew (@|8) o< f(r(s,a))moq(als)

1\ Policy mo1q(als) i New Policy Mnew(@l|s)

Actions
Actions

=

*
.
.
o*
3

.
.
* .
R o
. e *
o
.

.
.
.

““““

A4 .

‘I

ot et
““““
ann®

States States |

+ Succes (high reward) - Failure (low reward)

Success Matching Principle

Success-Matching: policy reweighting by success probability f(r)

Can be derived in many ways:
i EXpeCtatIOI’\ maXimization [Kober & Peters., 2008][Vlassis & Toussaint., 2009]
i Opt|ma| COﬂtrO| [Theodorou, Buchli & Schaal, 2010]

i I ﬂfO m atIOﬂ Th eo ry [Peters et al, 2010, Daniel, Neumann & Peters, 2012]

Basic principles of all algorithms are similar
 Success probability computation might differ
* Have been derived for step-based (hybrid) and episode-based policy search

55

Episode-Based Sucess Matching

Iterate:
Sample and evaluate parameters:

T
0l ~ 7(0;wy,) Rl = Zfr,[f]
t=1

Compute ,success probability” for each sample
wll = F(RL)
Transform reward in a non-negative weight (improper probability distribution)

Compute ,success” weighted policy on the samples

pr (0 oc wlilr (01 w))

Fit new parametric policy 7(8!";w;, 1) that best approximates p,,(8")

56

Computing the weights...

So where are the weights wlh = f(RI) coming from?
Transform the returns in an improper probability distribution

Exponential transformation peters 200:
w!! = exp(B(R — max RIY)

* B ... Temperature of the distribution
* Often set by heuristics iober & peters, 2008]Theodorou, Buchi, & schaal, 2010], €.8.:
10
"~ max Rl — min Rl

* Or information theoretic principles aniel, Neumann & peters, 2012]

5/

Policy Fitting

Problem: We want to find a parametric distribution 7(0;w1) that best fits the
distribution p(8'7) o wliln (8 wy),
We can do that by computing the M-projection of p(8l) :

wipr = argmin,, KL(p(0")[|=(61;w))

— rom p(9)
= argmin,, /p(@) log (0) do

ol |
A argmax,, E p(m) log 7(0'"); w)
(0 ;wD _y We sampled from

the old policy

Wi+ = argmax,, Z wog (0" w)

(/

Optimization: weighted maximum likelihood estimate!

e Closed form solutions exists, no learning rates!

58

Weighted Maximum Likelihood Solutions...

For a Gaussian policy: 7(0;w) = N (0|u, X)
Weighted mean: Weighted covariance:

>, whilgl! o 2w (0 — p)(01 —)T

F X wll Sl

* But more general: Also for mixture models, GPs and so on...
* Invariant to transformations of the parameters

59

Underactuated Swing-Up

swing heavy pendulum up

ml?p = —up + mglsin o + u
p < [_ﬂ-: ﬂ-]

* motor torques limited, Policy: DMPs

‘u‘ < Umaz
* reward function

. r = exp (—(1’ (f)2 — 0 (%)2 log cos (% u;“w))

(Schaal, NIPS 1997; Atkeson, ICML 1997)

Underactuated Swing-Up

average return

0.6

50 100 150 200
number of rollouts

63

(Peters & Schaal, IROS 2006; Peters & Schaal, ICML 2007)

Ba | |‘| n‘a‘CU p [Kober & Peters, 2008]

Reward funCtion: eXp (—(1’ ((:L‘C — iEb)Q _|_ ('yc — 'yb)Q)) if t =7
Tt —
0 if ¢ £ 1,
Policy: DMPs

0.8}

0.6 |

047

average return

0.2}

0 20 40 60 80 100
6 4 number of rollouts

Ball-in-a-Cup

Ta b | e Te Nnn |S [MUlling, Kober, Kromer & Peters, 2013]

Initial Policy after

Imitation Learning

Success Rate 69 %

Weighted ML estimates

* I[nvariant to transformations of the parameters
* No learning rate needs to be tuned
* Controllable exploration-exploitation tradeoff?
* Difficult... but can be adjusted with temperature s

