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Examples of structured pradiction



Seqguence labeling

X = the monster ate the sandwich
y = Dt NN Vb Dt NN
X = Yesterday I traveled to Lille
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Natural language parsing

[root] OUTPUT

~object

| e n-mod

n-mod subject n-mod .\ p-mod n-mod

NLP algorithms use a kitchen sink of features
INPUT
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Machine translation

G O« }glf: Translate

This text has been autormatically translated from Arabic:
Moscow stressed tone against Iran on its
nuclear program. He called Russian Foreign
Hinister Tehran to take concrete steps
restore confidence with the international
community, to cooperate fully with the IAEL.

=

Translate text

csaaidl Legelsys glay gl ys] ad Lgingd oSwpe Saad
=gl 3 L2l J I. 0l g Y 1 J,__..__-..L‘. L | iy Leag
galridly Jdeod| zaxdl zo L8] bolmiwd Logals
gl b Sl Jolflly odoydldl dIlsedl za Jals]

L;.ll._-l_:_;:"_-ll_l I -;I I_'_:_'_I_";_ﬂ_rl i:ll."-"i"'l'.'l_l I .4 I_;_Illé._._q lj l'_|||. _|| I _I_s:_l;n._q I

£ it :
i ="'. [ _|_|_|_| | I_ﬂ'-_-il_|_|::l |;_I—"':| | |_|_._|_|_ﬂ:". _a., L J-;l__|_|:_|__| n'l_:l_'— I—':'—I'-. |

from| Arabicto English EETA, Translate I




Image segmentation
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Protein secondary structure prediction




Standard solution methods

| .Each prediction is independent
2.Shared parameters via “multitask learning”

3.Assume tractable graphical model; optimize
4.Hand-crafted
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Predicting independently

* h :features of nearby voxels = class "l =
* Ensure output is coherent at test time

v Very simple to implement, often efficient

» Cannot capture correlations between predictions
+ Cannot optimize a joint loss
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Prediction with muiltitask bias

* h :features — (hidden representation) “=f,.
— yes/no

* Share (hidden representation) across all classes

v All advantages of predicting independently
v May implicitly capture correlations

+ Learning may be hard (... or not?)
« Still not optimizing a joint loss
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Optimizing graphical models

* Encode output as a graphical model

ﬁpfiﬁi WF? ﬁi;
J :#a

* Learn parameters of that model to maximize:
* p(true labels | input) or
* cvx u.b.on loss(true labels, predicted labels)

v Guaranteed consistent outputs
v Can capture correlations explicitly

» Assumed independence assumptions may not hold

» Computationally intractable with too many “edges”
or non-decomposable loss function
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Back to the original problem...
* How to optimize a discrete, joint loss?
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Back to the original problem...

* How to optimize a discrete, joint loss!?

* Input: Xe X

* Truth: y € Y(Xx)
* Outputs:  Y(x)

* Predicted: y € Y(x)
* Loss: lossl(y, V)
* Data: (x,y) ~ D




Challenges

* Output space is too big to exhaustively search:

* Typically exponential in size of input
* implies y must decompose in some way

(often: X has many pieces to label)
* Loss function has combinatorial structure:

- Intersection over union - Edit Distance
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Decomposition of label

* Decomposition of y often implies an ordering

1 eon]can] s Jcan

e But sometimes not so obvious....

(we'll come
back to this
case later..)
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Search spaces

* When y decomposes in an ordered manner,
a sequential decision making process emerges

S decision

action
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Search spaces

* When y decomposes in an ordered manner,
a sequential decision making process emerges

Encodes an output

Ta y =yle)
from which
loss(y, )
p— can be computed

(at training time)

end

mmwm?



