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Time	
  Series	
  



time t 

yt
Goals:	
  
•  Evolu.on	
  –	
  	
  Dynamics	
  across	
  .me	
  
•  Rela.onal	
  structure	
  –	
  Dependencies	
  between	
  series	
  

Modeling	
  challenges:	
  
•  Large	
  p	
  –	
  Many	
  dimensions/series	
  
•  Irregular	
  grid	
  of	
  observa.ons	
  
•  Missing	
  values	
  
•  Heterogeneous	
  data	
  sources	
  
•  ...	
  	
  

yt …	
  

Computa:onal	
  challenges:	
  
•  Large	
  n	
  –	
  Long	
  .me	
  series	
  
•  Streaming	
  data	
  –	
  	
  

Con.nuum	
  of	
  observa.ons	
  



Preliminaries/Review	
  

•  Mul.variate	
  Gaussians	
  
•  Hidden	
  Markov	
  models	
  (HMMs)	
  
•  Vector	
  autoregressive	
  (VAR)	
  processes	
  

– Stability/sta.onarity	
  
•  Gaussian	
  state	
  space	
  models	
  

–  Iden.fiability	
  



Quick	
  Review	
  of	
  Gaussians	
  

•  Univariate	
  and	
  mul.variate	
  Gaussians	
  

Covariance	
  
defines	
  shape	
  

(eigvecs+eigvals)	
  



Two-­‐Dimensional	
  Gaussians	
  
diagonal

−5 −4 −3 −2 −1 0 1 2 3 4 5
−10

−8

−6

−4

−2

0

2

4

6

8

10
spherical

−4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5
full

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

−5

0

5

−10
−5

0
5

10
0

0.05

0.1

0.15

0.2

diagonal

−10
−5

0
5

10

−10
−5

0
5

10
0

0.05

0.1

0.15

0.2

full

−5

0

5

−5

0

5
0

0.05

0.1

0.15

0.2

spherical



Condi.onal	
  &	
  Marginal	
  Distribu.ons	
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Hidden	
  Markov	
  Models	
  

Example	
  applica:ons:	
  
•  Parsing	
  EEG	
  recordings	
  
•  Discovering	
  behaviors	
  in	
  videos	
  
•  Speech	
  segmenta.on	
  
•  Vola.lity	
  regimes	
  in	
  financial	
  

.me	
  series	
  
•  Genomics	
  
•  …	
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Example:	
  Mo.on	
  Capture	
  Segmenta.on	
  

Jump-­‐
ing	
  
jacks	
  

Side	
  
twists	
  

Run	
   Squats	
  



Hidden Markov Model 
Transition  
matrix 

jumping 
jacks squats side 

twists 

State sequence 

TIME 

S
TA

TE
 

jumping jacks squats side twists 

Tutorial: 
Rabiner, Proc. IEEE 1989  

Jumping 
jacks 

Side 
twists Squats 

•  Markov	
  transi.on	
  dynamics:	
  

Pr(xt = |xt�1 = ) = A

A
x1 x2 x3 x4 xT

A =



Hidden Markov Model 
Transition  
matrix 

jumping 
jacks squats side 

twists 

State sequence 

Tutorial: 
Rabiner, Proc. IEEE 1989  

Jumping 
jacks 

Side 
twists Squats 

A
x1 x2 x3 x4 xT

A =

Observations 
(e.g., body position)  

•  Condi.onally	
  independent	
  emissions:	
  

•  Latent	
  Markov	
  chain	
  structure	
  enables	
  
–  Efficient	
  computa.on	
  of	
  marginals	
  

	
  using	
  the	
  forward-­‐backward	
  algorithm	
  
–  Most-­‐probable	
  sequence	
  via	
  Viterbi	
  
–  Parameter	
  learning	
  using	
  Baum-­‐Welch	
  	
  

(EM	
  for	
  HMMs)	
  

yt | xt = ⇠ F (� )

�k

p(xt | y1, . . . , yT )

•  Markov	
  transi.on	
  dynamics:	
  

Pr(xt = |xt�1 = ) = A



Motivating Other Time Series Models 

. . .
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Jumping	
  Jacks	
   Side	
  Twists	
   Arm	
  Circles	
  

Vector	
  autoregressive	
  (VAR)	
  process:	
  

yt =
rX

i=1

Aiyt�i + et et ⇠ N(0,⌃)



Stationary VAR Processes 

•  If	
  the	
  companion	
  matrix	
  has	
  eigenvalues	
  λ	
  with	
  |λ|<1,	
  
then	
  the	
  process	
  is	
  stable	
  

	
  
•  If	
  ini.alized	
  infinitely	
  in	
  the	
  past,	
  then	
  sta.onary	
  

•  For	
  VAR(1)	
  process,	
  marginal	
  covariance	
  sa.sfies	
  

2

6664

A1 A2 · · · Ar

I 0 · · · 0

0
. . . 0 0

0 · · · I 0

3

7775

yt =
rX

i=1

Aiyt�i + et et ⇠ N(0,⌃)

E[yt] = µ = 0 cov(yt, yt+h) = �(h)

�(0) = A1�(0)A
0
1 + ⌃



State Space Models 

•  Like	
  HMMs,	
  but	
  con.nuous-­‐valued	
  latent	
  state	
  sequence	
  

•  En.re	
  class	
  of	
  equivalent	
  systems	
  from	
  input/output	
  
perspec.ve	
  by	
  changing	
  latent	
  space	
  via	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  :	
  

xt = Axt�1 + et et ⇠ N(0,⌃)

yt = Cxt + wt wt ⇠ N(0, R)

xt ! Txt

xt = Ãxt�1 + et et ⇠ N(0,⌃)

yt = C̃xt + wt wt ⇠ N(0, R)

Constrain	
  	
  
A,	
  Σ,	
  or	
  C	
  



State Space Models 

•  Can	
  write	
  a	
  VAR(r)	
  process	
  in	
  state	
  space	
  form	
  via	
  

xt =

2

6664

A1 A2 · · · Ar

I 0 · · · 0

0
. . . 0 0

0 · · · I 0

3

7775
xt�1 +

2

6664

I

0
...
0

3

7775
et

yt =
⇥
I 0 · · · 0

⇤
xt

State	
  
space	
  
models	
  

VAR	
  
processes	
  

yt =
rX

i=1

Aiyt�i + et et ⇠ N(0,⌃)



time t 

yt
Goals:	
  
•  Evolu.on	
  –	
  	
  Dynamics	
  across	
  .me	
  
•  Rela.onal	
  structure	
  –	
  Dependencies	
  between	
  series	
  

Modeling	
  challenges:	
  
•  Large	
  p	
  –	
  Many	
  dimensions/series	
  
•  Irregular	
  grid	
  of	
  observa.ons	
  
•  Missing	
  values	
  
•  Heterogeneous	
  data	
  sources	
  
•  ...	
  	
  

…	
  

Computa:onal	
  challenges:	
  
•  Large	
  n	
  –	
  Long	
  .me	
  series	
  
•  Streaming	
  data	
  –	
  	
  

Con.nuum	
  of	
  observa.ons	
  



Methods	
  for	
  Scaling	
  to	
  High	
  Dimensions	
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⌃�1

Gaussian	
  
Graphical	
  

Model	
  

Zeros	
  =	
  no	
  edge	
  in	
  graph,	
  
Cond.	
  ind.	
  between	
  nodes	
  

sparse	
  

⌃ = ⇤⇤0 + ⌃0

+=

Low	
  
Rank	
  

⌃�1sparse	
  
Independent	
  groups	
  of	
  nodes	
  

Rk
Rp

k	
  <<	
  p	
  

Low-­‐dimensional	
  embedding	
  



Methods	
  for	
  Scaling	
  to	
  High	
  Dimensions	
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Gaussian	
  
Graphical	
  

Model	
  

Zeros	
  =	
  no	
  edge	
  in	
  graph,	
  
Cond.	
  ind.	
  between	
  nodes	
  

sparse	
  

⌃ = ⇤⇤0 + ⌃0

+=

Low	
  
Rank	
  

⌃�1sparse	
  
Independent	
  groups	
  of	
  nodes	
  

Rk
Rp

k	
  <<	
  p	
  

Low-­‐dimensional	
  embedding	
  



Modeling	
  High-­‐Dimensional	
  Time	
  Series	
  



Magnetoencephalography	
  (MEG)	
  

... 

Helmet with  
102 sensors 

COW •  How	
  does	
  the	
  brain	
  code	
  
concepts?	
  
•  e.g.	
  animals,	
  food…	
  



Magnetoencephalography	
  (MEG)	
  

... 

Helmet with  
102 sensors 

COW 



Magnetoencephalography	
  (MEG)	
  

... 

Helmet with  
102 sensors 

APPLE 



Magnetoencephalography	
  (MEG)	
  

... 

Helmet with  
102 sensors 

APPLE 

•  High dimensional 
 

•  Time-varying correlations 
à Functional connectivity 



Coping	
  with	
  Dimensionality	
  

•  Observa.on:	
  	
  Sensors	
  are	
  redundant	
  

•  Goal:	
  
–  Harness	
  low-­‐dimensional	
  embedding	
  of	
  dynamics	
  

Dynamic Latent Factor Models 



High-­‐Dim	
  i.i.d.	
  Data	
  



⌃ = ⇤⇤0 + ⌃0

p� k

k << p
�0 = diag(�2

1 , . . . ,�2
p)

+=

• Assume	
  normally	
  distributed	
  data	
  

• Number	
  of	
  parameters:	
  

	
  
	
  

	
  

	
  

	
  

yi ⇠ Np(0,⌃)

Latent	
  Factor	
  Model	
  

pk + p = p(k + 1) <<
p(p+ 1)

2

Modeling	
  sta:s:cal	
  uncertainty	
  in	
  	
  
low-­‐dim	
  subspace	
  

Rk

Rp ⇤ factor loadings 



Latent	
  Factor	
  Model	
  

yi = �⇥i + �i

⌘i ⇠ Nk(0, I)

✏i ⇠ Np(0,⌃0)

⌃ = ⇤⇤0 + ⌃0

Marginalize 
latent factors 

latent factors 

factor loadings 

Rp

Rk



Deriva.on	
  of	
  Marginal	
  Distribu.on	
  

yi = �⇥i + �i

⌘i ⇠ Nk(0, I)

✏i ⇠ Np(0,⌃0)

Rp

Rk
•  Marginal	
  mean:	
  

•  Marginal	
  covariance:	
  

E[yi] = E[⇤⌘i + ✏i]

= ⇤E[⌘i] + E[✏i] = 0

cov(yi) = E[(yi � E[yi])(yi � E[yi])
0
]

= E[yiy
0
i]

= E[(⇤⌘i + ✏i)(⇤⌘i + ✏i)
0
]

= ⇤E[⌘i⌘
0
i]⇤

0
+ 2⇤E[⌘i✏i] + E[✏i✏

0
i]

= ⇤I⇤0
+ 0 + ⌃0

= ⇤⇤

0
+ ⌃0



Adding	
  Dynamics	
  



Dynamic	
  Latent	
  Factor	
  Model	
  

102 sensor trajectories 

Evolution of latent factors 

yt = ⇤⌘t + ✏t

 
Latent MEG  

responses to stimulus 

⌘i ⇠ Nk(0, I)

✏i ⇠ Np(0,⌃0)

⌘t = �⌘t�1 + ⌫t



Dynamic	
  Latent	
  Factor	
  Model	
  
•  State-­‐space	
  model	
  with	
  	
  
low-­‐dim	
  state	
  and	
  	
  
high-­‐dim	
  observa.ons	
  

•  Originally	
  developed	
  by	
  
Geweke	
  (1977)	
  
–  Other	
  early	
  work:	
  
Sargent	
  and	
  Sims	
  (1977)	
  
Watson	
  and	
  Engle	
  (1983)	
  

•  Very	
  popular	
  in	
  econometrics	
  
•  Most	
  founda.onal	
  dynamic	
  
model	
  of	
  high-­‐dimensional	
  
.me	
  series	
  

Evolution of latent factors 

yt = ⇤⌘t + ✏t

⌘i ⇠ Nk(0, I)

✏i ⇠ Np(0,⌃0)

⌘t = �⌘t�1 + ⌫t



Dynamic	
  Latent	
  Factor	
  Model	
  

•  Assuming	
  latent	
  process	
  is	
  
stable,	
  marginally	
  

•  Though,	
  s.ll	
  a	
  dynamic	
  
process	
  with	
  lag	
  covariance	
  

Evolution of latent factors 

yt = ⇤⌘t + ✏t

⌘i ⇠ Nk(0, I)

✏i ⇠ Np(0,⌃0)

yt ⇠ N(0,⌃)

⌃ = ⇤⌃⌘⇤
0 + ⌃0

⌘t = �⌘t�1 + ⌫t

�y(h) = cov(yt, yt+h)

= ⇤�⌘(h)⇤
0 h > 0



Adding	
  Complex	
  Dynamics	
  



Semiparametric	
  Factor	
  Model	
  

•  Can	
  consider	
  a	
  nonparametric	
  
latent	
  factor	
  process	
  
–  Gaussian	
  processes	
  
–  More	
  on	
  next	
  slides…	
  

•  For	
  a	
  regression	
  seing,	
  looks	
  
very	
  similar	
  to	
  
Teh,	
  Seeger,	
  &	
  Jordan	
  2004	
  
–  x	
  an	
  arbitrary	
  covariate,	
  	
  
not	
  necessarily	
  .me	
  

Evolution of latent factors 

yt = ⇤⌘t + ✏t

⌘i ⇠ Nk(0, I)

✏i ⇠ Np(0,⌃0)

�t = ⇤(xt) + ⇥t

Nonparametric evolution  
of latent factors 

Time	
  index	
  



Gaussian	
  Processes	
  

•  Distribu.on	
  on	
  func.ons	
  
–  f	
  ~	
  GP(m,κ)	
  

•  m:	
  mean	
  func.on	
  
•  κ:	
  covariance	
  func.on	
  

–  p(f(x1),	
  .	
  .	
  .	
  ,	
  f(xn))	
  ∼	
  Nn(μ,	
  K)	
  
•  μ	
  =	
  [m(x1),...,m(xn)]	
  
•  Kij	
  =	
  κ	
  (xi,xj)	
  