6/

Moderate Conservative

Greedy Update

Outline

Taxonomy of Policy Search Algorithms
Model-Free Policy Search Methods

* Policy Gradients
e Likelihood Gradients: REINFORCE [Williams, 1992], PGPE [Riickstiess et al, 2009]

e Natural Gradients: episodic Natural Actor Critic (eNAC), [peters & Schaal, 2006]

* Weighted Maximum Likelihood Approaches
e Success-Matching Principle [kober & peters, 2006]

e Information Theoretic Methods [paniel, Neumann & Peters, 2012]

e Extensions: Contextual and Hierarchical Policy Search

Model-Based Policy Search Methods

* G reedy U pd ateS P I LCO [Deisenroth & Rasmussen, 2011]

* Bounded Updates: Model-Based REPS (peters at al, 2010, Guided Policy Search by Trajectory
Optimization [Levine & Koltun, 2010]

68

Episodic Relative Entropy Policy Search

For success matching, directly use relative entropy as metric between two
policies

We get the following optimization problem:

max Z m (0 R(61) Maximize Reward
s.t: KL(7(0)||q(0)) < ¢ Stay close to the old policy ¢(0)
> w(H[i]) =1 It‘s a distribution

e Stay close to the data
* Epsilon directly controls the exploration-exploitation trade-off

* ¢=0... continue to explore with policy ¢(8)

* ¢ _s 0. greedily jump to best sample

69

Relative Entropy Policy Search

Which has the following analytic solution:

7(68) o q(8) exp (%)

 That's exactly sucess matching with exponential transformation!
* Scalingfactorn =1/4:

* Automatically chosen from optimization (Lagrange Multiplier)

* Specified by KL-bound €
* How to computen ?

¢ SOIVe the dual prOblem [Boyd&Vandenberghe, 2004]

* Convex Optimization

70

Outline

Taxonomy of Policy Search Algorithms
Model-Free Policy Search Methods

* Policy Gradients
e Likelihood Gradients: REINFORCE [Williams, 1992], PGPE [Riickstiess et al, 2009]

e Natural Gradients: episodic Natural Actor Critic (eNAC), [peters & Schaal, 2006]

* Weighted Maximum Likelihood Approaches
* Success-Matching Principle ober & Peters, 2006]

* Information Theoretic Methods [Daniel, Neumann & Peters, 2012]

e Extensions: Contextual and Hierarchical Policy Search

Model-Based Policy Search Methods

* G reedy U pd ateS P I LCO [Deisenroth & Rasmussen, 2011]

* Bounded Updates: Model-Based REPS (peters at al, 2010, Guided Policy Search by Trajectory
Optimization [Levine & Koltun, 2010]

/1

Extension: Contextual Policy Search with REPS

Context:
» Context x describes objectives of the task (fixed before task execution)
e E.g.: Target location to throw a ball
* Adapt the control policy parameters @ to the target location x

Target

| Doy Dy
44 Context [[lu Y
Robot N¢ ... (on?}
’,.*"" o dmin
q3 ’ T
O
2 Ball [b,, 0,]

q1

12

Contextual Policy Search with REPS

[Kupscik, Deisenroth, Peters & Neumann, 2013]

Context:
» Context x describes objectives of the task (fixed before task execution)
e E.g.: Target location to throw a ball
* Adapt the control policy parameters @ to the target location x

* Learn an upper level policy 7(0|x; w)

Objective:
S = // to(x)m(0|x)Rrodxdl

* Average reward over all contexts
 1o(x) ...context distribution

Dataset for policy update: 0
Robot N¢ ..
’L' . . “"‘-
Dep = {9[| gl RM}
e Also contains context vectors q2

73 .

(Context)
IR A::in

Target [PJ, | pu]

-~

O
Ball [b,,0,]

Contextual Policy Search with REPS

[Kupscik, Deisenroth, Peters & Neumann, 2013]

Optimize over the joint distribution p(x, 0) = p(x)7(0|x)
* Otherwise independent optimization problems for each context

We get the following optimization problem [CITE]:

maxy, Zp(a;’ 9)}3(5,37 9) maximize rewards
x,0
S.t.: Zp(ag, 9) — 1 it’s a distribution
x,0
KL(p(x, 0)||q(x,0)) < e stay close to the data

reproduce given context
Vo p(x) = 2.op(x,0) = po() distribution g ()

4

Contextual Policy Search with REPS

[Kupscik, Deisenroth, Peters & Neumann, 2013]