Policies

* A policy maps observations to actions




Versus reinforcement learning

Goal:
min_ E [ loss(1) ]

In learning to search (L2S):

* Labeled data at training time
=> can construct good/optimal policies

* Can “reset” and try the same example many times



Labeled data — Reference policy

Given partial traj. a;,as,...,a¢.1 and true label y

The minimum achievable loss is:

min loss(y, y(a))

(ai,a¢,1s..-)

The optimal action is the corresponding a;

The optimal policy is the policy that always selects
the optimal action



Ingredients for learning to search
* Training data: (Xn, Vo) ~ D
* Output space: Y (x)

e Loss function: loss(y, y)

* Decomposition: {0}, {a}, ...

* Reference policy: 1rei(o, y)



An analogy from playing Mario

From Mario Al competition 2009

Output:
Jump in {0,1}
Right in {0,1}
Left in {0,1}

- Speed in {0,1}

High level goal:
Watch an expert play and
learn to mimic her behavior



Training (expert)
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Warm-up: Supervised learning

| .Collect trajectories from expert Tref
2.Store as dataset D = { (o, mf(0,y) ) | 0 ~ mef }
3.Train classifier M on D

* Let m play the game!




Test-time execution (sup. learning)
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What's the (biggest) failure mode?

The expert never gets stuck next to pipes

— Classifier doesn't learn to recover!




Warm-up II. Imitation learning

|. Collect trajectories from expert mref IfN=TlogT,

2. Dataset Do = { (o, m(0y) ) | o ~ ' } [Ngfer I Nes JNa g Yg

3. Train M| on Dy for some n

4. Collect new trajectories from m,

~ But let the expert steer!
5.Dataset D| ={ (o,mr**f(0,y) ) | 0o ~ T} }

6. Train M, on Dg U D,

* In general:
* Dn={(0o,m(0y)) |0~}

* Train Mh4+; on U<, D;



lest-time execution (DAgger)
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What's the biggest failure mode?

Classifier only sees right versus not-right
* No notion of better or worse

* No partial credit

* Must have a single target answer




Aside: cost-sensitive classification
Classifier: h : x — [K]

Multiclass classification
* Data: (x,y) € X x [K]
* Goal:miny Pr( h(x) #y)

Cost-sensitive classification
* Data: (x,c) € X x [0,00)K

* Goal: miny, Ex g [ Chyg |




Learning to search: AggraVaTe

|.Let learned po

2.For each possi

icy 1T drive for t timesteps to obs. 0

vle action a:

* Take action a, and let expert 1¢! drive the rest

* Record the overall loss, C,

3.Update 11 based on example:
(0, {cy, Ca,..., Ck))

4.Goto (1)

It




Learning to search:
AggraVale

| .Generate an initial
trajectory using the
current policy

7y
rollin ?
Q
-
(@]

deviations

2.Foreach decision on that trajectory with obs. o:

a)Foreach possible action a (one-step deviations)

i. Take that action

ii. Complete this trajectory using reference policy

ii.Obtain a final loss, C,

b)Generate a cost-sensitive classification example:
(o, C)



Learning to search:
AggraVale

| .Generate an initial
trajectory using the
current policy

)
rollin &
Q
-
(@

deviations

2.Foreach decision on that trajectory with obs. o:

a)Foreach possible action a (one-step deviations)

Often it's possible to analytically
compute this loss without
having to execute a roll-out!

b)Generate a cost-sensitive classification example:
(o, C)



Example [ Sequence labeling

* Receive input: ,
X the monster ate the sandwich

y = Dt NN Vb Dt NN

* Make a sequence of predictions:
X = the monster ate the sandwich
y = Dt Dt Dt Dt Dt

* Pick a tlmestep and try all perturbations there:
X = the monster ate the sandwich

y,, = Dt Dt
y, = Dt \[g
y. = Dt Vb

Vb

* Compute losses and construct example:

( { w=monster, p=Dt, ..},
[1,0,1] )



Example II: Graph labeling

* Task: label nodes of a graph given node features
(and possibly edge features)