•  Idea:	
  If	
  xi,	
  xj	
  are	
  similar	
  according	
  to	
  the	
  kernel,	
  then	
  
f(xi)	
  is	
  similar	
  to	
  f(xj)	
  

,

REVIEW 



Gaussian	
  Processes	
  

κ:	
  covariance	
  func.on	
  

 

High	
  lengthscale	
  

Low	
  lengthscale	
  

f	
  ~	
  GP(m,κ)	
  
(x, x

0
) = �

2
f exp

✓
� 1

2`

2
(x� x

0
)

2

◆

REVIEW 



Gaussian	
  Processes	
  

m:	
  mean	
  func.on	
  

 
f	
  ~	
  GP(m,κ)	
  

REVIEW 



Gaussian	
  Processes	
  

m:	
  mean	
  func.on	
  

 
f	
  ~	
  GP(m,κ)	
  

REVIEW 



•  Evalua.ng	
  the	
  GP-­‐distributed	
  func.on	
  at	
  any	
  set	
  	
  
of	
  loca.ons	
  (x1,…,xn),	
  we	
  have	
  

Induced	
  Mul.variate	
  Gaussian	
  

x3x1x2 xn. . .
x
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6664
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...
f(xn)

3

7775
⇠ N(µ,K)

K =

REVIEW 



•  Comparing	
  length-­‐scales:	
  

Induced	
  Mul.variate	
  Gaussian	
  

x3x1x2 xn. . .
x

x3x1x2 xn. . .
x
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2D	
  Gaussian	
  Processes	
  

41 
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Family	
  of	
  Gaussian	
  Processes	
  

Polynomial	
  kernel	
  =	
  
finite	
  polynomial	
  basis	
  

Matern	
  (v=0.5)	
  =	
  
Brownian	
  mo.on	
  

Matern	
  (v=0.5+p)	
  =	
  
cont	
  .me	
  AR(p)	
  

Squared	
  
exponen.al	
  
kernel	
  

RBF	
  

REVIEW 



GPs	
  for	
  Regression	
  

•  Start	
  with	
  noise-­‐free	
  scenario:	
  directly	
  observe	
  the	
  func.on	
  

•  Training	
  data	
  
•  Test	
  data	
  loca.ons	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  à	
  	
  predict	
  f*	
  	
  

•  Jointly,	
  we	
  have	
  

•  Therefore,	
  	
  

D = {(xi, fi), i = 1, . . . , n}
X⇤

✓
f
f⇤

◆
⇠ N

✓✓
µ
µ⇤

◆
,

✓
K K⇤
KT

⇤ K⇤⇤

◆◆

p(f⇤ | X⇤, X, f) =N(f⇤ | µ⇤ +K 0
⇤K

�1(f � µ),K⇤⇤ �K 0
⇤K

�1K⇤)

(X⇤, X⇤)

(X,X⇤)

REVIEW 
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1D	
  Noise-­‐Free	
  Example	
  

•  Interpolator,	
  where	
  uncertainty	
  increases	
  with	
  distance	
  
•  Useful	
  as	
  a	
  computa.onally	
  cheap	
  proxy	
  for	
  a	
  complex	
  simulator	
  

–  Examine	
  effect	
  of	
  simulator	
  params	
  on	
  GP	
  predic.ons	
  instead	
  of	
  doing	
  expensive	
  
runs	
  of	
  the	
  simulator	
  

REVIEW 



GPs	
  for	
  Regression	
  

•  Noisy	
  scenario:	
  observe	
  a	
  noisy	
  version	
  of	
  underlying	
  func.on	
  

–  Not	
  required	
  to	
  interpolate,	
  just	
  come	
  “close”	
  to	
  observed	
  data	
  

	
  

•  Training	
  data	
  
•  Test	
  data	
  loca.ons	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  à	
  	
  predict	
  f*	
  	
  

•  Jointly,	
  we	
  have	
  
	
  
•  Therefore,	
  	
  

X⇤
D = {(xi, yi), i = 1, . . . , n}

✓
y
f⇤

◆
⇠ N

✓
0,

✓
Ky K⇤
KT
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◆◆

y = f(x) + ✏ ✏ ⇠ N(0,�2
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cov(y|X) =

p(f⇤ | X⇤, X, y) =

cov(f) + cov(e) = K + �2
yI , Ky

N(f⇤ | K 0
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Dynamic	
  Latent	
  Factor	
  Model	
  

Evolution of latent factors 

yt = ⇤⌘t + ✏t

⌘i ⇠ Nk(0, I)

✏i ⇠ Np(0,⌃0)

⌘t = �⌘t�1 + ⌫tf(⌘1:t�1)



Capturing	
  Changing	
  Correla.ons	
  



Observa.on:	
  	
  	
  
1.  Sensors	
  are	
  redundant	
  
2.  Correla.on	
  pazern	
  changes	
  with	
  .me	
  	
  

⌃ = ⇤⇤0 + ⌃0

p� k

+=

⇥(x) = �(x)�(x)� + ⇥0

Time	
  index	
  

Capturing	
  Changing	
  Correla.ons	
  



Low-­‐Rank	
  Covariance	
  Evolu.on	
  

�11(·) �12(·)
�22(·)�21(·)

�p1(·)�p2(·)

⇥(x) = �(x)�(x)� + ⇥0

	
   	
  	
  	
  array	
  of	
  	
  	
  
processes	
  over	
  .me	
  
p� k

p� k

k << p

Fox and Dunson, arXiv 2011. 
Related model without low-rank structure: Wilson and Ghahramani, UAI 2011. 



Low-­‐Rank	
  Covariance	
  Evolu.on	
  

�11(·) �12(·)
�22(·)�21(·)

�p1(·)�p2(·)

⇥(x) = �(x)�(x)� + ⇥0

+

Fox and Dunson, arXiv 2011. 
Related model without low-rank structure: Wilson and Ghahramani, UAI 2011. 



�11(·) �12(·)
�22(·)�21(·)

�p1(·)�p2(·)

One	
  Step	
  Further…	
  

⇥(x) = ��(x)�(x)��� + ⇥0

�(·)

Fox and Dunson, arXiv 2011. 
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⌘i ⇠ Nk(0, I)

Interpreta.on	
  as	
  Dynamic	
  LFM	
  

�t = ⇤(xt) + ⇥t

yt = �⇤(xt)⇥t + �t

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤
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...

�p1 �p2 �p3

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

�

�(·)

�11(·) �12(·)

�21(·) �22(·)

�32(·)�31(·)

⇤(x)

✏i ⇠ Np(0,⌃0)+

Time-Varying  
Projection Map 



Changing	
  Correla.ons	
  –	
  MEG	
  	
  
102 sensors: 

Correlations between 
sensors change with 

processing of word “kick” 



Prior	
  Specifica.on	
  

�t = ⇤(xt) + ⇥t

yt = �⇤(xt)⇥t + �t

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤
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⇥
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�

�(·)

�11(·) �12(·)

�21(·) �22(·)

�32(·)�31(·)

⇤(x)

✏i ⇠ Np(0,⌃0)+

�t = ⇤(xt) + ⇥t⌘i ⇠ Nk(0, I)�t = ⇤(xt) + ⇥t

yt = �⇤(xt)⇥t + �t

✏i ⇠ Np(0,⌃0)
Model	
  

parameters	
  
Gaussian	
  	
  
Processes	
  

	
  	
  



Data	
  Collec.on	
  
•  4	
  word	
  categories,	
  5	
  words	
  per	
  category	
  

•  20	
  repe..ons	
  per	
  word	
  (400	
  total)	
  
–  15	
  train/word	
  (300	
  total)	
  
–  5	
  test/word	
  (100	
  total)	
  

Animals 

Tools 

Food 

Buildings 

Fyshe, Fox, Dunson, and Mitchell, AISTATS 2012. 



Classifica.on	
  Performance	
  



Perceptual	
  vs.	
  Seman.c	
  Correla.ons	
  
hammer (sensor 2432) house (sensor 2432)

hammer (sensor 0442) house (sensor 0442)
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Low-­‐Dim	
  Embedding	
  Summary	
  

•  Latent	
  factor	
  models	
  
–  Low-­‐rank	
  covariance	
  approxima.on	
  to	
  high-­‐dim	
  i.i.d.	
  Gaussian	
  observa.ons	
  

•  Dynamic	
  latent	
  factor	
  model	
  
–  Interpreta.on	
  as	
  state	
  space	
  model	
  with	
  low-­‐dim	
  state	
  
–  Many	
  approaches	
  to	
  modeling	
  latent	
  dynamics,	
  including	
  Gaussian	
  processes	
  

•  Capturing	
  changing	
  correla.ons	
  in	
  high-­‐dim	
  seing	
  
–  Factor	
  structure	
  within	
  dynamic	
  latent	
  factor	
  model	
  
–  Gaussian	
  process	
  “dic.onary”	
  func.ons	
  

⌃ = ⇤⇤0 + ⌃0

+=

Low	
  
Rank	
   Rk

Rp
k	
  <<	
  p	
  

Low-­‐dimensional	
  embedding	
  



Methods	
  for	
  Scaling	
  to	
  High	
  Dimensions	
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Gaussian	
  
Graphical	
  

Model	
  

Zeros	
  =	
  no	
  edge	
  in	
  graph,	
  
Cond.	
  ind.	
  between	
  nodes	
  

sparse	
  

⌃ = ⇤⇤0 + ⌃0

+=

Low	
  
Rank	
  

⌃�1sparse	
  
Independent	
  groups	
  of	
  nodes	
  

Rk
Rp

k	
  <<	
  p	
  

Low-­‐dimensional	
  embedding	
  



Clustering	
  Time	
  Series	
  



High-­‐Resolu.on	
  Housing	
  Price	
  Index	
  
• Goal:	
  Model	
  neighborhood	
  housing	
  value	
  over	
  .me	
  based	
  on	
  

	
  observed	
  house	
  sales	
  (with	
  covariates)	
  



Issue:	
  Data	
  are	
  spa.otemporally	
  sparse	
  

Challenge	
  

Average monthly sales < 1 < 3 < 5 < 7 < 9

Number of tracts 16 58 114 136 139

Percentage of tracts 0.11 0.41 0.81 0.97 0.99

62 
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Fig 2. A demonstration of the e↵ect of clustering: (a) and (b) show the posterior mean
( solid line) and 95% intervals ( shaded gray) for the latent price dynamics of a randomly
sampled census tract with abundant observations (dots), whereas (c) and (d) examine a
tract with sparse observations. Results are shown for models that either treat census tracts
independently ( left) or allow our Bayesian nonparametric clustering of tracts with similar
dynamics ( right) leading to narrower intervals, especially for tracts with few observations.

smoother embedded in an expectation maximization (EM) algorithm. For
this analysis and that of the remainder of the paper, our spatial granularity
of interest is a census tract. We compare the performance of this indepen-
dent model to one that jointly analyzes related tracts, where relatedness is
determined by a hierarchical clustering approach. The hierarchical clustering
is based on L

2

distance between the independently Kalman smoothed esti-
mates of the latent state sequence. After performing the hierarchical cluster-
ing and cutting the tree at a certain level, we consider a multivariate latent
state model as in Eq. (3.3) where all tracts i falling in the same cluster have
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( solid line) and 95% intervals ( shaded gray) for the latent price dynamics of a randomly
sampled census tract with abundant observations (dots), whereas (c) and (d) examine a
tract with sparse observations. Results are shown for models that either treat census tracts
independently ( left) or allow our Bayesian nonparametric clustering of tracts with similar
dynamics ( right) leading to narrower intervals, especially for tracts with few observations.

smoother embedded in an expectation maximization (EM) algorithm. For
this analysis and that of the remainder of the paper, our spatial granularity
of interest is a census tract. We compare the performance of this indepen-
dent model to one that jointly analyzes related tracts, where relatedness is
determined by a hierarchical clustering approach. The hierarchical clustering
is based on L

2

distance between the independently Kalman smoothed esti-
mates of the latent state sequence. After performing the hierarchical cluster-
ing and cutting the tree at a certain level, we consider a multivariate latent
state model as in Eq. (3.3) where all tracts i falling in the same cluster have



Relate	
  Time	
  Series	
  via	
  Clustering	
  
20 Y. REN ET AL.
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Fig 6. Simulated latent price processes for 20 census tracts from 4 clusters. Traces within
each plot correspond to specific census tracts in each cluster.

To evaluate the importance of the DP clustering beyond the benefits
provided by our hierarchical Bayesian dynamic model, we compare results
by enabling / disabling clustering in our proposed model. For the latter, we
fixed each census tract to form its own cluster and simply did not resample
the cluster indicators in our MCMC. Figure 10 shows the test set RMSE for
predicting the latent trend x as a function of the number of observations in
the census tract. For tracts with fewer observations, the clustering method
provides substantial improvement in prediction error. As expected, when
observations are abundant, the improvement diminishes.

We also experimented with other simulation scenarios, summarized in
Table 2. When the latent factor processes have relatively large factor loadings
(large µ�) leading to large noise variance on the latent price dynamics, the
improvement in predicting latent trends x are very significant compared
to the model without clustering. However, even under such scenarios, the
improvement in predicting the observations yi,t,l themselves is not as large

Solu:on:	
  
	
  

Discover	
  groups	
  
of	
  tracts	
  with	
  
correlated	
  
dynamics	
  
	
  
Leverage	
  
observaJons	
  
jointly	
  within	
  
group	
  



State	
  Space	
  Model	
  

Latent	
  price	
  dynamics	
  

Observed	
  log(price)	
  

State	
  

Observa.on	
  

x1,i x2,i x3,i x4,i

y1,i,1 y2,i,1 y2,i,2 y4,i,1

Discrete-­‐.me	
  linear	
  Gaussian	
  state	
  space	
  model	
  	
  for	
  census	
  tract	
  i	
  

xt,i = aixt�1,i + ✏t,i ✏t,i ⇠ N (0,�2
i )

yt,i,l = xt,i +
HX

h=1

�i,hUl,r + vt,i,l vt,i,l ⇠ N (0, Ri) ,

covariate	
  effects	
  

Hidden:	
  global	
  trend	
  +	
  seasonality	
  tract	
  i	
  

lth	
  sales	
  

Ren, Fox, Bruce, arXiv 2015. 



