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Challenges of a new kind

1. Machine learning disrupts software engineering.
- Challenging our impact on real world applications.

2. Our experimental paradigm is reaching its limits.
— Challenging the speed of our scientific progress.

3. Elements of a solution



1 Machine Learning
disrupts software
engineering




Engineering complex artifacts

Counting parts down to the smallest screw

= Automobile: ~ 30,000 parts ﬁ \ /)

= Airplane:  ~ 3,000,000 parts

Specifications and replication

"The engineer does not design the alloy and the threads of each screw.
Standard screws come with known specifications (size, strength, weight, ...)

*Many parts and many assemblies are identical.



Abstraction in engineering

Thinking with the specifications instead of the details.

m o o . . . . a
part specifications instead of part details. \e“ﬁ"“‘-“““““s
= assembly specifications instead of assembly details. \“‘“\\o‘“\\\e‘

Abstractions leak!

Sometimes one needs to look more closely.

= Example: engine coolingassembly can have complicated heat inertia.
= Example: global resource allocation (cost, weight, etc.)

Abstraction leaks limits the complexity of what we can build.



Abstraction in mathematics and logic

Pure abstraction belongs to mathematics and logic

* When we use a theorem, we do not need to revisit its proof.
* Mathematical abstractions do not leak.

Computer programs are similar to mathematical proofs (in theory)

* Design with contracts — knowing the specification of a moduleis enough.
* In practice, there are abstraction leaks ( but less. )




Computer programs

The closer to logic, the more complex the artifacts

= Automobile: ~ 30,000 parts
= Airplane: ~ 3,000,000 parts
= Processor: ~ 3,000,000,000 transistors

(note : counts include many identical parts and assemblies.)

= MS Office: ~ 40,000,000 Locs s
= Facebook: ~ 60,000,000 Locs F————
= Debian : ~ 400,000,000 LOCS e

(note: different metric: lines of codes are rarely identical.)



Programming versus learning

Two conceptions of computing
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Digital computers (that one programs)are everywhere.

Programming makes it easy to leverage the work of others.



Programming versus learning

Programming has real advantages

Minsky and Papert, Perceptrons, 1968.

Perceptrons
Remark

This book is not just about Rosenblatt’s perceptron!

What Minsky and Papert call an “order-k perceptron” covers
most machinelearning models, includingthe convolutional
neural networks that are changing computer vision.




Connectedness

Is a shape made of a single connected component?

M&P prove that a small-order perceptron cannot say,
but a simple algorithm can.

Theorem 9.2: For any e there is a 2-symbol Turing machine that
can verify the connectedness of a figure X on any rectangular
array R, using less than (2 + ¢) log, |R| squares of tape.

Such an algorithm fulfils a clear contract: verifying connectedness.




s connectedness easy for us?




What is easy for us?

This shape
represents a
mouse

This shape
represents a
piece of cheese




Why is learning gaining momentum?

= Since “connectedness”
has a clear mathematical specification,
we can envision provable algorithms.

= Since “mousiness” and “cheesiness” | !?O
do not have such a specification, "
we cannot envision provable algorithms.

We must rely on x
- heuristic specifications o

“Connectedness?”

“Mousiness?”

A “Cheesiness?”
- or learning techniques. o




Why is learning gaining momentum?

= We must rely on
- heuristic specifications (e.g. rules)
- or learning techniques.

[

Big data and big computing power

-

When the volume of data increases
- defining heuristic specifications becomes harder.
" training learning systems becomes more effective. Y,




Programming versus learning

Two conceptions of computing
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ntegrating machine learning
in large software systems

Machine learning systems must* work with digital software
because digital computers are everywhere.

= Use trained models as software modules.

" Use learning algorithms as software modules.

* atleast until we solve Al...



Trained models as software modules

“DeepVisotron™ " ® detects
1000 object categories with
less than 1% errors.”

What is the nature of the contract?

" This does not mean that onerolls a dice for each picture.

" This statement refers to a specific testing set.
The error guarantee is lost if the image distribution changes.



Weak contracts

= A smart programmer makes an = A smart programmer makes an
inventive use of a sorting routine. inventive use of a trained object

: : : recognizer.
" The sorting routine fulfils the 5
contract by sorting the data " The object recognizer receives data
(however strange.) that does not resemble the testing

data and outputs nonsense.
= The code of the smart P

programmer does what was " The code of the smart programmer
intended. does not work.




