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Examples of

The monster ate  a   big sandwich

structured predictionjoint



Sequence labeling

The monster ate  a   big sandwich

x = the monster ate the sandwich
y = Dt    Nn    Vb  Dt     Nn

x = Yesterday I traveled to Lille
y =     -    PER   -      -  LOC
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Natural language parsing

OUTPUT

INPUT
NLP algorithms use a kitchen sink of features

n-mod

object

subject n-mod

n-mod

p-mod n-mod

[root]



(Bipartite) matching
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Machine translation



Image segmentation
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Protein secondary structure prediction



Standard solution methods

1.Each prediction is independent
2.Shared parameters via “multitask learning”
3.Assume tractable graphical model; optimize
4.Hand-crafted
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Predicting independently
● h : features of nearby voxels  class→
● Ensure output is coherent at test time

✔ Very simple to implement, often efficient

✗ Cannot capture correlations between predictions
✗ Cannot optimize a joint loss i
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Prediction with multitask bias
● h : features  (hidden representation)→

                  yes/no→
● Share (hidden representation) across all classes

✔ All advantages of predicting independently
✔ May implicitly capture correlations

✗ Learning may be hard (… or not?)
✗ Still not optimizing a joint loss
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Optimizing graphical models
● Encode output as a graphical model
● Learn parameters of that model to maximize:

● p(true labels | input)                     or
● cvx u.b. on loss(true labels, predicted labels)

✔ Guaranteed consistent outputs
✔ Can capture correlations explicitly

✗ Assumed independence assumptions may not hold
✗ Computationally intractable with too many “edges” 

or non-decomposable loss function
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Back to the original problem...
● How to optimize a discrete, joint loss?

● Input: x  X
● Truth: y  Y(x)
● Outputs: Y(x)
● Predicted: ŷ  Y(x)
● Loss: loss(y, ŷ)
● Data: (x,y) ~ D

I can can a can

Pro Md Vb Dt Nn

Pro Md Vb Dt Vb

Pro Md Vb Dt Md

Pro Md Nn Dt Nn

Pro Md Nn Dt Vb

Pro Md Nn Dt Md

Pro Md Md Dt Nn

Pro Md Md Dt Vb



Back to the original problem...
● How to optimize a discrete, joint loss?

● Input: x  X
● Truth: y  Y(x)
● Outputs: Y(x)
● Predicted: ŷ  Y(x)
● Loss: loss(y, ŷ)
● Data: (x,y) ~ D

Goal:
find   h  H

such that   h(x)  Y(x)
minimizing

E(x,y)~D [ loss(y, h(x)) ]
based on N samples

(xn, yn) ~ D



Challenges
● Output space is too big to exhaustively search:

● Typically exponential in size of input
● implies y must decompose in some way

(often: x has many pieces to label)
● Loss function has combinatorial structure:

- Intersection over union - Edit Distance
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Decomposition of label
● Decomposition of y often implies an ordering

● But sometimes not so obvious....

I can can a can

Pro Md Vb Dt Nn
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Search spaces
● When y decomposes in an ordered manner,

a sequential decision making process emerges
I

Pro Md Vb Dt Nn

can

Pro Md Vb Dt Nn

can

Pro Md Vb Dt Nn

decision

action
decision

action
decision

action



Search spaces
● When y decomposes in an ordered manner,

a sequential decision making process emerges

a

Pro Md Vb Dt Nn

can

Pro Md Vb Dt Nn

e end

Encodes an output
ŷ = ŷ(e)

from which
loss(y, ŷ) 

can be computed
(at training time)



Policies
● A policy maps observations to actions

(    )=a
obs.

input:  x
timestep:  t
partial traj: τ
… anything else



Versus reinforcement learning

In learning to search (L2S):
● Labeled data at training time

      can construct good/optimal policies
● Can “reset” and try the same example many times

o1 o2 o3 oT
lo
ssa1 a2 a3

…
aT-1 aT

=π(o1)