Closed form solution:

p(x,0) x q(x,0)exp (

Rzo ;V(m))

* We automatically get a baseline V(x) for the returns

* Function approximation for V(x) achieved by matching feature averages instead of
distributions

A

Yep@ox)=¢ W V(z)=9¢"(z)v

* v... given by Lagrangian multipliers
* Obtain v again by optimizing the dual
Policy w(0|x;wi11) again obtained by a weighted maximum likelihood estimate

* E.g. weighted linear regression in the simplest case

75

Results: Thetherball

Tetherball:

* Six degrees of freedom

Highly dynamic behavior due to springs

Cable driven lightweight robots

e Very complex forward dynamics model

High dimensional context space (TODO!)

[4S!

[Parisi, Peters, et. al, IROS 2015]

Real Robot Experiment

e
Player Hit rate Matches won Total score
Analytical 71% 6/25 8
Learned 85% 19/25 38

[

Extension: Learning Hierarchical
PO|ICI€S W|th REPS [Daniel, Neumann & Peters, 2012]

Policy 7(0)

@ Local
‘ Optima

O
pa*ameter dimension 1

Motivation:

* Many motor tasks have multiple solutions.
 We want to learn all of them

parameter dimension 2

lllustration: The weighted ML update averages over all solutions!

@ e N

{8 lteration 0 lteration 3 lteration 6 Iteration 9

Introduce Hierarchy

Upper-level policy 7(@|x) as hierarchical policy
- Selection of the sub-policy: Gating-policy 7 (o|x)
- Selection of the parameters: Sub-policy 7 (8|, 0)
- Structure of the hierarchical policy:

m(6|z) = Y w(olz)n(8|z,0)

£Ir
X
I : m(o|x) Gating-Policy A
[71‘(9‘.’13)] 01“ 09 03
w(@lx,01) Sub-Policies w(0|x, 03)
I e %

Learnin;

Iteration 3 Iteration 6 Iteration 9

Sub-Policies should represent distinct solutions.
|:> Limit the overlap of the options

- Responsibilities p(o|x, @) tell us whether we can identify an option, given
- High entropy of responsibilities p(o|x,) |:> high overlap
- Limit the entropy p(o|x, @) |:> less overlap

k>E [— Zp(o]a:, 0) log p(o|x,)
80 —

Entropy

Hierarchical REPS

Bounding the overlap of sub-policies:

Iteration O lteration 3 Iteration 6 Iteration 9

Learning of versatile, distinct solutions due to separation of sub-policies.

81

Outline

Taxonomy of Policy Search Algorithms
Model-Free Policy Search Methods

* Policy Gradients
e Likelihood Gradients: REINFORCE [Williams, 1992], PGPE [Riickstiess et al, 2009]

e Natural Gradients: episodic Natural Actor Critic (eNAC), [peters & Schaal, 2006]

* Weighted Maximum Likelihood Approaches
* Success-Matching Principle ober & Peters, 2006]

* Information Theoretic Methods [Daniel, Neumann & Peters, 2012]

e Extensions: Contextual and Hierarchical Policy Search

Model-Based Policy Search Methods

* G reedy U pd ateS P I LCO [Deisenroth & Rasmussen, 2011]

* Bounded Updates: Model-Based REPS (peters at al, 2010, Guided Policy Search by Trajectory
Optimization [Levine & Koltun, 2010]

84

Model-Based Policy Search Methods

Learn dynamics model from data-set
D = {(s[f:]T, a[f:]T_l)} — P(s'|s,a) =~ P(s'|s, a)

Model Learning

Internal
Simulations

+ More data efficient than model-free methods
+ More complex policies can be optimized

Policy Learning

i RBF ﬂetWO I’kS [Deisenroth & Rasmussen, 2011]

* Time-dependent feedback controllers ievine & koltun, 20141
i Ga USSian PFOCGSSGS [Von Hoof, Peters & Nemann, 2015]

* Deep neural Nets (Levine & koltun, 2014)(Levine & Abbeel, 2014]

Apply Policy
to Robot
Limitations:

- Learning good models is often very hard

- Small model errors can have drastic damage
on the resulting policy (due to optimization)

- Some models are hard to scale
- Computational Complexity

85

Model-Based Policy Search Methods

Learn dynamics model from data-set

D = {(s[f:]T, a[f:]T_l)} — 75(8’\3, a) ~P(s'|s,a)