Mul.ple	
  Census	
  Tract	
  Model	
  

x1,i x2,i x3,i x4,i

y1,i,1 y2,i,1 y2,i,2 y4,i,1

x1,i x2,i x3,i x4,i

y1,i,1 y2,i,1 y2,i,2 y4,i,1

x1,i x2,i x3,i x4,i

y1,i,1 y2,i,1 y2,i,2 y4,i,1

x1,i x2,i x3,i x4,i

y1,i,1 y2,i,1 y2,i,2 y4,i,1

xt,i = aixt�1,i + ✏t,i ✏t,i ⇠ N (0,�2
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Ren, Fox, Bruce, arXiv 2015. 
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Fig 6. Simulated latent price processes for 20 census tracts from 4 clusters. Traces within
each plot correspond to specific census tracts in each cluster.

To evaluate the importance of the DP clustering beyond the benefits
provided by our hierarchical Bayesian dynamic model, we compare results
by enabling / disabling clustering in our proposed model. For the latter, we
fixed each census tract to form its own cluster and simply did not resample
the cluster indicators in our MCMC. Figure 10 shows the test set RMSE for
predicting the latent trend x as a function of the number of observations in
the census tract. For tracts with fewer observations, the clustering method
provides substantial improvement in prediction error. As expected, when
observations are abundant, the improvement diminishes.

We also experimented with other simulation scenarios, summarized in
Table 2. When the latent factor processes have relatively large factor loadings
(large µ�) leading to large noise variance on the latent price dynamics, the
improvement in predicting latent trends x are very significant compared
to the model without clustering. However, even under such scenarios, the
improvement in predicting the observations yi,t,l themselves is not as large

⌃



Cluster	
  and	
  Correlate	
  Mul.ple	
  Time	
  Series	
  

0

BBBBBBB@

✏t,1
✏t,2
✏t,3
✏t,4
...

✏t,p

1

CCCCCCCA

⇠ N

2

66666664

0

BBBBBBB@

0
0
0
0
...
0

1

CCCCCCCA

,

0

BBBBBB@

1

CCCCCCA

3

77777775

. . .
0

0⌃1
⌃2

⌃K

•  Challenge:	
  	
  
Unknown	
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•  Solu.on:	
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  model	
  with	
  Bayesian	
  nonparametric	
  prior	
  
	
   	
   	
  	
  	
  on	
  latent	
  factor	
  processes	
  

Correlated	
  dynamics	
  
in	
  cluster	
  k	
  



Latent	
  Factor	
  Model	
  for	
  Innova.ons	
  
Assume	
  clusterings	
  known	
  and	
  fixed.	
  	
  If	
  tract	
  	
  	
  	
  is	
  from	
  cluster	
  	
  	
  	
  	
  ,	
  i k

0

BBBBBBB@

✏t,1
✏t,2
✏t,3
✏t,4
...

✏t,p

1

CCCCCCCA

⇠ N

2

66666664

0

BBBBBBB@

0
0
0
0
...
0

1

CCCCCCCA

,

0

BBBBBB@

1

CCCCCCA

3

77777775
. . .

0

0⌃1
⌃2

for i 6= j

(i, j) entry in ⌃k = �ik�jk

✏(k)t,i = �ik⌘⇤t,k + ✏̃t,i ✏̃t,i ⇠ N(0,�2
0) ⌘⇤t,k ⇠ N(0, 1).

latent factor process  
for cluster k 

factor  
loadings 

cov(✏t,i, ✏t,i0 |{�}, {z}) =
⇢

�ik�i0k + �2
0�(i, i

0
) zi = zi0 = k, 8k

0 otherwise.
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Bayesian Nonparametric Clustering 

•  Bayesian	
  nonparametric	
  
approach:	
  
–  Allows	
  infinite	
  #	
  clusters	
  
–  Uses	
  sparse	
  subset	
  
– Model	
  complexity	
  
adapts	
  to	
  observa.ons	
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customers observed data to be clustered 
tables distinct clusters 

Chinese	
  Restaurant	
  Process	
  (CRP)	
  

•  Distribu.on	
  on	
  induced	
  par..ons	
  described	
  via	
  the	
  CRP	
  
•  Visualize	
  clustering	
  as	
  a	
  sequen.al	
  process	
  of	
  customers	
  siing	
  at	
  

tables	
  in	
  an	
  (infinitely	
  large)	
  restaurant:	
  

•  The	
  first	
  customer	
  sits	
  at	
  a	
  table.	
  	
  Subsequent	
  customers	
  randomly	
  
select	
  a	
  table	
  according	
  to:	
  

Number of current 
assignments to 

parameter k 

REVIEW 



Cluster	
  by	
  Latent	
  Factor	
  Process	
  

Recall:	
  Desired	
  structure	
  azained	
  by	
  assuming	
  that	
  if	
  tract	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  from	
  cluster	
  	
  	
  	
  	
  ,	
  

i
k

✏(k)t,i = �ik⌘⇤t,k + ✏̃t,i ✏̃t,i ⇠ N(0,�2
0) ⌘⇤t,k ⇠ N(0, 1).

latent factor process  
for cluster k 

factor  
loadings 

Gaussian	
  i.i.d.	
  version:	
  	
  
[Palla	
  et	
  al.,	
  NIPS	
  2012]	
  

Mo:vates:	
  Dirichlet	
  process	
  mixture	
  model	
  with	
  
	
  

Latent	
  price	
  dynamics	
  

Observed	
  log(price)	
  

xt,i = aixt�1,i + ✏t,i ✏t,i ⇠ N (0,�2
i )

yt,i,l = xt,i +
HX

h=1

�i,hUl,r + vt,i,l vt,i,l ⇠ N (0, Ri) ,

covariate	
  effects	
  

tract	
  i	
  

lth	
  sales	
  

Ren, Fox, Bruce, arXiv 2015. 



Alterna.ve	
  Clustering	
  

Alterna:ve:	
  Dirichlet	
  process	
  mixture	
  model	
  with	
  
	
  

Latent	
  price	
  dynamics	
  

Observed	
  log(price)	
  

xt,i = aixt�1,i + ✏t,i ✏t,i ⇠ N (0,�2
i )

yt,i,l = xt,i +
HX

h=1

�i,hUl,r + vt,i,l vt,i,l ⇠ N (0, Ri) ,

covariate	
  effects	
  

tract	
  i	
  

lth	
  sales	
  

Cluster-­‐specific	
  covariate	
  model	
  Cluster-­‐specific	
  latent	
  trend	
  

[Nieto-­‐Barajas	
  and	
  Contreras-­‐Cristán,	
  2014]	
  

Assumes	
  all	
  census	
  tracts	
  in	
  cluster	
  have	
  same	
  latent	
  value	
  rather	
  
than	
  just	
  correlated	
  latent	
  value	
  

	
  (also	
  cluster	
  parameter	
  xT+1	
  depends	
  on	
  xT,	
  whereas	
  εT+1	
  ind.	
  of	
  εT)	
  
	
  



Housing	
  Data	
  Analysis	
  

•  Seazle	
  City	
  
– 140	
  census	
  tracts	
  
– 125k	
  transac.ons	
  during	
  17	
  years 	
  	
  

•  Computa.onal	
  details:	
  
– Parallel	
  (collapsed)	
  Dirichlet	
  process	
  MCMC	
  
sampler	
  

– 10x	
  speedup	
  with	
  10	
  processors	
  
[Williamson	
  et	
  al.,	
  ICML	
  2013]	
  



Seazle	
  City	
  Analysis	
  (17	
  years)	
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Fig 11. Estimated global trend using the seasonality decomposition approach of Cleveland
et al. (1990), after adjusting for hedonic e↵ects.
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Fig 12. Map of clusters under the MAP sample. The cluster labels and associated map
colors are selected to indicate the level of deviance of the cluster’s average (across tracts)
latent trend from the global trend. Blue (1) represents a small deviance while red (16)
represents the largest.

hedonic e↵ects as in Eq. (3.4). The estimated hedonic e↵ects together with
Case-Shiller index are then used to predict the house prices. Due to the
scarcity of repeat sales observations localized at tract level, the Case-Shiller
index can only be computed at 8 of the 140 tracts. To maintain a tract-level
comparison, if the Case-Shiller index is not available for a given tract, we
continue up the spatial hierarchy examining zip code and city levels until
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Fig 13. Under the MAP sample, cluster-average intrinsic price dynamics computed by
averaging x1:T,i over all i with zi = k for k = 1, . . . , 16. The color scheme is the same as
in Figure 12.

Table 3

For our predictive performance comparison summarized in Table 4, the number of tracts
and individual houses (in test set) that rely on using city, zip code, or tract-level indices

with the Case-Shiller method. Our Bayesian method always uses a tract-level index.

Case-Shiller Case-Shiller Case-Shiller Bayesian
City Zip Code Census Tract Census Tract

# tracts using 11 121 8 140
# observations using 1,294 26,576 3,248 31,118

there is a computable index that can serve as xt,i in our prediction. That is,
we use the finest resolution Case-Shiller index available at any house location
to predict house prices. In Table 3, we summarize the number of house-level
predictions that are based on the Case-Shiller city, zip code, or tract level
indices; we also include the number of tracts for which our analyses relied
on city and zip code levels, or were able to use tract-level indices directly.

Our Bayesian model can successfully produce value indices for all tracts.
To predict house-level prices, we use the posterior predictive distribution
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Fig 11. Estimated global trend using the seasonality decomposition approach of Cleveland
et al. (1990), after adjusting for hedonic e↵ects.
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Fig 12. Map of clusters under the MAP sample. The cluster labels and associated map
colors are selected to indicate the level of deviance of the cluster’s average (across tracts)
latent trend from the global trend. Blue (1) represents a small deviance while red (16)
represents the largest.

hedonic e↵ects as in Eq. (3.4). The estimated hedonic e↵ects together with
Case-Shiller index are then used to predict the house prices. Due to the
scarcity of repeat sales observations localized at tract level, the Case-Shiller
index can only be computed at 8 of the 140 tracts. To maintain a tract-level
comparison, if the Case-Shiller index is not available for a given tract, we
continue up the spatial hierarchy examining zip code and city levels until
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Clusters	
  of	
  Time	
  Series	
  Summary	
  

•  Goal:	
  Cluster	
  .me	
  series	
  to	
  share	
  informa.on	
  
–  Individually	
  not	
  informa.ve	
  enough	
  	
  
–  Full	
  joint	
  model	
  sta.s.cally	
  and	
  computa.onally	
  infeasible	
  

•  Cluster	
  structure	
  
–  Cluster	
  on	
  latent	
  state	
  process	
  à	
  clusters	
  of	
  idenJcal	
  latent	
  trends	
  
–  Assume	
  latent	
  factor	
  model	
  for	
  AR	
  innova.ons	
  +	
  cluster	
  latent	
  factor	
  process	
  à	
  

clusters	
  of	
  correlated	
  Jme	
  series	
  

•  Bayesian	
  nonparametric	
  clustering	
  
–  Dirichlet	
  process	
  prior	
  allows	
  unknown	
  number	
  of	
  clusters	
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Methods	
  for	
  Scaling	
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  High	
  Dimensions	
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Graphs	
  of	
  Time	
  Series	
  

Collec.on	
  of	
  
interac.ng	
  
.me	
  series	
  



Condi.onal	
  Independencies	
  

T =  1000 T =  2500 T =  5000 T =  10000

Figure 2: Example evolution of error types for the piecewise prior method as a function of series length, T 2
{1000, 2500, 5000, 10000} and N = 1, for a selected graph. Blue, red, black, and white entries indicate true positives,
false negatives, false positives, and true negatives, respectively. The graph was selected by choosing the graph out of 200
replications with median true positive rate at T = 2500.

log-returns according to rt = 100 log(pt/pt�1). We com-
pare the graphical models inferred under two settings: (i)
treating the log-returns as independent (as in [20]) and (ii)
using our methods to learn a TGM treating the log-returns
as a time series. The best graphical models learned in each
scenario are depicted in Fig. 3.

For our TGM algorithm, we computed the periodogram for
the 17-dimensional time series, resulting in 542 complex-
valued matrices of dimension 17⇥ 17. Since we only have
one realization of the time series, we smoothed the pe-
riodogram using the techniques and settings discussed in
Sec. 6.2. We then ran the FINCS algorithm for 100,000
iterations. We compare the resulting highest-probability
graph (see Fig. 3) to that learned treating the time series
as independent based on the model in [20], again using
100,000 iterations of the FINCS algorithm, but in its origi-
nally proposed form for non-temporal data.

In Figure 3, we see that in both cases we recover some geo-
graphical relationships between countries. However, the in-
dependent model returns a significantly denser graph than
that learned by our TGM approach. Since the independent
model is not taking the temporal nature of the data into
account, some edges are likely spurious due to random cor-
relations. The TGM, on the other hand, provides an inter-
pretable and intuitive structure with strong geographic con-
nections. For example, there is a distinct United Kingdom
/ eurozone cluster of Germany ‘DE’, Finland ‘FI’, Nether-
lands ‘NL’, Belgium ‘BE’, Switzerland ‘CH’, Austria ‘AT’,
Spain ‘ES’, Italy ‘IT’, Portugal ‘PT’, and the United King-
dom ‘UK’. Another distinct cluster includes the United
States ‘US’, Canada ‘CA’, Hong Kong ‘HK’ (whose cur-
rency is linked to the USD), and Australia ‘AU’ (whose
currency is correlated with the US S&P), with Japan ‘JP’
hanging off this cluster. One perhaps strange missing link
is between Ireland ‘IE’ and the UK, though the US and Ire-
land have a long history of economic connections perhaps
explaining why Ireland is included as a part of the separator
between these two distinct clusters.

Figure 3: Graphical models with the highest posterior prob-
ability for the stock index data. Left: Treating the log-
returns as independent. Right: Using our TGM algorithm.
In both cases, we see regional connections, but our TGM
algorithm results in a sparser and more interpretable graph.

8 Magnetoencephalography Data

Next we learn TGMs to capture the structure of underlying
cortical dynamics from magnetoencephalography (MEG)
data collected from ten subjects who were asked to per-
form a task while maintaining focus on an audio stream
and then again while switching focus [36]. Our goal is to
discover differences in the underlying TGMs between the
non-switching and switching attention conditions. Such
differences provide further understanding into the neural
underpinnings of auditory selective selection, an important
constituent to communication.