Classifier
Goal:

minπ E [ loss(π) ]



Labeled data → Reference policy
Given partial traj. a1,a2,...,at-1 and true label y
The minimum achievable loss is:

The optimal action is the corresponding at

The optimal policy is the policy that always selects 
the optimal action

min
(at,at+1,...)

loss(y, ŷ(a))



Ingredients for learning to search
● Training data: (xn, yn) ~ D
● Output space: Y(x)
● Loss function: loss(y, ŷ)

● Decomposition: {o}, {a}, … 
● Reference policy: πref(o, y)



Jump in {0,1}
Right in {0,1}
Left in {0,1}
Speed in {0,1}

Extracted 27K+ binary features
from last 4 observations
(14 binary features for every cell)

Output:Input:

From Mario AI competition 2009

An analogy from playing Mario

High level goal:
Watch an expert play and

learn to mimic her behavior



Training (expert)
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Warm-up: Supervised learning

ππrefref

1.Collect trajectories from expert πref

2.Store as dataset D = { ( o, πref(o,y) ) | o ~ πref }
3.Train classifier π on D

● Let π play the game!



Test-time execution (sup. learning)
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What's the (biggest) failure mode?

ππrefref

The expert never gets stuck next to pipes
 Classifier doesn't learn to recover!



Warm-up II: Imitation learning

ππrefref

1. Collect trajectories from expert πref

2. Dataset D0 = { ( o, πref(o,y) ) | o ~ πref }

3. Train π1 on D0

4. Collect new trajectories from π1

➢ But let the expert steer!
5. Dataset D1 = { ( o, πref(o,y) ) | o ~ π1 }

6. Train π2 on  D0 ∪ D1

● In general:
● Dn = { ( o, πref(o,y) ) | o ~ πn }
● Train πn+1 on ∪i≤n Di

ππ11

ππ22

If N = T log T,

L(πn) < T N + O(1)

for some n



Test-time execution (DAgger)
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What's the biggest failure mode?
Classifier only sees right versus not-right
● No notion of better or worse
● No partial credit
● Must have a single target answer

ππ**

ππ11

ππ22



Aside: cost-sensitive classification
Classifier: h : x → [K]

Multiclass classification
● Data: (x,y)  X × [K]
● Goal: minh Pr( h(x) ≠ y )

Cost-sensitive classification
● Data: (x,c)  X × [0,∞)K
● Goal: minh E(x,c) [ ch(x) ]

é



Learning to search: AggraVaTe
1.Let learned policy π drive for t timesteps to obs. o
2.For each possible action a:

● Take action a, and let expert πref drive the rest
● Record the overall loss, ca

3.Update π based on example:
 (o, 〈c1, c2,..., cK〉)

4.Goto (1)

ππ

0
0.4

100



Learning to search:
AggraVaTe
1.Generate an initial

trajectory using the 
current policy

2.Foreach decision on that trajectory with obs. o:
a)Foreach possible action a (one-step deviations)

i. Take that action
ii. Complete this trajectory using reference policy

iii.Obtain a final loss, ca

b)Generate a cost-sensitive classification example:
( o, c )

? E

E

E

rollin

rollout
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Learning to search:
AggraVaTe
1.Generate an initial

trajectory using the 
current policy

2.Foreach decision on that trajectory with obs. o:
a)Foreach possible action a (one-step deviations)

i. Take that action
ii. Complete this trajectory using reference policy

iii.Obtain a final loss, ca

b)Generate a cost-sensitive classification example:
( o, c )

? E

E

E

rollin

rollout
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loss=0

loss=.8

Often it's possible to analytically
compute this loss without

having to execute a roll-out!