Model Learning

Internal
Simulations

o Ga USS|a N P rocesses [Deisenroth & Rasmussen 2011]

[Kupcsik, Deisenroth, Peters & Neumann, 2013]

* Bayesian Locally Weighted Regression isagnel & schneider, 2001]

Policy Learning

* Time-Dependent Linear Models rioutikoy, peters, Neumann 2014]

[Levine & Abbeel 2014]
Use learned model as simulator

i Sa m pl | ng [Kupcsik, Diesenroth, Peters & Neumann 2013][Ng 2000]

d (ApprOX| mate) prO ba b|||St|C |nfe rence [Deisenroth & Rasmussen 2011, Levine & Koltun, 2014]

Apply Policy
to Robot
Update Policy

¢ MOdel‘free methOdS on Virtual Samp|e traJECtO”eS [Kupcsik, Diesenroth, Peters & Neumann 2013]
¢ Aﬂa|ytIC PO“CV Gl’adleﬂts [Deisenroth & Rasmussen, 2011]

* Trajectory optimization (ievine & koltun, 2014]

86

Metrics used in Model-Based Policy Search

Bound the policy update for model-based policy search?
i Greedy methOdS [Deisenroth & Rasmussen, 2011, Ng et al. 2001]

* Deterministic policy
e Compute optimal policy based on current model

e Exploration: Optimistic UCB like exploration bonus can be used

* “Bounded” methods: upcsieisenroth, peters & Neumann, 2013]1tevine & Koltun 2014 Lioutikov, Peters, Neumann 2014
 Stochastic Policy
* The model is only correct in the vicinity of the data-set
= Stay close to the data!
* All these methods use some sort of KL-bound
= |deas from model-free PS directly transfer
e Exploration: Step-size of the policy update is bounded

87

Model Learning:

e Use Bayesian models which integrate out model
uncertainty = Gaussian Processes

* Reward predictions are not specialized to a single model

5 4321012345678
X

Internal Stimulation:
* Iteratively compute p(s1|0)...p(sr|0)

p(5,]0) = / P(silsi—1.7(s:0)) p(s;_1]6) ds;

GP prediction N(py,24)

* Moment matching: deterministic approximate inference

Policy Update: T)]
* Analytically compute expected return and its gradient J9,75 o ; /p(act\)r(mt) Lt
* Greedily Optimize with BFGS B

0,cww = arg mein J9’75

PILCO: some results

C: Coulom 2002

KK: Kimura & Kobayashi 1999

D: Doya 2000

RT: Raiko & Tornio 2009
pilco: Deisenroth & Rasmussen 2011

trial #1 (random actions)

* Swing up and balance a freely swinging pendulum on a cart
* No knowledge about nonlinear dynamics Learn from scratch
* Unprecedented learning speed compared to state-of-the-art (2011)

More applications: Learning to Pick up Objects sischoff etal. 20131 Controlling Throttle Valves in Combustion Engines [gischoff et al. 2014]

-
7 (s,

W/ - — /b
= ; M=
‘\-. ~ —‘ _ (U(((l(lm W= :

89

PILCO: some results

C: Coulom 2002
KK: Kimura & Kobayashi 1999
D: Doya 2000

RT: Raiko & Tornio 2009
pilco: Deisenroth & Rasmussen 2011

Required experimentation time in s

C KK D WP RT pico
* Swing up and balance a freely swinging pendulum on a cart

* No knowledge about nonlinear dynamics Learn from scratch

* Unprecedented learning speed compared to state-of-the-art (2011)

Also some limitations:

* GP-models are hard to scale to high-D

* Computationally very demanding

* Can only be used for specific parametrizations of the policy and the reward function

90

Metrics used in Model-Based Policy Search

Bound the policy update for model-based policy search?
i Greedy mEthOdS [Deisenroth & Rasmussen, 2011, Ng et al. 2001]

* “Bounded” methods: wupcsi beisenrot, peters & Neumann, 2013]1Levine & Koltun 2014](Lioutiko, Peters, Neumann 2014]
 Stochastic Policy
* The model is only an approximation
* Do not fully trust it!
* The model is only good in the vicinity of the data-set
= Stay close to the datal!
* All these methods use some sort of KL-bound

Zfr(st,at) , st KL(7wllq) < e
t=1

arg max 1D

?