Weak contracts

= A smart programmer makes an = A smart programmer makes an
inventive use of a sorting routine. inventive use of a trained object

: : : recognizer.
" The sorting routine fulfils the 5
contract by sorting the data " The object recognizer receives data
(however strange.) that does not resemble the testing

data and outputs nonsense.
= The code of the smart P

programmer does what was " The code of the smart programmer
intended. does not work.

Collectingnew data and

retraining may help ... or may not!




Machine Learning:
nterest Credit Card of Technical Debt

The High-1

D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov,
Todd Phillips, Dietmar Ebner, Vinay Chaudhary, Michael Young

{dsculley, gholt,dggr edavydov}@google .com
{toddphillips ,ebneX, vchaudhar¥r mwyoung}@gooqle .com
2.1 Ent Google, In¢

anglement

T




CO Sle Buy phones onine n

Exa I | I p | ( ! [ Buy Phones On Line - Up o 30% Offon Setectitodiies Y | snop for buy Bhones onine o1 Googe  Sera s

L5) www amazon o buy «phonesoneirg

O Mobiles - Computers Skamlml Deals In Bectronics - Tatlets a\ I i
I ‘ ‘ l | I V e S Buyhlolroo)s Now -fipkartcom el B -
w0 Samgarg

o ot NEC S0MP © -_— LED Tou Dudl S . Sonyﬂoeea., ' S

G#z Dual -'x'v(-l Und FC 1007 Camera & 7anch AMOLED Touch Re. 10.59900 Ry, 17.490.00 ' Ry, $.399.00

= &= | ShosClss o
Buy Modile Phones Online - Starting Rs 900 e P
[Z) www Pomeskop1§ com MobioPhones .
h o 7 ko—v ml vecy Buy Now! u
\ Ihaoﬂn' Swwv Moun l;u Soﬂn y I -
s Store Online - Buy Mobiles Products Online at DasiTich Tyl o om Sy Sash
broeeg-srrompny . . i ReBATROD  ReSOTENGE Re.SA1S00  Rs.990.00
s Online Store in Indis Free Shpping. Cash on delvery at insa's Saaposal Satetes Pro._  Naages! S0sCIES.C.
favourite Online Shop Fipeart com 2 s . §
MOBIES - Tabiets - Samsung MRS - Micromax Mebies \, 7
=a
Online Mobile Shopping at The ModileStore: Buy Mobiles .., f Buy Phones Online

www Semobilestors v/ ~
The MobleStore - Buy Mobil O ces in India - Mobile Phoces
Tablets, Cell Prones, Ac EVI option avalabie

Sony Xpera T2 Unra, Slack Sunw onuy %, black - Nokia X Dual SIM

wew juages coe buysphonessontine *
Buy Phones Online

Compzrs ¥aro. P

0

-
e Buy Phones Online
www. quivy.com/Buy+Phones«Online ~

Uobde Phones - Snapdealcom Sule on New & L:;L\;o:e Phones.
www 503030 com » Mobies & Tabiets ~ Buy/Sel Mobles only at Qukr
Online mobie stoce for branded moble phones 31 best prices = Inda.
Customars can buy phones rusning oo Sparating systems soch 33 Asdod, Buy Chea

. p Phones Delh
BaciBerry www ot n/Chazo Cellshanes =

Many web sites offer lists of items
( search results, recommendations, ads ...)

and select them by modelingclick probabilities.




A common click model

P(click|context,item,pos) = F(pos) X G(context,item)

Position effect ltem effect

“click curve” “clickability”

Why separating position effect and item effect?

" Click probabilities of this form allow a greedy placement algorithm:
1. Sortitems by clickability G (context, item).

2. Allocate them greedily to the best positions.



A common click model

Why separating position effect and item effect?
= Click probabilities of this form work well in auction theory results.
= There are easy ways to estimate F (position) and G(context, item).

How incorrectis this model?
= All ML models are incorrect.

* Model misspecification should only degrade the performance gracefully.
" How bad can things go?



How bad things can go?

sAssume there are only two contexts C1 and C2 and two positions P1,P2

=Assume the true click probabilityis
P*(click|context,item,pos) = F*(context, pos) X G*(context, item)

--“ --“““
0.6 0.4 0 0 012 0.0

=0Qur model estimates some intermediate click curve F (pos)




How bad can things go in context C1 ?

True position effect steeper than estimated.

*F(P1) < F*(C1,P1) = overestimate clickability of items shown in P1

=F(P2) > F*(C1,P2) = underestimate clickability of items shown in P2

Combined with the greedy placement algorithm.

sAfter retraining, whatever we placed in position P1 looks better than it really is.
Therefore we keep placingit in position P1.

=After retraining, whatever we placed in position P2 looks worse than it really is.
Therefore we keep placingit in position P2 (or stop showingit.)