Example I: Sequence labeling
● Receive input:

● Make a sequence of predictions:

● Pick a timestep and try all perturbations there:

● Compute losses and construct example:

x = the monster ate the sandwich
y = Dt    Nn    Vb  Dt     Nn

x = the monster ate the sandwich
ŷ = Dt    Dt    Dt  Dt     Dt

  x = the monster ate the sandwich
ŷ
Dt
 = Dt    Dt    Vb  Dt     Nn      l=1

ŷ
Nn
 = Dt    Nn    Vb  Dt     Nn      l=0

ŷ
Vb
 = Dt    Vb    Vb  Dt     Nn      l=1

( { w=monster, p=Dt, …},
  [1,0,1] )



Example II: Graph labeling
● Task: label nodes of a graph given node features 

(and possibly edge features)
● Example: WebKB webpage labeling

● Node features: text on web page
● Edge features: text in hyperlinks

U Wisconsin U Washington U Texas Cornell



Example II: Graph labeling
● How to linearize? Like belief propagation might!
● Pick a starting node (A), run BFS out
● Alternate outward and inward passes

D
A H

I

GF

E

B

C

Linearization:
 ABCDEFGHI
  HGFEDCBA
  BCDEFGHI
  HGFEDCBA
  ...



Example II: Graph labeling
1.Pick a node (= timestep)
2.Construct example based on neighbors' labels
3.Perturb current node's label

D
A H

I

GF

E

B

C



Outline

1 Empirics
2 Analysis
3 Programming
4 Others and Issues



What part of speech are the words?

10-3 10-2 10-1 100 101 102 103

Training time (minutes)

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98
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94.9
95.7

96.6
95.9 95.5

96.1

90.7

96.1

1s 10s 1m 10m 30m1h

POS Tagging (tuned hps)

OAA
L2S
L2S (ft)
CRFsgd

CRF++
StrPerc
StrSVM
StrSVM2



A demonstration

1 |w Despite
2 |w continuing
3 |w problems
1 |w in
4 |w its
5 |w newsprint
5 |w business
...

vw -b 24 -d wsj.train.vw -c �search_task sequence �search 45
�search_alpha 1e-8 �search_neighbor_features -1:w,1:w
�a�x -1w,+1w -f foo.reg

vw -t -i foo.reg wsj.test.vw



A demonstration

1 |w Despite
2 |w continuing
3 |w problems
1 |w in
4 |w its
5 |w newsprint
5 |w business
...
vw -b 24 -d wsj.train.vw -c �search_task sequence �search 45
�search_alpha 1e-8 �search_neighbor_features -1:w,1:w
�a�x -1w,+1w -f foo.reg

vw -t -i foo.reg wsj.test.vw



Is this word a name or not?

10-3 10-2 10-1 100 101

Training time (minutes)

0.60

0.65

0.70

0.75

0.80
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73.6

79.8
79.2

76.575.976.5

78.3

1s 10s 1m 10m

Named Entity Recognition (tuned hps)

OAA
L2S
L2S (ft)
CRFsgd

CRF++
StrPerc
StrSVM2



How fast in evaluation?

NER

POS

0 100 200 300 400 500 600

563

365

520

404

24

5.7

98

13

5.6
14

5.3

Prediction (test-time) Speed

L2S
L2S (ft)
CRFsgd
CRF++
StrPerc
StrSVM
StrSVM2

Thousands of Tokens per Second



Entity Relation

Goal: �nd the Entities and then �nd their Relations
Method Entity F1 Relation F1 Train Time

Structured SVM 88.00 50.04 300 seconds
L2S 92.51 52.03 13 seconds

L2S uses �100 LOC.



Find dependency structure of sentences.

 70

 75

 80

 85

 90

 95

Ar* Bu Ch Da Du En Ja Po* Sl* Sw Avg
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language

L2S
Dyna
SNN

L2S uses �300 LOC.
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E�ect of Roll-in and Roll-out Policies

roll-out →
↓ roll-in Reference Half-n-half Learned

Reference Inconsistent

Learned
.

s1

s3

e4, 0
f

e3, 100eb

s2

e2, 10
d

e1, 0c

a



E�ect of Roll-in and Roll-out Policies

roll-out →
↓ roll-in Reference Half-n-half Learned

Reference Inconsistent

Learned
.