The data were collected for each subject performing the ex-
periment in the switching (S) and non-switching (N) atten-
tion conditions. For both S and N conditions, each subject
performed the task under an auditory condition of high (U)
and low (D) pitch, and spatial conditions of left (L) and
right (R) attending. For each of the eight possible condi-
tions, MEG recordings were collected resulting in a 150-
dimensional time series of length 992 where each dimen-
sion corresponds to a localized region of the brain. We
have between 17 and 30 trials for each subject, resulting in
about 200 replicate time series per condition.
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  global	
  stock	
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Graphical	
  Models	
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Informa.on	
  Form	
  Gaussian	
  

•  Mo.va.ons	
  for	
  considering	
  “informa.on	
  form”	
  of	
  
mul.variate	
  normal	
  
–  Easier	
  to	
  read	
  off	
  condi.onal	
  densi.es	
  
–  Has	
  log-­‐linear	
  form	
  in	
  terms	
  of	
  “informa.on	
  parameters”	
  	
  

1p
2⇡|⌃|

e�
1
2 (x�µ)T⌃�1(x�µ)

/ e⌘
T
x� 1

2x
T⌦x



Info.	
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  Condi.onal	
  Densi.es	
  

•  Assume	
  a	
  model	
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  dimensions	
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�◆



Info.	
  Gaussian	
  Condi.onal	
  Densi.es	
  

•  Let 	
   	
   	
   	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  everything	
  else	
  

•  What	
  if	
   	
   	
   	
  	
  ?	
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Random	
  Variables	
  à	
  Stochas.c	
  Processes	
  

Goal:	
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  and	
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condi.onal	
  independence	
  rela.ons	
  
between	
  Jme	
  series	
  
	
  
Assume	
  staJonarity:	
  
	
  
	
  
	
  
For	
  simplicity,	
  zero	
  mean	
  
	
  
	
  

time 

. . . 

2.3 Stationary Time Series

Let X(t) = (X1(t), ..., Xp(t))
T 2 Rp for t 2 Z be a

multivariate Gaussian stationary time series such that:

E(X(t)) = µ 8t 2 Z (2)
Cov(X(t), X(t+ h)) = �(h) 8t, h 2 Z. (3)

A time series probabilistic graphical model (TGM), G =

(V,E), may be constructed by letting (i, j) /2 E denote
that the entire time series Xi(:) and Xj(:) are conditionally
independent given the remaining collection of time series
XZij where Zij = V \ {i, j}. For the Gaussian stationary
series we consider, one can show that conditional indepen-
dence holds between time series iff [8]

Cov(Xi(t), Xj(t+ h)|XZij ) = 0 8h 2 Z. (4)

The spectral density matrix of a stationary time series is
defined as the Fourier transform of the lagged covariance
matrices, �(h) = Cov(X(t), X(t+ h)):

S(�) =

1X

h=�1
�(h)e�i�h (5)

for � 2 [0, 2⇡] and S(�) 2 Cp⇥p and Hermitian positive
definite. The marginal dependencies between time series
are captured by S(�), and from Eq. (5), S(�)ij = 0 for
all � 2 [0, 2⇡] iff �(h)ij = 0 for all h 2 Z. Further-
more, conditional independence between Gaussian station-
ary time series holds iff

S(�)�1
ij = 0 8� 2 [0, 2⇡], (6)

implying that inferring zeros in the inverse spectral den-
sity matrices across frequencies equates with inferring the
TGM structure [8].

3 A Bayesian Approach

There are two standard approaches to Bayesian inference
in graphical models: (1) placing a prior that jointly spec-
ifies the graph structure and associated parameters or (2)
placing a prior on graph structures and then a prior on pa-
rameters given a graph; both rely on specifying a likelihood
model. We opt for the second approach and describe the
various components in this section. At a high level, our
methods combine existing Whittle likelihood based meth-
ods [13, 14] with the hyper Markov framework to Bayesian
graphical modeling [19, 18]. In the context of our TGMs,
we introduce a conjugate hyper complex inverse Wishart

prior on graph-constrained spectral density matrices. By
integrating out the spectral density matrices, we obtain a
marginal likelihood of the time series given the graph struc-
ture, G, allowing us to straightforwardly leverage state-of-
the-art computational methods for i.i.d. Bayesian structure
learning.

3.1 Whittle likelihood

Let X = [X(1), . . . , X(T )], with x(t) 2 Rp a realiza-
tion of a p-dimensional stationary Gaussian time series ob-
served at T time points, and X1:N = {X1, . . . ,XN} be
the collection of N independent realizations. We move to
the frequency domain by transforming each Xi using a dis-
crete Fourier transform. Let dnk 2 Cp denote the discrete
Fourier coefficient associated with the nth time series at
frequency �k =

2⇡k
T :

dnk =

1

T

T�1X

t=0

xn(t)e
�i�kt. (7)

The Whittle approximation [12] assumes the Fourier coef-
ficients are independent complex normal random variables

with mean zero and covariance given by the corresponding
spectral density matrix Sk = S(�k):

dnk ⇠ Nc(0, Sk) k = 0, . . . , T � 1, (8)

such that the likelihood of X1:N is approximated as

p(X1:N |S0:T�1) ⇡
NY

n=1

T�1Y

k=0

1

⇡p|Sk|
e�d⇤

nkS
�1
k dnk , (9)

where 1
⇡p|S|e

�z⇤S�1z is the density of a complex normal
distribution, Nc(0, S), with S 2 Cp⇥p and Hermitian posi-
tive definite. See the Supplement. The Whittle approxima-
tion holds asymptotically with large T [24, 25, 12]. This
approximation has been used in the Bayesian context in
[26, 27]

Recall that conditional independencies are encoded in the
off diagonal elements of S�1

k . If time series Xi(t) and
Xj(t) are conditionally independent, then the Whittle ap-
proximation says that as T gets large the ith and jth ele-
ments of the Fourier coefficients dnk are conditional inde-
pendent across all frequencies. Thus, if G is decomposable,
Eq. (9) can be rewritten as

p(X1:N |G,S0:(T�1)) ⇡ (10)
T�1Y

k=0

Q
C2C

1
⇡N|C||SkC |N e�trPkCS�1

kC

Q
S2S

1
⇡N|S||SkS |N e�trPkSS�1

kS

where

Pk =

NX

n=1

dnkd
⇤
nk (11)

is the aggregate periodogram over the N time series at fre-
quency 2⇡k

T . For A ⇢ V , SkA and PkA are the restriction
of both matrices to the elements in A and |A| denotes the
cardinality of the set A.

T
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2.3 Stationary Time Series

Let X(t) = (X1(t), ..., Xp(t))
T 2 Rp for t 2 Z be a

multivariate Gaussian stationary time series such that:

E(X(t)) = µ 8t 2 Z (2)
Cov(X(t), X(t+ h)) = �(h) 8t, h 2 Z. (3)

A time series probabilistic graphical model (TGM), G =

(V,E), may be constructed by letting (i, j) /2 E denote
that the entire time series Xi(:) and Xj(:) are conditionally
independent given the remaining collection of time series
XZij where Zij = V \ {i, j}. For the Gaussian stationary
series we consider, one can show that conditional indepen-
dence holds between time series iff [8]

Cov(Xi(t), Xj(t+ h)|XZij ) = 0 8h 2 Z. (4)

The spectral density matrix of a stationary time series is
defined as the Fourier transform of the lagged covariance
matrices, �(h) = Cov(X(t), X(t+ h)):

S(�) =

1X

h=�1
�(h)e�i�h (5)

for � 2 [0, 2⇡] and S(�) 2 Cp⇥p and Hermitian positive
definite. The marginal dependencies between time series
are captured by S(�), and from Eq. (5), S(�)ij = 0 for
all � 2 [0, 2⇡] iff �(h)ij = 0 for all h 2 Z. Further-
more, conditional independence between Gaussian station-
ary time series holds iff

S(�)�1
ij = 0 8� 2 [0, 2⇡], (6)

implying that inferring zeros in the inverse spectral den-
sity matrices across frequencies equates with inferring the
TGM structure [8].

3 A Bayesian Approach

There are two standard approaches to Bayesian inference
in graphical models: (1) placing a prior that jointly spec-
ifies the graph structure and associated parameters or (2)
placing a prior on graph structures and then a prior on pa-
rameters given a graph; both rely on specifying a likelihood
model. We opt for the second approach and describe the
various components in this section. At a high level, our
methods combine existing Whittle likelihood based meth-
ods [13, 14] with the hyper Markov framework to Bayesian
graphical modeling [19, 18]. In the context of our TGMs,
we introduce a conjugate hyper complex inverse Wishart

prior on graph-constrained spectral density matrices. By
integrating out the spectral density matrices, we obtain a
marginal likelihood of the time series given the graph struc-
ture, G, allowing us to straightforwardly leverage state-of-
the-art computational methods for i.i.d. Bayesian structure
learning.

3.1 Whittle likelihood

Let X = [X(1), . . . , X(T )], with x(t) 2 Rp a realiza-
tion of a p-dimensional stationary Gaussian time series ob-
served at T time points, and X1:N = {X1, . . . ,XN} be
the collection of N independent realizations. We move to
the frequency domain by transforming each Xi using a dis-
crete Fourier transform. Let dnk 2 Cp denote the discrete
Fourier coefficient associated with the nth time series at
frequency �k =

2⇡k
T :

dnk =

1

T

T�1X

t=0

xn(t)e
�i�kt. (7)

The Whittle approximation [12] assumes the Fourier coef-
ficients are independent complex normal random variables

with mean zero and covariance given by the corresponding
spectral density matrix Sk = S(�k):

dnk ⇠ Nc(0, Sk) k = 0, . . . , T � 1, (8)

such that the likelihood of X1:N is approximated as

p(X1:N |S0:T�1) ⇡
NY

n=1

T�1Y

k=0

1

⇡p|Sk|
e�d⇤

nkS
�1
k dnk , (9)

where 1
⇡p|S|e

�z⇤S�1z is the density of a complex normal
distribution, Nc(0, S), with S 2 Cp⇥p and Hermitian posi-
tive definite. See the Supplement. The Whittle approxima-
tion holds asymptotically with large T [24, 25, 12]. This
approximation has been used in the Bayesian context in
[26, 27]

Recall that conditional independencies are encoded in the
off diagonal elements of S�1

k . If time series Xi(t) and
Xj(t) are conditionally independent, then the Whittle ap-
proximation says that as T gets large the ith and jth ele-
ments of the Fourier coefficients dnk are conditional inde-
pendent across all frequencies. Thus, if G is decomposable,
Eq. (9) can be rewritten as

p(X1:N |G,S0:(T�1)) ⇡ (10)
T�1Y

k=0

Q
C2C

1
⇡N|C||SkC |N e�trPkCS�1

kC

Q
S2S

1
⇡N|S||SkS |N e�trPkSS�1

kS

where

Pk =

NX

n=1

dnkd
⇤
nk (11)

is the aggregate periodogram over the N time series at fre-
quency 2⇡k

T . For A ⇢ V , SkA and PkA are the restriction
of both matrices to the elements in A and |A| denotes the
cardinality of the set A.
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2.3 Stationary Time Series

Let X(t) = (X1(t), ..., Xp(t))
T 2 Rp for t 2 Z be a

multivariate Gaussian stationary time series such that:

E(X(t)) = µ 8t 2 Z (2)
Cov(X(t), X(t+ h)) = �(h) 8t, h 2 Z. (3)

A time series probabilistic graphical model (TGM), G =

(V,E), may be constructed by letting (i, j) /2 E denote
that the entire time series Xi(:) and Xj(:) are conditionally
independent given the remaining collection of time series
XZij where Zij = V \ {i, j}. For the Gaussian stationary
series we consider, one can show that conditional indepen-
dence holds between time series iff [8]

Cov(Xi(t), Xj(t+ h)|XZij ) = 0 8h 2 Z. (4)

The spectral density matrix of a stationary time series is
defined as the Fourier transform of the lagged covariance
matrices, �(h) = Cov(X(t), X(t+ h)):

S(�) =

1X

h=�1
�(h)e�i�h (5)

for � 2 [0, 2⇡] and S(�) 2 Cp⇥p and Hermitian positive
definite. The marginal dependencies between time series
are captured by S(�), and from Eq. (5), S(�)ij = 0 for
all � 2 [0, 2⇡] iff �(h)ij = 0 for all h 2 Z. Further-
more, conditional independence between Gaussian station-
ary time series holds iff

S(�)�1
ij = 0 8� 2 [0, 2⇡], (6)

implying that inferring zeros in the inverse spectral den-
sity matrices across frequencies equates with inferring the
TGM structure [8].

3 A Bayesian Approach

There are two standard approaches to Bayesian inference
in graphical models: (1) placing a prior that jointly spec-
ifies the graph structure and associated parameters or (2)
placing a prior on graph structures and then a prior on pa-
rameters given a graph; both rely on specifying a likelihood
model. We opt for the second approach and describe the
various components in this section. At a high level, our
methods combine existing Whittle likelihood based meth-
ods [13, 14] with the hyper Markov framework to Bayesian
graphical modeling [19, 18]. In the context of our TGMs,
we introduce a conjugate hyper complex inverse Wishart

prior on graph-constrained spectral density matrices. By
integrating out the spectral density matrices, we obtain a
marginal likelihood of the time series given the graph struc-
ture, G, allowing us to straightforwardly leverage state-of-
the-art computational methods for i.i.d. Bayesian structure
learning.