* Example: WebKB webpage labeling

U Wisconsin U Washington U Texas Cornell
* Node features: text on web page
* Edge features: text in hyperlinks



Example II: Graph labeling

* How to linearize! Like belief propagation might!
* Pick a starting node (A), run BFS out
* Alternate outward and inward passes

Linearization:

ABCDEFGHI
HGFEDCBA
BCDEFGHI
HGFEDCBA




Example II: Graph labeling

| .Pick 2 node (= timestep)
2.Construct example based on neighbors' labels
3.Perturb current node's label




©@ Empirics

Q@ Analysis

© Programming

@ Others and Issues



What part of speech are the words?

POS Tagglng (tuned hps)

Accuracy (per word)
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A demonstration

1 |w Despite

2 |w continuing
3 |w problems
1 |w in

4 |w its

5 |w newsprint
5 |w business



A demonstration

1 |w Despite

2 |w continuing
3 |w problems

1 |w in

4 |w its

5 |w newsprint
5 |w business

vw -b 24 -d wsj.train.vw -c —search task sequence —search 45
—search alpha le-8 —search neighbor features -1:w,1:w
—affix -1w,+1w -f foo.reg

vw -t -i foo.reg wsj.test.vw



ls this word a name or not?

Named Entity Recognition (tuned hps)
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How fast in evaluation?

Prediction (test-time) Speed

EL2S
mL2S (ft)
# CRFsgd
N CRF++
i StrPerc
& StrSVM
StrSVM2

563

0 100 200 300 400 500 60
Thousands of Tokens per Second



Entity Relation

Goal: find the Entities and then find their Relations
Method Entity F1 | Relation F1 \ Train Time ‘

Structured SVM 88.00 50.04 300 seconds
L2S 9251 52.03 13 seconds
L2S uses "100 LOC.




Find dependency structure of sentences.
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Effect of Roll-in and Roll-out Policies

roll-out —
: Reference Half-n-half| Learned
4 roll-in
Reference Inconsistent
Learned

C/'elao



Effect of Roll-in and Roll-out Policies

roll-out —
: Reference Half-n-half| Learned
4 roll-in
Reference Inconsistent
Learned

Theorem
Roll-in with ref:
0 cost-sensitive regret = unbounded joint regret



Effect of Roll-in and Roll-out Policies

roll-out —
. Reference Half-n-half| Learned
1 roll-in
Reference Inconsistent
Consistent
Learned
No local opt

C el
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Effect of Roll-in and Roll-out Policies

roll-out —
. Reference Half-n-half| Learned
1 roll-in
Reference Inconsistent
Consistent
Learned
No local opt

Theorem

Roll-out with Ref:
0 cost-sensitive regret = 0 joint regret
(but not local optimality)




Effect of Roll-in and Roll-out Policies

roll-out —
. Reference Half-n-half| Learned
1 roll-in
Reference Inconsistent
Consistent .
Learned Reinf. L.
No local opt

Theorem

Ignore Ref:
= Equivalent to reinforcement learning.



Effect of Roll-in and Roll-out Policies

roll-out —
. Reference Half-n-half| Learned
1 roll-in
Reference Inconsistent
Consistent Consistent .
Learned Reinf. L.
No local opt | Local Opt

Theorem

Roll-out with p = 0.5 Ref and p = 0.5 Learned:
0 cost-sensitive regret = 0 joint regret + locally

optimal

See LOLS paper, Wednesday 11:20 Van Gogh




AggreVaTe Regret Decomposition

7ef — reference policy

7 = stochastic average learned policy
J(m) = expected loss of 7.

Theorem
J(7) = J(x'eh) <



AggreVaTe Regret Decomposition

xef — reference policy

7 = stochastic average learned policy
J(m) = expected loss of 7.