Theorem

Roll-in with ref:
0 cost-sensitive regret ⇒ unbounded joint regret



E�ect of Roll-in and Roll-out Policies

roll-out →
↓ roll-in Reference Half-n-half Learned

Reference Inconsistent

Learned
Consistent
No local opt

s1

s3

e4, 0
d

e3, 1+εcb

s2

e2, 1−ε
d

e1, 1c

a



E�ect of Roll-in and Roll-out Policies

roll-out →
↓ roll-in Reference Half-n-half Learned

Reference Inconsistent

Learned
Consistent
No local opt

Theorem

Roll-out with Ref:
0 cost-sensitive regret ⇒ 0 joint regret
(but not local optimality)



E�ect of Roll-in and Roll-out Policies

roll-out →
↓ roll-in Reference Half-n-half Learned

Reference Inconsistent

Learned
Consistent
No local opt

Reinf. L.

Theorem

Ignore Ref:
⇒ Equivalent to reinforcement learning.



E�ect of Roll-in and Roll-out Policies

roll-out →
↓ roll-in Reference Half-n-half Learned

Reference Inconsistent

Learned
Consistent
No local opt

Consistent
Local Opt

Reinf. L.

Theorem

Roll-out with p = 0.5 Ref and p = 0.5 Learned:
0 cost-sensitive regret ⇒ 0 joint regret + locally
optimal

See LOLS paper, Wednesday 11:20 Van Gogh



AggreVaTe Regret Decomposition

πref = reference policy
π̄ = stochastic average learned policy
J(π) = expected loss of π.

Theorem

J(π̄)− J(πref) ≤

TEn,tEx∼Dt

π̂n

[
Qπref(x , π̂n)− Qπref(x , πref)

]
T = number of steps
π̂n = nth learned policy
D t

π̂n
= distribution over x at time t induced by π̂n

Qπ(x , π′) = loss of π′ at x then π to �nish
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Proof

For all π let πt play π for rounds 1...t then play πref

for rounds t + 1...T . So πT = π and π0 = πref

(Telescoping sum)

since for all ,

So J(π̄)− J(πref)

= TEt,nEx∼Dt

π̂n

[
Qπref(x , π̂n)− Qπref(x , πref)

]
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Lines of Code

 1
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CRFSGD CRF++ S-SVM Search
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How?

Sequential_RUN(examples)

1: for i = 1 to len(examples) do
2: prediction ← predict(examples[i ], examples[i ].label)
3: loss(prediction 6= examples[i ].label)
4: end for

Decoder + loss + reference advice



How?

Sequential_RUN(examples)

1: for i = 1 to len(examples) do
2: prediction ← predict(examples[i ], examples[i ].label)
3: loss(prediction 6= examples[i ].label)
4: end for

Decoder + loss + reference advice



RunParser(sentence)

1: stack S ← {Root}
2: bu�er B ← [words in sentence]
3: arcs A ← ∅
4: while B 6= ∅ or |S | > 1 do
5: ValidActs ← GetValidActions(S ,B)
6: features ← GetFeat(S ,B ,A)
7: ref ← GetGoldAction(S ,B)
8: action ← predict(features, ref, ValidActs)
9: S ,B ,A ← Transition(S ,B ,A, action)

10: end while
11: loss(A[w ] 6= A∗[w ], ∀w ∈ sentence)
12: return output



Program/Search equivalence

Theorem: Every algorithm which:
1 Always terminates.
2 Takes as input relevant feature information X .
3 Make 0+ calls to predict.
4 Reports loss on termination.

de�nes a search space, and such an algorithm exists
for every search space.