3.1 Whittle likelihood

Let X = [X(1), . . . , X(T )], with x(t) 2 Rp a realiza-
tion of a p-dimensional stationary Gaussian time series ob-
served at T time points, and X1:N = {X1, . . . ,XN} be
the collection of N independent realizations. We move to
the frequency domain by transforming each Xi using a dis-
crete Fourier transform. Let dnk 2 Cp denote the discrete
Fourier coefficient associated with the nth time series at
frequency �k =

2⇡k
T :

dnk =

1

T

T�1X

t=0

xn(t)e
�i�kt. (7)

The Whittle approximation [12] assumes the Fourier coef-
ficients are independent complex normal random variables

with mean zero and covariance given by the corresponding
spectral density matrix Sk = S(�k):

dnk ⇠ Nc(0, Sk) k = 0, . . . , T � 1, (8)

such that the likelihood of X1:N is approximated as

p(X1:N |S0:T�1) ⇡
NY

n=1

T�1Y

k=0

1

⇡p|Sk|
e�d⇤

nkS
�1
k dnk , (9)

where 1
⇡p|S|e

�z⇤S�1z is the density of a complex normal
distribution, Nc(0, S), with S 2 Cp⇥p and Hermitian posi-
tive definite. See the Supplement. The Whittle approxima-
tion holds asymptotically with large T [24, 25, 12]. This
approximation has been used in the Bayesian context in
[26, 27]

Recall that conditional independencies are encoded in the
off diagonal elements of S�1

k . If time series Xi(t) and
Xj(t) are conditionally independent, then the Whittle ap-
proximation says that as T gets large the ith and jth ele-
ments of the Fourier coefficients dnk are conditional inde-
pendent across all frequencies. Thus, if G is decomposable,
Eq. (9) can be rewritten as

p(X1:N |G,S0:(T�1)) ⇡ (10)
T�1Y

k=0

Q
C2C

1
⇡N|C||SkC |N e�trPkCS�1

kC

Q
S2S

1
⇡N|S||SkS |N e�trPkSS�1

kS

where

Pk =

NX

n=1

dnkd
⇤
nk (11)

is the aggregate periodogram over the N time series at fre-
quency 2⇡k

T . For A ⇢ V , SkA and PkA are the restriction
of both matrices to the elements in A and |A| denotes the
cardinality of the set A.
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Figure 5: The graph used for a 16 channel iEEG electrode and corresponding traces
over 25 seconds of a seizure onset with colors indicating the inferred channel states. The
event states are shown below along with the associated innovation covariances. Vertical
dashed lines indicate the EEG transition times marked independently by an epileptologist.
Vertical and horizontal scale bars denote 1 mV and 1 second, respectively.

our event states provide an important global summary of the dynamics of
the seizure that augments the information conveyed from the channel state
sequences.

Clinical relevance. While interpreting these state sequences and covariances
from the model, it is important to keep in mind that they are ultimately
estimates of a system whose parsing even highly-trained physicians disagree
upon. Nevertheless, we believe that the event states directly describe the
activity of particular clinical interest.

In modeling the correlations between channels, the event states give in-
sight into how di↵erent physiologic areas of the brain interact over the course
of a seizure. In the clinical workup for resective brain surgery, these event
states could help define and specifically quantify the full range of ways in
which neurophysiologic regions initiate seizures and how others are recruited
over the numerous seizures of a patient. In addition, given fixed model pa-
rameters, our model can fit the channel and event state sequences of an
hour’s worth of 64-channel EEG data in a matter of minutes on a single
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Figure 5: The graph used for a 16 channel iEEG electrode and corresponding traces
over 25 seconds of a seizure onset with colors indicating the inferred channel states. The
event states are shown below along with the associated innovation covariances. Vertical
dashed lines indicate the EEG transition times marked independently by an epileptologist.
Vertical and horizontal scale bars denote 1 mV and 1 second, respectively.

our event states provide an important global summary of the dynamics of
the seizure that augments the information conveyed from the channel state
sequences.

Clinical relevance. While interpreting these state sequences and covariances
from the model, it is important to keep in mind that they are ultimately
estimates of a system whose parsing even highly-trained physicians disagree
upon. Nevertheless, we believe that the event states directly describe the
activity of particular clinical interest.

In modeling the correlations between channels, the event states give in-
sight into how di↵erent physiologic areas of the brain interact over the course
of a seizure. In the clinical workup for resective brain surgery, these event
states could help define and specifically quantify the full range of ways in
which neurophysiologic regions initiate seizures and how others are recruited
over the numerous seizures of a patient. In addition, given fixed model pa-
rameters, our model can fit the channel and event state sequences of an
hour’s worth of 64-channel EEG data in a matter of minutes on a single
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estimates of a system whose parsing even highly-trained physicians disagree
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2.3 Stationary Time Series

Let X(t) = (X1(t), ..., Xp(t))
T 2 Rp for t 2 Z be a

multivariate Gaussian stationary time series such that:

E(X(t)) = µ 8t 2 Z (2)
Cov(X(t), X(t+ h)) = �(h) 8t, h 2 Z. (3)

A time series probabilistic graphical model (TGM), G =

(V,E), may be constructed by letting (i, j) /2 E denote
that the entire time series Xi(:) and Xj(:) are conditionally
independent given the remaining collection of time series
XZij where Zij = V \ {i, j}. For the Gaussian stationary
series we consider, one can show that conditional indepen-
dence holds between time series iff [8]

Cov(Xi(t), Xj(t+ h)|XZij ) = 0 8h 2 Z. (4)

The spectral density matrix of a stationary time series is
defined as the Fourier transform of the lagged covariance
matrices, �(h) = Cov(X(t), X(t+ h)):

S(�) =

1X

h=�1
�(h)e�i�h (5)

for � 2 [0, 2⇡] and S(�) 2 Cp⇥p and Hermitian positive
definite. The marginal dependencies between time series
are captured by S(�), and from Eq. (5), S(�)ij = 0 for
all � 2 [0, 2⇡] iff �(h)ij = 0 for all h 2 Z. Further-
more, conditional independence between Gaussian station-
ary time series holds iff

S(�)�1
ij = 0 8� 2 [0, 2⇡], (6)

implying that inferring zeros in the inverse spectral den-
sity matrices across frequencies equates with inferring the
TGM structure [8].

3 A Bayesian Approach

There are two standard approaches to Bayesian inference
in graphical models: (1) placing a prior that jointly spec-
ifies the graph structure and associated parameters or (2)
placing a prior on graph structures and then a prior on pa-
rameters given a graph; both rely on specifying a likelihood
model. We opt for the second approach and describe the
various components in this section. At a high level, our
methods combine existing Whittle likelihood based meth-
ods [13, 14] with the hyper Markov framework to Bayesian
graphical modeling [19, 18]. In the context of our TGMs,
we introduce a conjugate hyper complex inverse Wishart

prior on graph-constrained spectral density matrices. By
integrating out the spectral density matrices, we obtain a
marginal likelihood of the time series given the graph struc-
ture, G, allowing us to straightforwardly leverage state-of-
the-art computational methods for i.i.d. Bayesian structure
learning.

3.1 Whittle likelihood

Let X = [X(1), . . . , X(T )], with x(t) 2 Rp a realiza-
tion of a p-dimensional stationary Gaussian time series ob-
served at T time points, and X1:N = {X1, . . . ,XN} be
the collection of N independent realizations. We move to
the frequency domain by transforming each Xi using a dis-
crete Fourier transform. Let dnk 2 Cp denote the discrete
Fourier coefficient associated with the nth time series at
frequency �k =

2⇡k
T :

dnk =

1

T

T�1X

t=0

xn(t)e
�i�kt. (7)

The Whittle approximation [12] assumes the Fourier coef-
ficients are independent complex normal random variables

with mean zero and covariance given by the corresponding
spectral density matrix Sk = S(�k):

dnk ⇠ Nc(0, Sk) k = 0, . . . , T � 1, (8)

such that the likelihood of X1:N is approximated as

p(X1:N |S0:T�1) ⇡
NY

n=1

T�1Y

k=0

1

⇡p|Sk|
e�d⇤

nkS
�1
k dnk , (9)

where 1
⇡p|S|e

�z⇤S�1z is the density of a complex normal
distribution, Nc(0, S), with S 2 Cp⇥p and Hermitian posi-
tive definite. See the Supplement. The Whittle approxima-
tion holds asymptotically with large T [24, 25, 12]. This
approximation has been used in the Bayesian context in
[26, 27]

Recall that conditional independencies are encoded in the
off diagonal elements of S�1

k . If time series Xi(t) and
Xj(t) are conditionally independent, then the Whittle ap-
proximation says that as T gets large the ith and jth ele-
ments of the Fourier coefficients dnk are conditional inde-
pendent across all frequencies. Thus, if G is decomposable,
Eq. (9) can be rewritten as

p(X1:N |G,S0:(T�1)) ⇡ (10)
T�1Y

k=0

Q
C2C

1
⇡N|C||SkC |N e�trPkCS�1

kC

Q
S2S

1
⇡N|S||SkS |N e�trPkSS�1

kS

where

Pk =

NX

n=1

dnkd
⇤
nk (11)

is the aggregate periodogram over the N time series at fre-
quency 2⇡k

T . For A ⇢ V , SkA and PkA are the restriction
of both matrices to the elements in A and |A| denotes the
cardinality of the set A.

()Xi ? Xj | XV \i,j

S�1(�) :
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Let X(t) = (X1(t), ..., Xp(t))
T 2 Rp for t 2 Z be a

multivariate Gaussian stationary time series such that:

E(X(t)) = µ 8t 2 Z (2)
Cov(X(t), X(t+ h)) = �(h) 8t, h 2 Z. (3)

A time series probabilistic graphical model (TGM), G =

(V,E), may be constructed by letting (i, j) /2 E denote
that the entire time series Xi(:) and Xj(:) are conditionally
independent given the remaining collection of time series
XZij where Zij = V \ {i, j}. For the Gaussian stationary
series we consider, one can show that conditional indepen-
dence holds between time series iff [8]

Cov(Xi(t), Xj(t+ h)|XZij ) = 0 8h 2 Z. (4)

The spectral density matrix of a stationary time series is
defined as the Fourier transform of the lagged covariance
matrices, �(h) = Cov(X(t), X(t+ h)):

S(�) =

1X

h=�1
�(h)e�i�h (5)

for � 2 [0, 2⇡] and S(�) 2 Cp⇥p and Hermitian positive
definite. The marginal dependencies between time series
are captured by S(�), and from Eq. (5), S(�)ij = 0 for
all � 2 [0, 2⇡] iff �(h)ij = 0 for all h 2 Z. Further-
more, conditional independence between Gaussian station-
ary time series holds iff

S(�)�1
ij = 0 8� 2 [0, 2⇡], (6)

implying that inferring zeros in the inverse spectral den-
sity matrices across frequencies equates with inferring the
TGM structure [8].

3 A Bayesian Approach

There are two standard approaches to Bayesian inference
in graphical models: (1) placing a prior that jointly spec-
ifies the graph structure and associated parameters or (2)
placing a prior on graph structures and then a prior on pa-
rameters given a graph; both rely on specifying a likelihood
model. We opt for the second approach and describe the
various components in this section. At a high level, our
methods combine existing Whittle likelihood based meth-
ods [13, 14] with the hyper Markov framework to Bayesian
graphical modeling [19, 18]. In the context of our TGMs,
we introduce a conjugate hyper complex inverse Wishart

prior on graph-constrained spectral density matrices. By
integrating out the spectral density matrices, we obtain a
marginal likelihood of the time series given the graph struc-
ture, G, allowing us to straightforwardly leverage state-of-
the-art computational methods for i.i.d. Bayesian structure
learning.

3.1 Whittle likelihood

Let X = [X(1), . . . , X(T )], with x(t) 2 Rp a realiza-
tion of a p-dimensional stationary Gaussian time series ob-
served at T time points, and X1:N = {X1, . . . ,XN} be
the collection of N independent realizations. We move to
the frequency domain by transforming each Xi using a dis-
crete Fourier transform. Let dnk 2 Cp denote the discrete
Fourier coefficient associated with the nth time series at
frequency �k =

2⇡k
T :

dnk =

1

T

T�1X

t=0

xn(t)e
�i�kt. (7)

The Whittle approximation [12] assumes the Fourier coef-
ficients are independent complex normal random variables

with mean zero and covariance given by the corresponding
spectral density matrix Sk = S(�k):

dnk ⇠ Nc(0, Sk) k = 0, . . . , T � 1, (8)

such that the likelihood of X1:N is approximated as

p(X1:N |S0:T�1) ⇡
NY

n=1

T�1Y

k=0

1

⇡p|Sk|
e�d⇤

nkS
�1
k dnk , (9)

where 1
⇡p|S|e

�z⇤S�1z is the density of a complex normal
distribution, Nc(0, S), with S 2 Cp⇥p and Hermitian posi-
tive definite. See the Supplement. The Whittle approxima-
tion holds asymptotically with large T [24, 25, 12]. This
approximation has been used in the Bayesian context in
[26, 27]

Recall that conditional independencies are encoded in the
off diagonal elements of S�1

k . If time series Xi(t) and
Xj(t) are conditionally independent, then the Whittle ap-
proximation says that as T gets large the ith and jth ele-
ments of the Fourier coefficients dnk are conditional inde-
pendent across all frequencies. Thus, if G is decomposable,
Eq. (9) can be rewritten as

p(X1:N |G,S0:(T�1)) ⇡ (10)
T�1Y

k=0

Q
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1
⇡N|C||SkC |N e�trPkCS�1
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Q
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where
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nk (11)

is the aggregate periodogram over the N time series at fre-
quency 2⇡k

T . For A ⇢ V , SkA and PkA are the restriction
of both matrices to the elements in A and |A| denotes the
cardinality of the set A.
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Figure 5: The graph used for a 16 channel iEEG electrode and corresponding traces
over 25 seconds of a seizure onset with colors indicating the inferred channel states. The
event states are shown below along with the associated innovation covariances. Vertical
dashed lines indicate the EEG transition times marked independently by an epileptologist.
Vertical and horizontal scale bars denote 1 mV and 1 second, respectively.

our event states provide an important global summary of the dynamics of
the seizure that augments the information conveyed from the channel state
sequences.

Clinical relevance. While interpreting these state sequences and covariances
from the model, it is important to keep in mind that they are ultimately
estimates of a system whose parsing even highly-trained physicians disagree
upon. Nevertheless, we believe that the event states directly describe the
activity of particular clinical interest.

In modeling the correlations between channels, the event states give in-
sight into how di↵erent physiologic areas of the brain interact over the course
of a seizure. In the clinical workup for resective brain surgery, these event
states could help define and specifically quantify the full range of ways in
which neurophysiologic regions initiate seizures and how others are recruited
over the numerous seizures of a patient. In addition, given fixed model pa-
rameters, our model can fit the channel and event state sequences of an
hour’s worth of 64-channel EEG data in a matter of minutes on a single
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over 25 seconds of a seizure onset with colors indicating the inferred channel states. The
event states are shown below along with the associated innovation covariances. Vertical
dashed lines indicate the EEG transition times marked independently by an epileptologist.
Vertical and horizontal scale bars denote 1 mV and 1 second, respectively.

our event states provide an important global summary of the dynamics of
the seizure that augments the information conveyed from the channel state
sequences.