= |deas from model-free PS directly transfer
e Exploration: Step-size of the policy update is bounded

91

G P‘ R E PS [Kupcsik, Deisenroth, Peters & Neumann, 2013]

3_
Model-based extension used for contextual 1,
policy search = o
. —1r
Model Learning: .l

* Gaussian Processes for learning the dynamics 5432140123456 7 8

of robot and environment X
Internal Stimulation:
e Sampling trajectories from P(s’|s, a)
following policy 7 (s; @)
* Generate a high number of trajectories for
different parameter vectors @ and context
vectors &L
Policy Update:
* Use contextual REPS on the artificial samples argmax Ep [Rme],
T 0

* Trajectories will stay in the area where we

have dynamics data S.T.: KL(”W@)M(W“J’)) <€

92

Table tennis experiment

[Kupcsik, Deisenroth, Peters & Neumann et al. 2015]

19 Policy Parameters (DMPs)
5 context variables (initial ball velocities, desired target location)

93

[Kupscik, Neumann et al, Artificial Intelligence, 2013]

Table tennis experiments

. > Real return pos
Learn GP mOdE|S for' O Predicted return pos

* Ball contact on landing zone — Real racket trajectory
—— Predicted racket trajectory
- Real ball trajectory

* Ball trajectory from contact _ ,
Predicted ball trajectory . = =

» Racket trajectory from policy

parameters = 0.8
s -1
* Detect contact with racket N
(yes/no) 0.5

* |f contact, predict return
position on opponents field

A lot of prior knowledge is
needed to decompose this
MDP into simpler models

94

Table tennis experiments

REPS with learned forward models

* Complex behavior can be learned
within 100 episodes

e 2 order of magnitudes faster than
model-free REPS

reward

/ ® GPREPS
7
/ » REPS
VW REPS (GP direct)

10° 10° 10%

Table tennis experiments

lllustration: 2 shots for different contexts

 Works well for trajectory generators (small number of parameters)
 For more complex policies we need a step-based policy update!

96

Ste p‘based R E PS [Peters et al., 2010]

We can also formulate the REPS with states and actions
 Original formulation can be found in petersetal, 2010

2 different formulations:

* Infinite Horizon: Average reward formulation using a stationary state
distribution

e Original REPS paper (peters et al, 2010

¢ N On—pa a metl’iC R E PS [Von Hoof, Peters & Neumann, 2015]

* Finite Horizon: Accumulated reward formulation using trajectories
e Guided policy search with trajectory optimization tevine & koltun, 2014], [Levine & Abeel, 2014]

¢ T| m e‘l ndexed R E PS [Daniel Neumann, Kroemer & Peters, 2013][Lioutikov, Paraschos, Peters & Neumann, 2014]

97

Infinite Horizon Formulation

Bound the change in the resulting state action distribution ©™(s)m(als)

max // p(s)m(als)r(s,a)dsda Maximize average reward
s.t.: e > KL(p"(s)m(als)||q(s, a)) KL should be bounded to old
state action distribution
1 :// w(a|s)u™(s)dsda It's a distribution

S, _ , State distribution needs to be
Vs u(s) ://“ (s)m(als)P(s’]s, a)dsda consistent with policy and
learned dynamics model

98

Infinite Horizon Formulation

Closed form solution:
r(s,a) +Ex[V(s')|s,a] — V(s)

w™(s)r(als) o q(s, a) exp (n

* We automatically get a softmax over the advantage function
A(s,a) = r(s,a) + Ep[V(s')|s,a] — V(s)

* V(s)... Lagrangian multiplier, resembles a value function
e Linear function approximation (peters etal. 2010 V(s) = ¢(s)tw

e Putin areproducing kernel Hilbert space (RKHS):
[Von Hoof, Peters, Neumann 2015] V(S) — Z Oéik(Si, S)
S;

* The model is needed to evaluate expectation E5[V(s')|s,al

e Either approximated by single sample outcomes [peters et al., 2010, Daniel , Neumann & Peters, 2013]

e or conditional operators in an RKHS von Hoof, Peters & Neumann, 2015]

99

)

Image-based pendulum swing-up

Learn pendulum swing-up based on
|mage data [Von Hoof, Neumann & Peters, 2015]