How bad can things go in context C1 ?

True position effect steeper than estimated.

sF(P1) < F*(C1,P1) = oyoias

jown in P1

ownin P2

er thanitreally is.

sAfter retraining, Wwwert®Ver we placed in position P2 looks worse than it really is.
Therefore we keep placingit in position P2 (or stop showingit.)



How bad can things go in context C2 ?

True position effect less steep than estimated.

=F(P1) > F*(C1,P1) = underestimate clickability of items shown in P1

*FF(P2) < F*(C1,P2) = overestimate clickability of items shown in P2

Combined with the greedy placement algorithm.

sAfter retraining, whatever we placed in position P1 looks worse than it really is.
Therefore we might move it down to position P2.

=After retraining, whatever we placed in position P2 looks better than it really is.
Therefore we might move it up position P1.



How bad can things go in context C2 ?

True position effect less steep than estimated.

*F(P1) > F*(C1,P1) = updass _ : . shown in P1

bwn in P2

=After retrainin}
Therefore we

poTsethan it reallyis.

sAfter retraining, Wwwef®Ver we placed in position P2 looks better than it really is.
Therefore we might move it up position P1.



Feedback loops in machine learning

[
| ;
| Cybernetics

i or CONTROL and COMMUNICATION
in THE ANIMAL and THE MACHINE

Norbert Wiener,
Cybernetics, 1948

*"“Information (signal) feedback loops are everywhere.”
“They are central to adaptation and learning...”

=See (Bottou et al., JMLR 2013) for a possible treatment of causal loops.



Red Team

Owns the code that selects
contentto recommend.

Example 2

Team work

Blue Team

Owns the code that selects fontsand
colors for all page components.




Red team

The red team knows the bandit literature

"There are lots of potential recommendations to select from.

="0One can only model the click probabilities of the recommendations
that have been shown often enough in each context.

sTherefore the red team code performs e-greedy exploration,
showing a small proportion of random recommendations.

sAlthough exploration has a cost, such the system cannot
discover the most relevant recommendations without it.



Blue team

The blue team also knows machine learning.

" The job of the blue team is to emphasize things that the user will like.

" The blue team code runs a click probability model to spot what users like.

" The click probability model easily discovers that some of the
recommendations generated by the red team are not very good.

= Therefore these recommendations will be shown with a smaller font.



Blue team

The blue team also knows machine learning.

" The job of the blue team is to emphgsi e user will like.

= The blue tearg bt what users like.




Red team

The red team is very content!

=Analysis of the exploration traffic shows that there isn’t much to improve.
— they can safely reduce the exploration level!

s\Whenever they try new features in the click model,
randomized testing shows a reduction in performance
— itisamazing, butit seems they got their model right the first time!



Red team

The red team is very content!

=Analysis of the exploration traffic shows that there isn’t much to improve.
—> they can safely reduce the exploratigss

"\Whenever they try geu = €.
randomized ne “‘ s ‘5““ ,
-2 itis ““ eot their model right the first time!




Paying attention

“A manager of the two teams should have paid more attention.”
“The software architect should have paid more attention.”

Micro-management does not work because it does not scale...
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Conclusion of part 1

Machine learning in large software systems

= Use trained models as software modules.
— problematic because trained models offer weak contracts.
= Use learning algorithms as software modules.

- problematic because the output of the learning algorithm
depends on the training data which itself depends
on every other module.

Working around these difficulties could save billions...



2 Our experimental
paradigm is reaching
its limits




Minsky and Papert 1968, F.A.Q.

13.5 Why Prove Theorems? e
Why didy you prove all these complicated theorems? Couldn’t you

e . )
just take a perceptron and see if it can recognize ¥ CONNECTED

No.

Are we dealing with
an exact science (like mathematics) or
an empirical science (like physics)?




Essential epistemology

Exact Experimental

! . Engineering
sciences sciences

Axioms & Facts &

Deals with Theorems T aories Artifacts
Truth is Forever Temporary It works.
Mathematics Physics
Lots...
Examples C.S. theory Biology ots




Essential epistemology
— Exact scliences

Exact Experimental
sciences sciences

Exact sciences

Artifacts

eeeeeeeee = Deal with axioms and theorems.

It works.

& = Axioms are neither true or false.
Theorems aretrue once proven.
They remaintrue forever.

= Examples

o Mathematics
o Theoretical C.S. (e.g., algorithms, type theory, ...)
o Theoretical Physics (e.g., string theory)



Essential epistemology
— Experimental sciences

Exact Experimental
sciences sciences

el Experimental sciences

Axioms & Facts &

Theorems meores | #%w Deal with facts and theories.