Clinical relevance. While interpreting these state sequences and covariances
from the model, it is important to keep in mind that they are ultimately
estimates of a system whose parsing even highly-trained physicians disagree
upon. Nevertheless, we believe that the event states directly describe the
activity of particular clinical interest.

In modeling the correlations between channels, the event states give in-
sight into how di↵erent physiologic areas of the brain interact over the course
of a seizure. In the clinical workup for resective brain surgery, these event
states could help define and specifically quantify the full range of ways in
which neurophysiologic regions initiate seizures and how others are recruited
over the numerous seizures of a patient. In addition, given fixed model pa-
rameters, our model can fit the channel and event state sequences of an
hour’s worth of 64-channel EEG data in a matter of minutes on a single
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Figure 5: The graph used for a 16 channel iEEG electrode and corresponding traces
over 25 seconds of a seizure onset with colors indicating the inferred channel states. The
event states are shown below along with the associated innovation covariances. Vertical
dashed lines indicate the EEG transition times marked independently by an epileptologist.
Vertical and horizontal scale bars denote 1 mV and 1 second, respectively.

our event states provide an important global summary of the dynamics of
the seizure that augments the information conveyed from the channel state
sequences.

Clinical relevance. While interpreting these state sequences and covariances
from the model, it is important to keep in mind that they are ultimately
estimates of a system whose parsing even highly-trained physicians disagree
upon. Nevertheless, we believe that the event states directly describe the
activity of particular clinical interest.

In modeling the correlations between channels, the event states give in-
sight into how di↵erent physiologic areas of the brain interact over the course
of a seizure. In the clinical workup for resective brain surgery, these event
states could help define and specifically quantify the full range of ways in
which neurophysiologic regions initiate seizures and how others are recruited
over the numerous seizures of a patient. In addition, given fixed model pa-
rameters, our model can fit the channel and event state sequences of an
hour’s worth of 64-channel EEG data in a matter of minutes on a single
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Figure 5: The graph used for a 16 channel iEEG electrode and corresponding traces
over 25 seconds of a seizure onset with colors indicating the inferred channel states. The
event states are shown below along with the associated innovation covariances. Vertical
dashed lines indicate the EEG transition times marked independently by an epileptologist.
Vertical and horizontal scale bars denote 1 mV and 1 second, respectively.

our event states provide an important global summary of the dynamics of
the seizure that augments the information conveyed from the channel state
sequences.

Clinical relevance. While interpreting these state sequences and covariances
from the model, it is important to keep in mind that they are ultimately
estimates of a system whose parsing even highly-trained physicians disagree
upon. Nevertheless, we believe that the event states directly describe the
activity of particular clinical interest.

In modeling the correlations between channels, the event states give in-
sight into how di↵erent physiologic areas of the brain interact over the course
of a seizure. In the clinical workup for resective brain surgery, these event
states could help define and specifically quantify the full range of ways in
which neurophysiologic regions initiate seizures and how others are recruited
over the numerous seizures of a patient. In addition, given fixed model pa-
rameters, our model can fit the channel and event state sequences of an
hour’s worth of 64-channel EEG data in a matter of minutes on a single
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p(⌃|�,W,G) = h(W, �, G)1⌃2M+(G)|⌃|�(�+2p)e�trW⌃�1

p(d|G,⌃) =
1

⇡p
|⌃|�1e�trP⌃�1

p(d|G) =

Z

⌃
p(d | ⌃)p(⌃)d⌃

=

Z

⌃

1

⇡p
h(W, �, G)1⌃2M+(G)|⌃|�(�+1+2p)e�tr(W+P )⌃�1

d⌃

=

Z

⌃

1

⇡p
h(W, �, G)

1

h(W + P, � + 1, G)
p(⌃ | � + 1,W + P,G)d⌃

=
1

⇡p

h(W, �, G)

h(W + P, � + 1, G)

p(d|G) =

Z

⌃
p(d | ⌃)p(⌃)d⌃

=

Z

⌃

1

⇡p
h(W, �, G)1⌃2M+(G)|⌃|�(�+1+2p)e�tr(W+P )⌃�1

d⌃

=

Z

⌃

1

⇡p
h(W, �, G)

1

h(W + P, � + 1, G)
p(⌃ | � + 1,W + P,G)d⌃

=
1

⇡p

h(W, �, G)

h(W + P, � + 1, G)

p(d|G) =

Z

⌃
p(d | ⌃)p(⌃)d⌃

=

Z

⌃

1

⇡p
h(W, �, G)1⌃2M+(G)|⌃|�(�+1+2p)e�tr(W+P )⌃�1

d⌃

=

Z

⌃

1

⇡p
h(W, �, G)

1

h(W + P, � + 1, G)
p(⌃ | � + 1,W + P,G)d⌃

=
1

⇡p

h(W, �, G)

h(W + P, � + 1, G)

p(d|G) =

Z

⌃
p(d | ⌃)p(⌃)d⌃

=

Z

⌃

1

⇡p
h(W, �, G)1⌃2M+(G)|⌃|�(�+1+2p)e�tr(W+P )⌃�1

d⌃

=

Z

⌃

1

⇡p
h(W, �, G)

1

h(W + P, � + 1, G)
p(⌃ | � + 1,W + P,G)d⌃

=
1

⇡p

h(W, �, G)

h(W + P, � + 1, G)

REVIEW 



Marginal	
  Likelihood	
  

d | ⌃ ⇠ Nc(0,⌃)

⌃ | G ⇠ HIWc(�,W,G)

p(d|G) =

Z

⌃
p(d | ⌃)p(⌃)d⌃

=

Z

⌃

1

⇡p
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=
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1
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1
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p(⌃ | � + 1,W + P,G)d⌃

=
1

⇡p
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h(W + P, � + 1, G)
p(d | G)

•  Generically:	
  

•  For	
  .me	
  series	
  graph:	
  

•  For	
  decomposable	
  graphs	
  
–  Prior	
  decomposes	
  over	
  cliques	
  C	
  and	
  separators	
  S	
  
–  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  decomposes	
  over	
  cliques	
  C	
  and	
  separators	
  S	
  
–  Marginal	
  likelihood	
  decomposes	
  over	
  cliques	
  C	
  and	
  separators	
  S	
  

	
  

Sk | G ⇠ HIWc(�k,Wk, G)

dk | Sk ⇠ Nc(0, Sk)

p(X1:p | G) ⇡
TY

k=1

1

⇡p

h(Wk, �k, G)

h(Wk + Pk, �k + 1, G)

h(W, �, G)

REVIEW 



Global	
  Stock	
  Indices	
  

T =  1000 T =  2500 T =  5000 T =  10000

Figure 2: Example evolution of error types for the piecewise prior method as a function of series length, T 2
{1000, 2500, 5000, 10000} and N = 1, for a selected graph. Blue, red, black, and white entries indicate true positives,
false negatives, false positives, and true negatives, respectively. The graph was selected by choosing the graph out of 200
replications with median true positive rate at T = 2500.

log-returns according to rt = 100 log(pt/pt�1). We com-
pare the graphical models inferred under two settings: (i)
treating the log-returns as independent (as in [20]) and (ii)
using our methods to learn a TGM treating the log-returns
as a time series. The best graphical models learned in each
scenario are depicted in Fig. 3.

For our TGM algorithm, we computed the periodogram for
the 17-dimensional time series, resulting in 542 complex-
valued matrices of dimension 17⇥ 17. Since we only have
one realization of the time series, we smoothed the pe-
riodogram using the techniques and settings discussed in
Sec. 6.2. We then ran the FINCS algorithm for 100,000
iterations. We compare the resulting highest-probability
graph (see Fig. 3) to that learned treating the time series
as independent based on the model in [20], again using
100,000 iterations of the FINCS algorithm, but in its origi-
nally proposed form for non-temporal data.

In Figure 3, we see that in both cases we recover some geo-
graphical relationships between countries. However, the in-
dependent model returns a significantly denser graph than
that learned by our TGM approach. Since the independent
model is not taking the temporal nature of the data into
account, some edges are likely spurious due to random cor-
relations. The TGM, on the other hand, provides an inter-
pretable and intuitive structure with strong geographic con-
nections. For example, there is a distinct United Kingdom
/ eurozone cluster of Germany ‘DE’, Finland ‘FI’, Nether-
lands ‘NL’, Belgium ‘BE’, Switzerland ‘CH’, Austria ‘AT’,
Spain ‘ES’, Italy ‘IT’, Portugal ‘PT’, and the United King-
dom ‘UK’. Another distinct cluster includes the United
States ‘US’, Canada ‘CA’, Hong Kong ‘HK’ (whose cur-
rency is linked to the USD), and Australia ‘AU’ (whose
currency is correlated with the US S&P), with Japan ‘JP’
hanging off this cluster. One perhaps strange missing link
is between Ireland ‘IE’ and the UK, though the US and Ire-
land have a long history of economic connections perhaps
explaining why Ireland is included as a part of the separator
between these two distinct clusters.

Figure 3: Graphical models with the highest posterior prob-
ability for the stock index data. Left: Treating the log-
returns as independent. Right: Using our TGM algorithm.
In both cases, we see regional connections, but our TGM
algorithm results in a sparser and more interpretable graph.

8 Magnetoencephalography Data

Next we learn TGMs to capture the structure of underlying
cortical dynamics from magnetoencephalography (MEG)
data collected from ten subjects who were asked to per-
form a task while maintaining focus on an audio stream
and then again while switching focus [36]. Our goal is to
discover differences in the underlying TGMs between the
non-switching and switching attention conditions. Such
differences provide further understanding into the neural
underpinnings of auditory selective selection, an important
constituent to communication.

The data were collected for each subject performing the ex-
periment in the switching (S) and non-switching (N) atten-
tion conditions. For both S and N conditions, each subject
performed the task under an auditory condition of high (U)
and low (D) pitch, and spatial conditions of left (L) and
right (R) attending. For each of the eight possible condi-
tions, MEG recordings were collected resulting in a 150-
dimensional time series of length 992 where each dimen-
sion corresponds to a localized region of the brain. We
have between 17 and 30 trials for each subject, resulting in
about 200 replicate time series per condition.

i.i.d.	
  graph	
   .me	
  series	
  graph	
  



MEG	
  Auditory	
  Azen.on	
  Task	
  
•  Two	
  tasks:	
  (1)	
  Focus	
  azen.on,	
  (2)	
  Switch	
  azen.on	
  
•  Four	
  setups:	
  high	
  pitch,	
  low	
  pitch,	
  le�	
  sound,	
  right	
  sound	
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High pitch (U) Low pitch (D) Left (L) Right (R)

Figure 4: Learned TGMs for different MEG conditions. Each node on the periphery represents a brain region with loca-
tion indicating anatomical location. Top: Intersection of learned edges between switching and non-switching conditions.
Bottom: Black edges indicating those in the non-switching condition but not in the switching and red vice versa.

Often with MEG data, many of the dimensions are domi-
nated by noise due to limited brain activity in that region.
We reduced the number of brain regions we studied from
150 to 50 by only considering those with largest variance.
In particular, for each trial we mean-centered all of the
time-series and computed the variance and retained the top
50 most volatile regions.

We computed the periodogram for each trial and averaged
across trials within each condition, resulting in eight peri-
odograms. We ran our spectral TGS version of the FINCS
algorithm on these periodograms for 100,000 iterations
with fractional prior parameter 4/Nc, where Nc is the num-
ber of trials for condition c 2 {S, N} ⇥ {U, D, L, R}. We
also ran the algorithm for 1.7 million iterations and saw no
difference in the resulting graphs.

In Figure 4, we depict the intersections and differences be-
tween the learned graphs for each experimental condition.
We see in the top row that there are a lot of shared connec-
tions between the switching and non-switching conditions
for each auditory condition. In the bottom row, the differ-
ences between the switching and non-switching conditions
are depicted where red edges are those in the switching
condition but not the non-switching, and black edges are
the reverse. The difference plots show that there seems to
be substantial “rewiring” for many of the conditions with
many edges connecting frontal to back regions. Interest-
ingly, we again see consistencies in these rewirings across
conditions. Such observations provide guidance for devel-
oping experiments and methods to discern the underlying
mechanisms that give rise to these different structures.

9 Discussion

We introduced a Bayesian approach to graphical model
structure learning for time series. In particular, we propose
a prior—the hyper complex inverse Wishart distribution—
for the spectral density matrices in a Whittle likelihood ap-
proximation. For decomposable graphs, this prior is conju-
gate and leads to a closed-form expression of the marginal
likelihood of the time series given the graph, marginalizing
the spectral density matrices across frequencies. Being able
to integrate out this large collection of complex matrices—
one for each time point—is critical to developing a prac-
tical and scalable inference algorithm. For this, exploiting
the fact that our marginal likelihood is analogous to that for
i.i.d. Gaussian graphical models [19] but with a product
over the number of Fourier frequencies, allows us to de-
ploy straightforward modifications to existing MCMC and
stochastic search algorithms. Our simulations show that
when many time series are observed, our method recovers
the correct graph. When a single time series is observed,
we proposed a method to increase robustness of our graph
estimation using a piecewise constant prior. Our results on
the stock and MEG datasets demonstrated our ability to dis-
cover intuitive and interpretable structure in these datasets,
importantly leveraging the temporal dependencies.

Extensions to non-decomposable graphs are possible us-
ing the i.i.d. graph approaches in both [30] and [22].
A Laplace approximation to the marginal likelihood for
non-decomposable graphs is proposed in [22], which
we could similarly utilize to approximate the frequency-
specific marginal at each term in Equation (17). Paral-
lelizing the Laplace approximation computation across fre-
quencies would lead to a scalable method for inference in
non-decomposable time series graphs.