Theorem
J(7) = J(x"eh) <
TEn.,tEXNDé,, [Qwref(xa fin) — Qﬂref(xa Wref)

T = number of steps
7, = nth learned policy
D! = distribution over x at time t induced by 7,

n

Q7 (x, ") = loss of 7’ at x then 7 to finish



.F

For all 7 let 7% play 7 for rounds 1...t then play 7€
for rounds t +1...T. Son” =7 and 7° = ref



.[.'

For all 7 let 7t play 7 for rounds 1...t then play 7€
forrounds t +1...T. Son” = m and 70 = Wref
J() = (")

— Z;l J(7t) — J(mt 1) (Telescoping sum)



{.'

For all 7 let 7t play 7 for rounds 1...t then play 7€
for rounds t +1...T. Son” =7 and 7% = ref

J(m) = ()
=S J(xt) = J(xtL) (Telescoping sum)
— Zthl Ex~pt [Q”ref(x, ) — Q”ref(x7 Wref)]
since for all 7, ¢, J(7) = Exp: Q7(x, )



{.'

For all 7 let 7t play 7 for rounds 1...t then play 7€
for rounds t +1...T. Son” =7 and 7° = ref
J(m) = J(x")

=S J(wt) = J(xtL) (Telescoping sum)

= ZtT:1 Ex~Dt [Q”ref(x, ) — Q”ref(x, Wref):|
since for all 7, t, J(m) = Exwp: Q"(x, 7)

= TE{E..pt [Q”ref(x, ) — Q”ref(x,ﬁref)]



ref

For all 7 let w® play m for rounds 1...t then play 7

forrounds t +1...T. Son” = 7 and 7° = Wref

J(m) = ()
=S J(wt) = J(xtL) (Telescoping sum)
=SBy [Q“efw) Q")
since for all 7, t, J(m) = Exwp: Q"(x, 7)

— TEtEXNDt |: (X 7T) ref( ref)]
So J(7) — J(x'eh)
— TEt,nEXND;n [Qﬂ'ref(X’ 7,1\_”) . Qﬂ-ref(X, ﬂ_ref)]
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Lines of Code

| | | |
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CRFSGD CRF++ S-SVM Search



Sequential _RUN(examples)

1: for i = 1 to len(examples) do

2:  prediction < predict(examples[i], examples]i]. label)
3:  loss(prediction # examples][i]. label)

4: end for



Sequential _RUN(examples)

1: for i = 1 to len(examples) do

2:  prediction < predict(examples[i], examples]i]. label)
3:  loss(prediction # examples][i]. label)

4: end for

Decoder + loss + reference advice



RunParser(sentence)

=
N 2o

© 0 N o g s w2

stack S < {Root}

buffer B <— [words in sentence]

arcs A < ()

while B # (0 or |S| > 1 do
ValidActs < GetValidActions(S, B)
features < GetFeat(S, B, A)
ref <— GetGoldAction(S, B)
action < predict(features, ref, ValidActs)
S, B, A < Transition(S, B, A, action)

end while

. loss(A[w] # A*[w], Yw € sentence)

return output



Program/Search equivalence

Theorem: Every algorithm which:
© Always terminates.
© Takes as input relevant feature information X.
© Make 0+ calls to predict.
@ Reports loss on termination.

defines a search space, and such an algorithm exists
for every search space.



It even works in Python

def _run(self, sentence):
output = ]
for n in range(len(sentence)):
pos,word = sentence[n]
with self.vw.example('w’: [word],
'p": [prev_word]) as ex:
pred = self.sch.predict(examples=ex,
my tag=n+1, oracle=pos,
condition=[(n,’p"), (n-1, 'q')])
output.append(pred)
return output



Bugs you cannot have

@ Never train/test mismatch.



Bugs you cannot have

@ Never train/test mismatch.
© Never unexplained slow.



Bugs you cannot have

© Never train/test mismatch.
@ Never unexplained slow.
© Never fail to compensate for cascading failure.