* Policy is a GP defined on images
* Policy is obtained via weighted ML

100

401:800 401:800

-20
g -4
o -B0
g
3 80l
— — - REPS with pictures
<+ REPS with |oint values
-100 I I
0 50 100 150 200
number of rollouts

Trajectory-based formulation

Guided Policy Search via Trajectory
Opti mizatiOn [Levine & Koltun, 2014]
* Use trajectory optimization to learn local policies

 Policy is a time-varying stochastic feedback
controller

e Time-varying linear model is learned

* Bounded policy update critical for the stability of |
the algorithm Levine et. al

Use learned local policies to train global,
complex policy

* Deep Neural Nets

e “Guidance”:

e Local policy might have more information on the current
situation than the global one

e Joint values versus camera image [Levine 2015

Levine et. al

* Global policy learns to infer which situation we are in

101

Bounded Trajectory Optimization

Bound the change in the resulting trajectory distribution p™ (7)

max /p“(fr)R('r)dT Maximize average reward
st e > KL(p"™(7)]|q(T)) KL should be bounded to old
trajectory distribution
vt, 1 _/Wt(a|3)da It’s a distribution

102

Bounded Trajectory Optimization
Plugging in the factorization of the trajectory distribution:

max // uy(s)m(als)ri(s, a)dsda Maximize average reward

st Vire2Eup | KL(m(als)l|q(als))] KL on the policies should be
bounded at each time step
i - 1 —/’nt(a|s)da It’s a distribution

Time-dependent state

VsVt pr (s :// i (s)mi(als)Pi(s'|s,a)dsda distributions need to be

103

consistent

Vs : uT(s) =pi(s),Vs Initial distribution is given

Infinite Horizon Formulation

Closed form solution:

ri(s,a) + Ep[Vii1(s')]s, a])
Mt

ri(als) o i(als) exp (
e V(s)... Lagrangian multiplier,
e can be computed by dynamic programming

Vi(s) :log/q(a|3) exp (T’(Saa) +?Ii[Vt+1(8’)]> o

* Time-dependent temperature 7t

* Linear systems, quadratic costs and Gaussian noise:
 Standard LQR equations, solved by dynamic programming
* The policy is a (stochastic) linear feed back controller

mi(als) = N(a|K s + ki, 2y)

* Implements exploration

e Similar to iLQG medorov & 1i, 2005, but more stable due to KL-bound

104

Time-varying linear models

Linear models:
* Generalize well locally X¢141
* Scale well
Time-varying:
* Enforces locality

* At the same time step, the robot will be in
similar states in different trials

Learning time-varying linear models:

e Llearn a GMM of linear models

(Xt; llt)

: : Levine et. al
e Fit an own model for each time step

* Use GMM as prior

105

Constrained Guided Policy Search (ievine 20141

Train Deep Neural Net:

 Supervised learning: reproduce the optimized
trajectories

e Linearization of the neural net should be close to
linear feedback controller

e Can train several thousand parameters

Trajectory optimization:

* Trajectories should stay close to trajectories
generated by neural net

* No time dependence in the neural net

106

Simulated Results

Learning walking gaits ievne s cofun, 20141
e Simulator: Mojoco
* Planar walking robot

Walking
learned policy

[neural network]

107

Real Robot Results

Learning different manipulation tasks ievinezos:

108

Outlook

Learning from high-dimensional sensory data
* Tactile and vision data
* Deep Learning
* Kernel-based methods

Hierarchical Policy Search
* |dentify set of re-useable skills
e Learn to select, adapt, sequence and combine these skills
* Deep hierarchical policy search?

Incorporate human feedback

* Inverse RL and Preference Learning

e Autonomous learning from imitation

POMDPs and Multi-Agent Policy Search

109

Conclusion

Policy Search Methods have made a tremendous development

* Model free methods can learn trajectory-based policies for complex skills
* Trajectory-based representations provide an compact representation of a skill but lack flexibility
e Step-based vs episode-based formulation

e Different optimization methods with different policy metrics

* Complex policies with thousands of parameters can be learned with model-based methods

e But might be less appropriate for execution on a real robot

Robot-RL is still a challenging problem

* Learning efficient exploration policies is a major challenge
* Exploration-Exploitation tradeoff can be controlled by bounding the relative entropy

* Bounded policy updates are useful for model-free and model-based methods

* We can solve mainly monolithic problems

* Hierarchical policy search methods should help

110