Graphs	
  of	
  Time	
  Series	
  Summary	
  

•  Goal:	
  Infer	
  condi.onal	
  independencies	
  between	
  .me	
  series	
  
•  Efficient	
  representa.on	
  via	
  spectral	
  density	
  matrix	
  

–  Condi.onal	
  independencies	
  encoded	
  by	
  zeros	
  in	
  inverse	
  spectral	
  density	
  matrices	
  

•  Whizle	
  likelihood	
  approxima.on	
  defines	
  tractable	
  likelihood	
  of	
  data	
  
(Fourier	
  coefficients)	
  given	
  spectral	
  density	
  matrices	
  

•  Defined	
  hyper	
  complex	
  inverse	
  Wishart	
  prior	
  
–  Conjugate	
  prior	
  on	
  graph-­‐constrained	
  spectral	
  density	
  matrices	
  
–  Enables	
  closed-­‐form	
  marginal	
  likelihood	
  of	
  data	
  given	
  graph	
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Gaussian	
  
Graphical	
  

Model	
  

Zeros	
  =	
  no	
  edge	
  in	
  graph,	
  
Cond.	
  ind.	
  between	
  nodes	
  

sparse	
  



time t 

yt

Modeling	
  challenges:	
  
•  Large	
  p	
  –	
  Many	
  dimensions/series	
  
•  Irregular	
  grid	
  of	
  observa.ons	
  
•  Missing	
  values	
  
•  Heterogeneous	
  data	
  sources	
  
•  ...	
  	
  

…	
  

Computa:onal	
  challenges:	
  
•  Large	
  n	
  –	
  Long	
  .me	
  series	
  
•  Streaming	
  data	
  –	
  	
  

Con.nuum	
  of	
  observa.ons	
  

Goals:	
  
•  Evolu.on	
  –	
  	
  Dynamics	
  across	
  .me	
  
•  Rela.onal	
  structure	
  –	
  Dependencies	
  between	
  series	
  



Minibatch-­‐Based	
  Algorithms	
  

•  Many	
  ML/stat	
  algorithms	
  (e.g.,	
  gradient	
  descent,	
  Gibbs	
  
sampling,…)	
  iterate	
  between	
  
–  opera.ons	
  involving	
  all	
  data	
  
–  upda.ng	
  parameters	
  

•  Costly	
  for	
  large	
  data	
  /	
  infeasible	
  for	
  streaming	
  data	
  

•  Common	
  approach	
  for	
  scalability:	
  	
  
–  subsample	
  data	
  à	
  noisy	
  opera.on	
  
–  noisy	
  update	
  of	
  parameters	
  

Stochastic variational inference

SUBSAMPLE 
DATA

INFER 
LOCAL 

STRUCTURE

UPDATE 
GLOBAL 

STRUCTURE

1 A generic class of models

2 Classical mean-field variational inference

3 Stochastic variational inference

4 Extensions and open issues

(Hoffman et al., 2013)

Not	
  appropriate	
  for	
  	
  
dependent	
  data	
  



Hidden	
  Markov	
  Models	
  (HMMs)	
  
discrete state sequence 

observations 

transition probabilities, 
observation parameters 



p(y,x, ✓) = p(✓)⇡(x1)
TY

t=2

p(xt | xt�1, ✓A)p(yt | xt, ✓�)

• Why	
  not	
  just	
  subsample	
  observa.ons	
  independently?	
  

• Cannot	
  learn	
  transi.on	
  structure	
  

Minibatches	
  for	
  HMMs	
  



• How	
  about	
  sampling	
  subchain?	
  

• Do	
  we	
  just	
  sever	
  dependencies	
  between	
  subchains	
  and	
  
analyze	
  separately?	
  

Minibatches	
  for	
  HMMs	
  



Large	
  Collec.ons	
  of	
  Short	
  Chains	
  

...

Johnson	
  and	
  Willsky,	
  	
  
ICML	
  2014	
  

Hughes	
  et	
  al.,	
  	
  
preprint	
  



One	
  Long	
  Chain	
  



Batch	
  Learning	
  for	
  HMMs	
  

•  Use	
  current	
  	
  	
  	
  	
  to	
  form	
  local	
  state	
  beliefs:	
  
–  Propagate	
  info	
  forwards	
  to	
  form	
   p(y1, . . . , yt, xt)

✓
↵t =

↵t+1,k = p(yt+1 | xt+1 = k)
KX

j=1

↵t,jp(xt+1 = k | xt = j)



�t = p(yt+1, . . . , yT | xt)
•  Use	
  current	
  	
  	
  	
  	
  to	
  form	
  local	
  state	
  beliefs:	
  

–  Propagate	
  info	
  backwards	
  

Batch	
  Learning	
  for	
  HMMs	
  

✓
�t =

�t,k =
KX

j=1

p(yt+1 | xt+1 = j)p(xt+1 = j | xt = k)�t+1,k



Batch	
  Learning	
  for	
  HMMs	
  

•  Combine	
  to	
  form	
  smoothed	
  local	
  state	
  belief:	
  

p(xt | y1, . . . , yT )



•  Given	
  local	
  beliefs,	
  update	
  global	
  parameter	
  

Batch	
  Learning	
  for	
  HMMs	
  

Issue:	
  Cost	
  is	
  O(K2T)	
  per	
  global	
  update!	
  
	
  

Costly	
  when	
  using	
  uninformed	
  ini.aliza.ons	
  	
  
or	
  observa.ons	
  are	
  redundant	
  

T	
  =	
  250	
  million	
  



• Form	
  local	
  beliefs	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   	
  	
  

Minibatch	
  Inference	
  for	
  HMMs	
  
q(xt)q(xt�1) q(xt+1)info	
   info	
  

à	
  perform	
  global	
  update	
  

Local	
  forward	
  message	
   Local	
  backward	
  message	
  



Storage	
  Limita.ons	
  
•  Can	
  local	
  message	
  passing	
  harness	
  previous	
  beliefs	
  on	
  
nodes	
  outside	
  the	
  subchain?	
  

•  T=250	
  M	
  obs	
  x	
  K=25	
  latent	
  states	
  	
  
•  Need	
  constant	
  space	
  algorithm	
  	
  
à	
  can’t	
  remember	
  past	
  beliefs	
  

q(xt)q(xt�1) q(xt+1)

From	
  previous	
  
examinaJon	
  of	
  
other	
  subchains	
  

	
  

q

0(xt+2)q

0(xt�2)

NO!	
  

25	
  GB	
  storage	
  



Harnessing	
  Memory	
  Decay	
  

Do we expect     to influence                  ? 

True beliefs 

Approximate 
beliefs 

Leverage memory decay 



Buffering	
  Subchains	
  

Check that subchain marginals are approximated well: 



Buffering	
  Subchains	
  

? 



Buffering	
  Subchains	
  

? 



Buffering	
  Subchains	
  

? 

	
  
–	
  Only	
  need	
  limited	
  buffer	
  

	
  
	
  

–	
  Complexity	
  is	
  now	
  O(K2Lbuffer)	
  per	
  itera:on	
  
	
  

Large	
  savings	
  for	
  L+buffer	
  <<	
  T	
  
	
  

–	
  Similar	
  idea	
  as	
  Splash	
  BP	
  (parallelizing	
  BP)	
  
[Gonzalez,	
  et.	
  al.	
  2009]	
  

	
  

But,	
  uncertain	
  parameter	
  se]ng	
  here	
  
	
  
	
  



Buffering	
  for	
  Learning	
  

q(✓)



Buffering	
  in	
  Prac.ce	
  
•  We	
  do	
  not	
  actually	
  know	
  the	
  true	
  marginals	
  
•  Monitor	
  changes	
  in	
  approximate	
  subchain	
  beliefs:	
  

•  Chain	
  structuring	
  implies	
  that	
  only	
  endpoints	
  must	
  be	
  
checked	
  
	
  
	
  
	
  
	
  

•  During	
  buffer	
  expansions,	
  forward-­‐backward	
  passes	
  
can	
  reuse	
  computa.ons	
  of	
  previous	
  buffer	
  



Varia.onal	
  Bayes	
  (VB)	
  

•  Approximate	
  posterior	
  with	
  varia.onal	
  distribu.on	
  

	
  

•  Minimize	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  maximize	
  “ELBO”:	
  

•  Common	
  to	
  make	
  mean-­‐field	
  assump.on:	
  

latent variables 

parameters 

observations 



Varia.onal	
  Methods	
  Cartoon	
  
•  Cartoon	
  of	
  goal:	
  

•  Varia.onal	
  distribu.on	
  parameterized	
  by	
  variaJonal	
  free	
  parameters	
  
•  ObjecJve:	
  opJmize	
  over	
  free	
  parameters	
  to	
  find	
  “closest”	
  distribuJon	
  in	
  variaJonal	
  

family	
  



L = E

q(✓) [ln p(✓)]� E

q(✓) [ln q(✓)]

+
TX

i=1

E

q(xi) [ln p(yi, xi

|✓)]� E

q(xi) [ln q(xi

)]

VB	
  Example:	
  Mixture	
  of	
  Gaussians	
  

… 

Maximize ELBO with coordinate-ascent 

cluster  
labels 

obs. 

cluster params 

… 

@L
@q(x)

= 0
@L

@q(✓)
= 0



•  Batch	
  VB	
  global	
  step	
  requires	
  touching	
  all	
  of	
  the	
  data	
  

•  SVI	
  uses	
  stochas.c	
  gradient	
  descent	
  (SGD)	
  for	
  global	
  
update	
  [Hoffman,	
  et.	
  al.	
  2013]	
  
–  Sample	
  observa.on:	
  	
  
–  Follow	
  noisy,	
  unbiased	
  es.mate	
  of	
  natural	
  gradient	
  of	
  	
  

Stochas.c	
  Varia.onal	
  Inference	
  (SVI)	
  

L = E

q(✓) [ln p(✓)]� E

q(✓) [ln q(✓)]

+
TX

i=1

E

q(xi) [ln p(yi, xi

|✓)]� E

q(xi) [ln q(xi

)]

w(t) = w(t�1) + ⇢tr̃wLS ES [r̃wLS ] = r̃wL
q(✓)Varia.onal	
  parameters	
  defining	
  	
  



SVI	
  Example:	
  Mixture	
  of	
  Gaussians	
  
Maximize ELBO with stochastic gradient descent 

… cluster  
labels 

obs. 

cluster params 

… 

Ls = E

q(✓) [ln p(✓)]� E

q(✓) [ln q(✓)]

+ T ·
�
E

q(xs) [ln p(ys, xs

|✓)]� E

q(xs) [ln q(xs

)]
�

w(t) = w(t�1) + ⇢tr̃wLS@Ls

@q(xs)
= 0

Hyperparams	
  for	
  q(θ)	
  



Structured	
  Mean	
  Field	
  Approxima.on	
  

•  Use	
  structured	
  mean-­‐field	
  approxima.on:	
  
p(x1, x2, . . . , xT , ✓ | y1, y2 . . . , yT ) ⇡ q(x1, x2, . . . , xT )q(✓)



SVI	
  for	
  HMMs	
  

q(✓)
w(t) = w(t�1) + ⇢tr̃wLSStochas.c	
  natural	
  

gradient	
  step:	
  
q(x)

Func.on	
  of	
  

	
  
	
  

(Approx)	
  coordinate	
  
ascent	
  step:	
  

↵t+1,k = p(yt+1 | xt+1 = k)
KX

j=1

↵t,jAj,k

�t,k =
KX

j=1

p(yt+1 | xt+1 = j)Ak,j�t+1,k

Func.on	
  of	
  
q(✓)

Foti, Xu, Laird, Fox, NIPS 2014 



Differences	
  from	
  i.i.d.	
  Case	
  

•  Minibatches	
  are	
  correlated	
  
– Data	
  in	
  one	
  is	
  not	
  independent	
  of	
  data	
  in	
  another	
  

•  Minibatch	
  marginals	
  ≠	
  batch	
  marginals	
  
–  Impact	
  of	
  latent	
  chain	
  
– Mi.gated	
  by	
  buffering	
  



Correlated	
  Minibatches	
  
•  Pretend	
  we	
  have	
  exact	
  local	
  distribu.on	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

•  Typical	
  arguments	
  for	
  convergence	
  to	
  local	
  mode	
  rely	
  on	
  
unbiased	
  +	
  independent	
  noisy	
  gradients	
  [c.f.,	
  Bozou	
  1998,	
  Hoffman	
  2013]	
  

–  Our	
  SGs	
  are	
  dependent	
  since	
  subchains	
  are	
  correlated	
  
•  Using	
  [Polyak	
  and	
  Tsypkin	
  1973],	
  unbiasedness	
  suffices	
  for	
  
convergence	
  of	
  	
  

As	
  if	
  we	
  had	
  run	
  batch	
  
forward-­‐backward	
  

	
  

w(t) = w(t�1) + ⇢tr̃wLS



Global	
  Update	
  –	
  Unbiasedness	
  
•  In	
  mixture	
  model	
  case	
  with	
  uniform	
  sampling	
  of	
  
observa:on	
  s,	
  unbiasedness	
  was	
  preserved	
  via:	
  

•  In	
  HMM	
  case,	
  our	
  ELBO	
  data	
  term	
  is	
  

	
  
–  Does	
  not	
  decompose	
  over	
  individual	
  
–  Need	
  to	
  scale	
  transi.on	
  and	
  emission	
  terms	
  separately	
  

•  Straigh�orward	
  for	
  uniform	
  sampling	
  of	
  subchains	
  S	
  of	
  
length	
  L,	
  assuming	
  chain	
  is	
  observed	
  at	
  staJonarity	
  

Ls = E

q(✓) [ln p(✓)]� E

q(✓) [ln q(✓)]

+ T ·
�
E

q(xs) [ln p(ys, xs

|✓)]� E

q(xs) [ln q(xs

)]
�

ln p(y,x|✓) = ln⇡(x1) +
TX

t=2

lnA
xt�1,xt +

TX

i=1

ln p(y
t

|x
t

)

xt



Effect	
  of	
  Approximated	
  Marginals	
  

For	
  	
  	
  	
  	
  sufficiently	
  small	
  (sufficiently	
  long	
  buffer)	
  
–  Approximate	
  marginals	
  “close	
  enough”	
  to	
  true	
  marginals	
  
–  Noisy	
  gradient	
  in	
  same	
  half-­‐plane	
  as	
  true	
  gradient	
  

	
  