Forever Temporary It works.

i | e cs. " Facts are true when they can be replicated.
Theories are true when they predict the facts.
New facts can invalidate theories
that were previously considered true (K. Popper)

/ /. V4
The word “true = Examples
has a different o Physics, Biology,...
9 meaning. ) o Social sciences, Experimental psychology,...




Essential epistemology
— Engineering

Exact Experimental . . E 1 1
i el ENngineering
sciences sciences
Deals with Axioms & Facts .& Artifacts
Theorems Theories
ruth is

= Deals with artifacts.

Mathematics Physics Cs. . . .
S s = A claim is true when the artifact works,

(the artifact fulfils a contract.)

= Examples
o Mechanical engineering, ...
o Nuclear engineering, ...
o Computerscience.



Machine learning?

What is machine learning?

" An engineering discipline? Yes: applications abound.

= An exact science? Yes: statistical/algorithmic learning theory.
= An experimental science? Yes: papers often report on experiments.
This is all good



Machine learning?

What is machine learning?

" An engineering discipline? Yes: applications abound.
= An exact science? Yes: statistical/algorithmic learning theory.
= An experimental science? Yes: most papers include experiments.

This is all good ... as long as we don’t mix the genres.

" “My software works really well, therefore my theory is true.”

= “This is NP-complete, therefore this experiment is wrong.”




ML as an experimental science

sSome problems of interest do not have a clear specification.
They are not amenable to provable algorithms.

0 W
S & v s
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X

"Machine learning replaces the missing specification by lots of data.

"Important aspects of the data cannot be described by a compact
mathematical statement (otherwise we have a specification!)

"Therefore experimentation is necessary!



ML as an experimental science
. ERTTTIEE

Progress during the |
(1) Set aside test examples
last few decades
has been driven by (2) Estimate f using only the training set.
3 Single experimental Using the test set is forbidden.
paradigm! l

;} (3) Measure final performance

using the testing set.
Ideally this happens only once!



ML as an experimental science

Progress during the This is unusual for an
last few decades experimental science!
has been driven by
a single experimental Physicists, biologists, experimental
paradigm! psychologists, ..., must work a lot harder

to design experiments and interpret
their results.




Where does the data come from?

How to improve the performance of a ML application?

= Get better algorithm? +
= Get better features? +++
" Get better data? FH++++

Data collection is hard work

=" The data distribution must match the operational conditions.
= Rely on manual data curation to avoid dataset bias.



The impact of dataset bias

Training/testing on biased datasets gives unrealistic results.

"E.g. : Torralba and Efros, Unbiased look at dataset bias, CVPR 2011.

task . feston: | GNO9 LabelMe PASCAL ImageNet Caltechl0l MSRC
Train on:
SUNO09 282 29.5 16.3 14.6 16.9 21.9
LabelMe 14.7 34.0 16.7 22.9 43.6 24.5
S | PASCAL 10.1 25.5 35.2 43.9 44.2 39.4
8 | ImageNet 11.4 29.6 36.0 57.4 52.3 42.7
. & | Caltechl101 75 31.1 19.5 33.1 96.9 42.1
S & | MSRC 9.3 27.0 24.9 32.6 40.3 68.4
=T [ Mean others 10.6 28.5 2277 294 39.4 34.1




Increased ambitions: Big Data

Too much data for manual curation

= Big data exists because data collectionis automated.

= Nobody checks that the data distribution matches
the operational conditionsof the system.

—> All large scale datasets are biased.

Training/testing on a big dataset can give unrealistic results.



Increased ambitions: A.l.

Statistical machine learning

"Buildinga classifier that works well under a certain distribution.

Machine learning for artificial intelligence

"Buildinga classifier that recognizes a “concept”.

"Concepts exist independently of the pattern distribution.
*Training data will never cover the whole range of possible inputs.

In fact, a system that recognizes a “concept” fulfils a stronger contract
than a classifier that works well under a certain distribution.



Concepts # Statistics

Example: detection of action “giving a phone cal

I”

(Oquab et al., CVPR 2014)



Concepts # Statistics

Computer vision is not a statistical problem

Is this less of a car
Car examples in ImageNet because the context is wrong?



Concepts # Statistics

Convolutional H‘ -, TR
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Concepts # Statistics

A herd of giraffes walk down the street in the
middle of some trees.

From a talk of ( Zitnick 14 )

Caption generation

= Eightindependent papersin 2014.
Accordingto the BLEU score,

some of these systems perform
betterthan humans...