It even works in Python

def _run(self, sentence):
output = []
for n in range(len(sentence)):

pos,word = sentence[n]
with self.vw.example('w': [word],

'p': [prev_word]) as ex:
pred = self.sch.predict(examples=ex,

my_tag=n+1, oracle=pos,
condition=[(n,'p'), (n-1, 'q')])

output.append(pred)
return output



Bugs you cannot have

1 Never train/test mismatch.

2 Never unexplained slow.
3 Never fail to compensate for cascading failure.
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Bugs you cannot have

1 Never train/test mismatch.
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1 Families of algorithms.
2 What's missing from learning to search?



Imitation Learning

Use perceptron-like update when learned deviates
from gold standard.

Inc. P. Collins & Roark, ACL 2004.

LaSo Daume III & Marcu, ICML 2005.

Local Liang et al, ACL 2006.

Beam P. Xu et al., JMLR 2009.

Inexact Huang et al, NAACL 2012.

Train a classi�er to mimic an expert's behavior

DAgger Ross et al., AIStats 2011.

Dyna O Goldberg et al., TACL 2014.
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Learning to Search

When the reference policy is optimal

Searn Daume III et al., MLJ 2009.

Aggra Ross & Bagnell,
http://arxiv.org/pdf/1406.5979

When it's not

LOLS Chang et al., ICML 2015.

Code in Vowpal Wabbit http://hunch.net/~vw

http://arxiv.org/pdf/1406.5979
http://hunch.net/~vw
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Inverse Reinforcement Learning

Given observed expert behavior, infer the underlying
reward function the expert seems to be optimizing

propose Kalman, 1968.

1st sol. Boyd, 1994.

from sample trajectories only
Ng & Russell, ICML 2000

for apprenticeship learning

Apprent. Abbeel & Ng, ICML 2004

Maxmar. Ratli� et al., NIPS 2005

MaxEnt Ziebart et al., AAAI 2008



Inverse Reinforcement Learning

Given observed expert behavior, infer the underlying
reward function the expert seems to be optimizing

propose Kalman, 1968.

1st sol. Boyd, 1994.

from sample trajectories only
Ng & Russell, ICML 2000

for apprenticeship learning

Apprent. Abbeel & Ng, ICML 2004

Maxmar. Ratli� et al., NIPS 2005

MaxEnt Ziebart et al., AAAI 2008



Inverse Reinforcement Learning

Given observed expert behavior, infer the underlying
reward function the expert seems to be optimizing

propose Kalman, 1968.

1st sol. Boyd, 1994.

from sample trajectories only
Ng & Russell, ICML 2000

for apprenticeship learning

Apprent. Abbeel & Ng, ICML 2004

Maxmar. Ratli� et al., NIPS 2005

MaxEnt Ziebart et al., AAAI 2008



Inverse Reinforcement Learning

Given observed expert behavior, infer the underlying
reward function the expert seems to be optimizing

propose Kalman, 1968.

1st sol. Boyd, 1994.

from sample trajectories only
Ng & Russell, ICML 2000

for apprenticeship learning

Apprent. Abbeel & Ng, ICML 2004

Maxmar. Ratli� et al., NIPS 2005

MaxEnt Ziebart et al., AAAI 2008



What's missing? Automatic Search order

Learning to search ' dependency + search order.
Graphical models �work� given dependencies only.



What's missing? The reference policy

A good reference policy is often nonobvious... yet
critical to performance.



What's missing?
E�cient Cost-Sensitive Learning

When choosing 1-of-k things, O(k) time is not
exciting for machine translation.



What's missing? GPU fun

Vision often requires a GPU. Can that be done?



How to optimize discrete joint loss?

1 Programming complexity.

Most complex
problems addressed independently�too complex
to do otherwise.

2 Prediction accuracy. It had better work well.
3 Train speed. Debug/development productivity +

maximum data input.
4 Test speed. Application e�ciency
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