@ Empirics

© Analysis

© Programming

@ Others and Issues

@ Families of algorithms.
@ What's missing from learning to search?



Imitation Learning

Use perceptron-like update when learned deviates
from gold standard.

Inc. P. Collins & Roark, ACL 2004.
LaSo Daume Il & Marcu, ICML 2005.
Local Liang et al, ACL 2006.

Beam P. Xu et al., JMLR 2009.

Inexact Huang et al, NAACL 2012.



Imitation Learning

Use perceptron-like update when learned deviates
from gold standard.

Inc. P. Collins & Roark, ACL 2004.
LaSo Daume Il & Marcu, ICML 2005.
Local Liang et al, ACL 2006.
Beam P. Xu et al., JMLR 2009.
Inexact Huang et al, NAACL 2012.
Train a classifier to mimic an expert’s behavior
DAgger Ross et al., AlStats 2011.
Dyna O Goldberg et al., TACL 2014.



Learning to Search

When the reference policy is optimal
Searn Daume Ill et al., MLJ 2009.

Aggra Ross & Bagnell,
http://arxiv.org/pdf/1406.5979


http://arxiv.org/pdf/1406.5979
http://hunch.net/~vw

Learning to Search

When the reference policy is optimal
Searn Daume Ill et al., MLJ 2009.

Aggra Ross & Bagnell,
http://arxiv.org/pdf/1406.5979

When it's not
LOLS Chang et al., ICML 2015.


http://arxiv.org/pdf/1406.5979
http://hunch.net/~vw

Learning to Search

When the reference policy is optimal
Searn Daume Ill et al., MLJ 2009.

Aggra Ross & Bagnell,
http://arxiv.org/pdf/1406.5979

When it's not
LOLS Chang et al., ICML 2015.

Code in Vowpal Wabbit http://hunch.net/~vw


http://arxiv.org/pdf/1406.5979
http://hunch.net/~vw

Inverse Reinforcement Learning

Given observed expert behavior, infer the underlying
reward function the expert seems to be optimizing



Inverse Reinforcement Learning
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reward function the expert seems to be optimizing

propose Kalman, 1968.
1st sol. Boyd, 1994.



Inverse Reinforcement Learning

Given observed expert behavior, infer the underlying
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propose Kalman, 1968.
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from sample trajectories only
Ng & Russell, ICML 2000



Inverse Reinforcement Learning

Given observed expert behavior, infer the underlying
reward function the expert seems to be optimizing
propose Kalman, 1968.
Ist sol. Boyd, 1994.

from sample trajectories only
Ng & Russell, ICML 2000

for apprenticeship learning
Apprent. Abbeel & Ng, ICML 2004
Maxmar. Ratliff et al., NIPS 2005
MaxEnt Ziebart et al., AAAI 2008



What's missing? Automatic Search order

Learning to search ~ dependency + search order.
Graphical models “work™ given dependencies only.



What's missing? The reference policy

A good reference policy is often nonobvious... yet
critical to performance.



What's missing?

Efficient Cost-Sensitive Learning

When choosing 1-of-k things, O(k) time is not
exciting for machine translation.



What's missing? GPU fun

Vision often requires a GPU. Can that be done?



How to optimize discrete joint loss?




How to optimize discrete joint loss?

@ Programming complexity.



How to optimize discrete joint loss?

Q@ Programming complexity. Most complex
problems addressed independently—too complex
to do otherwise.
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@ Prediction accuracy. It had better work well.



How to optimize discrete joint loss?

Q@ Programming complexity. Most complex
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to do otherwise.

@ Prediction accuracy. It had better work well.

© Train speed. Debug/development productivity +
maximum data input.



How to optimize discrete joint loss?

Q@ Programming complexity. Most complex
problems addressed independently—too complex
to do otherwise.

@ Prediction accuracy. It had better work well.

© Train speed. Debug/development productivity +
maximum data input.

Q Test speed. Application efficiency
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