* They met in Berkeley in January 2015.
= Evaluationis very difficult.

= Example of difficulty :
caption generationvsretrieval




Conclusion of part 2

Training/testing only goes so far...

Training/testing is an unusually convenient experimental paradigm...
- it makes experimentation easier than in other sciences
—> it has played a role in the fast progress of ML.

...but may not fulfil our increased ambition (big data, Al.)

- the end of an anomaly?

Working around this could save decades.



3 Flements
of a solution




1. Process challenges

Challenges of a new kind

=\We are used to face technical challenges.

"These are “process challenges.”




1. Process challenges

Engineering process

"There is arich literature about the software engineering process.

=\What should be the machine learning engineering process?




1. Process challenges

Scientific process
=\We cannot solely rely on training/testing experiments.

=We can understand more things with ad hoc experiments.

Examplein question answering: the “BABI” tasks (Bordeset al., 2015)
o questions that require combiningone/two/more factoids.

o questionsthat require spatial/temporal reasoning.
o eftc.

= What are the best practices in other experimental sciences?



1. Process challenges

A constructive proposition

" Machine learning papers rarely show the limits of their approach.

- For fear that reviewers will use them against their work.

= Reviewers should instead demand that authors discuss these limits.

- Additional credits if they illustrate these limits with experiments.
- This would make the papers more informative...
- and would therefore facilitate scientific progress.



2. ML with stronger contracts

How to better resist distribution shifts?
= Optimize measure of coverage instead of average accuracy.

- Selective classification (El Yaniv’s, ...)
- KWIK (Li & Littman)
- Conformal learning (Vovk, ...)

"\Very interesting properties when the data is Zipf distributed...



2. ML with stronger contracts

Zipf distributed patterns

way enough data to train }

not enough data to train ]

Queries sorted in frequency order




2. ML with stronger contracts

Doubling the size of a Zipf distributed dataset.

ﬁiminishing returns\

|
@ | for average accuracy
l improvements.
[
|
! No diminishing
2X |
| returns
: on number of
r

queries for which we

¢

| can learn correct
answers.




3 How to package the work of others

"Digital computers : “software”

"l earning machines:
> Trained module as a software component?
X Trained components only offer “weak contracts”.
° Training software?

v |fyou can get the training data and replicate the rig.
Recent example : AlexNet.

> Task specific trained features
v" Nearly as good.



Example: face recognition

Interesting task: “Recognizing the faces of 10° persons.”

"How many labeled images per person can we obtain?

Auxiliary task: “Do these faces belong to the same person?”
=*Two faces in the same picture usually are different persons.
*Two faces in successive frames are often the same person.

P
m @' y/n mP ' > john
-t

}_

(Matt Miller, NEC, 2006)



Example: NLP tagging

Binary encoded Five Time-Delay

N Words embedded Multilayer networks :
sentence words. ] in 50100 dim space y
N q 7 Part Of Speech Tagging
i iy ( treebank, split 02-21/23)
N s ey
NI > Named Entity Recognition
N N ( treebank, Stanford NER )
™ S|
5 e I i s Chunking
| ( treebank )
PR | 1t
L Q_ Semantic Role Labeling
n | 0 i S (propbank)
~~ Positional 4 Language Model
_ information relative to il ;
p the chosen predicate for UilfpEelep R e i)

- semantic tagging

(Collobert, Weston, et al., 2008-2011)




Example: object recognition

Dogs inImageNet
(~10° dogs)

Dogs in Pascal VOC
(only ~10% imgages)




Example: object recognition

Source task Source task labels

Training images
PR
g African elephant

Convolutional layers Fully-connected layers y
1: Feature . Wall clock
learning C1-C2-C3-C4-C5 p>| Fco | FC7 FC8 > -
4096 or &
6144-dim Green snake
} vector
-~ . )
Y Yorkshire terrier
2 : Feature Transfer -
transfer parameters -
. Chair
va‘_c!(‘ec"
. e I ‘ Background
3 : Classifier C1-C2-C3-C4-C5 b rco b Fc7 ——» FCa —> FCb —> -
learning 4096 or Gl
6144-dim o Person
9216-dim 4096 or vector
vector 6144;d|m “ TV/monitor
Training i lid h vector New adaptation L
raining images Sliding patches i
g 1mag Ep Target task layers trained Target task labels
on target task

Several CVPR 2014 papers — figure from (Oquab et al., 2014)




Conclusion




Two process challenges

" Machine learning disrupts software engineering.
—> Challenging our impact on real world applications.

" OQur experimental paradigm is reaching its limits.
—> Challenging the speed of our scientific progress.