	
  

itera.ve	
  algorithm	
  converges	
  to	
  local	
  mode	
  of	
  ELBO	
  

Foti, Xu, Laird, Fox, NIPS 2014 

SVI-­‐HMM	
  iterates:	
  	
  
	
  buffer	
  minibatches	
  to	
  approx	
  q(x)	
  	
  	
  	
  	
  	
  	
  	
  update	
  q(Θ)	
  

coordinate	
  gradient	
  step	
   stochasJc	
  
(natural)	
  gradient	
  step	
  

✏



Experiments	
  

•  Synthe.c	
  data:	
  
– Diagonally	
  Dominant:	
  	
  Long	
  memory	
  chain	
  with	
  
large	
  self-­‐transi.ons	
  

– Reversed	
  Cycles:	
  	
  Two	
  overlapping	
  cycles	
  with	
  
opposite	
  direc.ons	
  

•  Human	
  chroma:n	
  applica:on	
  



Minibatch	
  consists	
  of	
  M	
  subchains	
  each	
  of	
  length	
  L	
  

Minibatch	
  of	
  Subchains	
  



Diagonally	
  Dominant	
  
•  8	
  latent	
  states	
  
•  2d	
  Gaussian	
  
emissions	
  

•  High	
  auto-­‐correlaJon	
  	
  
è	
  few	
  long	
  subchains	
  	
  
	
  	
  	
  	
  	
  converge	
  slowly	
  
	
  	
  	
  	
  	
  (small	
  M,	
  large	
  L)	
  

•  Emissions	
  idenJfiable	
  
	
  è	
  many	
  small	
  subchains	
  	
  
	
  	
  	
  	
  	
  	
  	
  perform	
  bezer	
  
	
  	
  	
  	
  	
  	
  	
  (large	
  M,	
  small	
  L)	
  	
  
	
  



Reversed	
  Cycles	
  
• 8	
  latent	
  states	
  
• 2d	
  Gaussian	
  emissions	
  

•  Emission	
  distribuJons	
  overlap	
  

•  DirecJon	
  of	
  cycles	
  important	
  to	
  
iden.fy	
  states	
  

§  Singleton	
  observa.ons	
  insufficient	
  
§  Without	
  buffering,	
  need	
  L	
  >	
  3	
  to	
  

learn	
  effec.vely	
  

•  Longer	
  subchains	
  more	
  likely	
  to	
  
capture	
  structure	
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Figure 1: (a) Transition matrix error varying L with L ⇥ M fixed. (b) Effect of incorporating
GrowBuf. Batch results denoted by horizontal red line in both figures.

We were provided with 250 million observations consisting of twelve assays carried out in the
chronic myeloid leukemia cell line K562. We analyzed the data using SVIHMM on an HMM with
25 states and 12 dimensional Gaussian emissions. We compare our performance to the correspond-
ing segmentation learned by an expectation maximization (EM) algorithm applied to a more flexible
dynamic Bayesian network model (DBN) [27]. Due to the size of the dataset, the analysis of [27]
requires breaking the chain into several blocks, severing long range dependencies.

We assess performance by comparing the false discovery rate (FDR) of predicting active promoter
elements in the sequence. The lowest (best) FDR achieved with SVIHMM over 20 random restarts
trials was .999026 using bL/2c = 2000,M = 50, = .51, comparable and slightly lower than
the .999038 FDR obtained using DBN-EM on the severed data [27]. We emphasize that even when
restricted to a simpler HMM model, learning on the full data via SVIHMM attains similar results to
that of [27] with significant gains in efficiency. In particular, our SVIHMM runs require only under
an hour for a fixed 100 iterations, the maximum iteration limit specified in the DBN-EM approach.
In contrast, even with a parallelized implementation over the broken chain, the DBN-EM algorithm
can take days. In conclusion, SVIHMM enables scaling to the entire dataset, allowing for a more
principled approach by utilizing the data jointly.

5 Discussion

We have presented stochastic variational inference for HMMs, extending such algorithms from in-
dependent data settings to handle time dependence. We elucidated the complications that arise when
sub-sampling dependent observations and proposed a scheme to mitigate the error introduced from
breaking dependencies. Our approach provides an adaptive technique with provable guarantees for
convergence to a local mode. Further extensions of the algorithm in the HMM setting include adap-
tively selecting the length of meta-observations and parallelizing the local step when the number of
meta-observations is large. Importantly, these ideas generalize to other settings and can be applied to
Bayesian nonparametric time series models, general state space models, and other graph structures
with spatial dependencies.
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Figure 1: (a) Transition matrix error varying L with L ⇥ M fixed. (b) Effect of incorporating
GrowBuf. Batch results denoted by horizontal red line in both figures.

We were provided with 250 million observations consisting of twelve assays carried out in the
chronic myeloid leukemia cell line K562. We analyzed the data using SVIHMM on an HMM with
25 states and 12 dimensional Gaussian emissions. We compare our performance to the correspond-
ing segmentation learned by an expectation maximization (EM) algorithm applied to a more flexible
dynamic Bayesian network model (DBN) [27]. Due to the size of the dataset, the analysis of [27]
requires breaking the chain into several blocks, severing long range dependencies.

We assess performance by comparing the false discovery rate (FDR) of predicting active promoter
elements in the sequence. The lowest (best) FDR achieved with SVIHMM over 20 random restarts
trials was .999026 using bL/2c = 2000,M = 50, = .51, comparable and slightly lower than
the .999038 FDR obtained using DBN-EM on the severed data [27]. We emphasize that even when
restricted to a simpler HMM model, learning on the full data via SVIHMM attains similar results to
that of [27] with significant gains in efficiency. In particular, our SVIHMM runs require only under
an hour for a fixed 100 iterations, the maximum iteration limit specified in the DBN-EM approach.
In contrast, even with a parallelized implementation over the broken chain, the DBN-EM algorithm
can take days. In conclusion, SVIHMM enables scaling to the entire dataset, allowing for a more
principled approach by utilizing the data jointly.

5 Discussion

We have presented stochastic variational inference for HMMs, extending such algorithms from in-
dependent data settings to handle time dependence. We elucidated the complications that arise when
sub-sampling dependent observations and proposed a scheme to mitigate the error introduced from
breaking dependencies. Our approach provides an adaptive technique with provable guarantees for
convergence to a local mode. Further extensions of the algorithm in the HMM setting include adap-
tively selecting the length of meta-observations and parallelizing the local step when the number of
meta-observations is large. Importantly, these ideas generalize to other settings and can be applied to
Bayesian nonparametric time series models, general state space models, and other graph structures
with spatial dependencies.
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Figure 1: (a) Transition matrix error varying L with L ⇥ M fixed. (b) Effect of incorporating
GrowBuf. Batch results denoted by horizontal red line in both figures.

We were provided with 250 million observations consisting of twelve assays carried out in the
chronic myeloid leukemia cell line K562. We analyzed the data using SVIHMM on an HMM with
25 states and 12 dimensional Gaussian emissions. We compare our performance to the correspond-
ing segmentation learned by an expectation maximization (EM) algorithm applied to a more flexible
dynamic Bayesian network model (DBN) [27]. Due to the size of the dataset, the analysis of [27]
requires breaking the chain into several blocks, severing long range dependencies.

We assess performance by comparing the false discovery rate (FDR) of predicting active promoter
elements in the sequence. The lowest (best) FDR achieved with SVIHMM over 20 random restarts
trials was .999026 using bL/2c = 2000,M = 50, = .51, comparable and slightly lower than
the .999038 FDR obtained using DBN-EM on the severed data [27]. We emphasize that even when
restricted to a simpler HMM model, learning on the full data via SVIHMM attains similar results to
that of [27] with significant gains in efficiency. In particular, our SVIHMM runs require only under
an hour for a fixed 100 iterations, the maximum iteration limit specified in the DBN-EM approach.
In contrast, even with a parallelized implementation over the broken chain, the DBN-EM algorithm
can take days. In conclusion, SVIHMM enables scaling to the entire dataset, allowing for a more
principled approach by utilizing the data jointly.

5 Discussion

We have presented stochastic variational inference for HMMs, extending such algorithms from in-
dependent data settings to handle time dependence. We elucidated the complications that arise when
sub-sampling dependent observations and proposed a scheme to mitigate the error introduced from
breaking dependencies. Our approach provides an adaptive technique with provable guarantees for
convergence to a local mode. Further extensions of the algorithm in the HMM setting include adap-
tively selecting the length of meta-observations and parallelizing the local step when the number of
meta-observations is large. Importantly, these ideas generalize to other settings and can be applied to
Bayesian nonparametric time series models, general state space models, and other graph structures
with spatial dependencies.
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w/	
  buffer	
  

Subchain	
  Buffering	
  
L=3 L=7 L=21 

w/o	
  buffer	
  

batch	
  
VB	
  



•  Chromosome	
  data	
  
from	
  ENCODE	
  project	
  

•  12	
  dimensional	
  
observa.ons	
  

•  Goal:	
  	
  segment	
  
sequences	
  

•  T	
  =	
  250	
  million	
  

•  [Hoffman	
  et.	
  al.	
  2012]	
  used	
  dynamic	
  Bayesian	
  network	
  	
  
§  Broke	
  sequence	
  into	
  pieces	
  to	
  perform	
  inference	
  via	
  EM	
  
§  Severs	
  long-­‐range	
  dependencies	
  

• Adap.ve	
  subsampling	
  on	
  HMM	
  (simpler	
  model)	
  
	
  	
  	
  	
  Run.me	
  =	
  days	
  

Human	
  Chroma.n	
  Segmenta.on	
  

Run.me	
  =	
  under	
  1	
  hr	
  

•  Lower	
  FDR	
  of	
  promoters	
  

•  Simpler	
  model	
  
•  Uses	
  all	
  of	
  the	
  data	
  



BNP	
  and	
  Other	
  Extensions	
  

•  Presented	
  finite	
  HMM	
  case,	
  	
  
but	
  ideas	
  could	
  generalize	
  to:	
  
–  Nonparametric	
  HMMs	
  

•  Trunca.on	
  plus	
  split-­‐merge	
  to	
  
change	
  the	
  number	
  of	
  states	
  	
  
[Bryant	
  &	
  Sudderth,	
  2012]	
  

–  DBN	
  and	
  MRF	
  models	
  

•  Applica.ons	
  to:	
  	
  
–  Large	
  spa.al	
  fields	
  
–  Spa.o-­‐temporal	
  data,	
  etc.	
  



Overall	
  Summary	
  
•  Scalable	
  Bayesian	
  dynamic	
  modeling:	
  

–  Low-­‐dimensional	
  embeddings	
  with	
  applica.on	
  to	
  MEG	
  word	
  
classifica.on	
  

–  Clusters	
  for	
  forming	
  high-­‐resolu.on	
  housing	
  value	
  index	
  
–  Graphs	
  of	
  Jme	
  series	
  with	
  applica.on	
  to	
  stocks	
  +	
  func.onal	
  
connec.vity	
  

•  Scalable	
  Bayesian	
  computa.ons	
  in	
  dynamic	
  models	
  
–  Harness	
  memory	
  decay	
  to	
  use	
  subset-­‐based	
  methods	
  in	
  HMMs	
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Figure 4: Learned TGMs for different MEG conditions. Each node on the periphery represents a brain region with loca-
tion indicating anatomical location. Top: Intersection of learned edges between switching and non-switching conditions.
Bottom: Black edges indicating those in the non-switching condition but not in the switching and red vice versa.

Often with MEG data, many of the dimensions are domi-
nated by noise due to limited brain activity in that region.
We reduced the number of brain regions we studied from
150 to 50 by only considering those with largest variance.
In particular, for each trial we mean-centered all of the
time-series and computed the variance and retained the top
50 most volatile regions.

We computed the periodogram for each trial and averaged
across trials within each condition, resulting in eight peri-
odograms. We ran our spectral TGS version of the FINCS
algorithm on these periodograms for 100,000 iterations
with fractional prior parameter 4/Nc, where Nc is the num-
ber of trials for condition c 2 {S, N} ⇥ {U, D, L, R}. We
also ran the algorithm for 1.7 million iterations and saw no
difference in the resulting graphs.

In Figure 4, we depict the intersections and differences be-
tween the learned graphs for each experimental condition.
We see in the top row that there are a lot of shared connec-
tions between the switching and non-switching conditions
for each auditory condition. In the bottom row, the differ-
ences between the switching and non-switching conditions
are depicted where red edges are those in the switching
condition but not the non-switching, and black edges are
the reverse. The difference plots show that there seems to
be substantial “rewiring” for many of the conditions with
many edges connecting frontal to back regions. Interest-
ingly, we again see consistencies in these rewirings across
conditions. Such observations provide guidance for devel-
oping experiments and methods to discern the underlying
mechanisms that give rise to these different structures.

9 Discussion

We introduced a Bayesian approach to graphical model
structure learning for time series. In particular, we propose
a prior—the hyper complex inverse Wishart distribution—
for the spectral density matrices in a Whittle likelihood ap-
proximation. For decomposable graphs, this prior is conju-
gate and leads to a closed-form expression of the marginal
likelihood of the time series given the graph, marginalizing
the spectral density matrices across frequencies. Being able
to integrate out this large collection of complex matrices—
one for each time point—is critical to developing a prac-
tical and scalable inference algorithm. For this, exploiting
the fact that our marginal likelihood is analogous to that for
i.i.d. Gaussian graphical models [19] but with a product
over the number of Fourier frequencies, allows us to de-
ploy straightforward modifications to existing MCMC and
stochastic search algorithms. Our simulations show that
when many time series are observed, our method recovers
the correct graph. When a single time series is observed,
we proposed a method to increase robustness of our graph
estimation using a piecewise constant prior. Our results on
the stock and MEG datasets demonstrated our ability to dis-
cover intuitive and interpretable structure in these datasets,
importantly leveraging the temporal dependencies.

Extensions to non-decomposable graphs are possible us-
ing the i.i.d. graph approaches in both [30] and [22].
A Laplace approximation to the marginal likelihood for
non-decomposable graphs is proposed in [22], which
we could similarly utilize to approximate the frequency-
specific marginal at each term in Equation (17). Paral-
lelizing the Laplace approximation computation across fre-
quencies would lead to a scalable method for inference in
non-decomposable time series graphs.


