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Abstract

We carefully study how well minimizing con-
vex surrogate loss functions corresponds to
minimizing the misclassification error rate for
the problem of binary classification with lin-
ear predictors. We consider the agnostic set-
ting, and investigate guarantees on the mis-
classification error of the loss-minimizer in
terms of the margin error rate of the best
predictor. We show that, aiming for such a
guarantee, the hinge loss is essentially opti-
mal among all convex losses.

1. Introduction

Perhaps the most fundamental question studied in the
theory of machine learning is that of binary classifi-
cation with half-spaces. However the problem of ag-
nostically learning half-spaces is known to be NP-hard
in general (Kearns et al., 1994). Even when one only
wants to learn a half-space relative to the best possible
M -margin error, Ben-david & Simon (2000) show that
(subject to P 6= NP ) there exists no proper learning
algorithm (i.e. returning a linear predictor) that runs
in time polynomial in both 1/M and the desired ac-
curacy. Under a cryptographic hardness assumption,
(Shalev-Shwartz et al., 2010) extend this result to im-
proper learning (i.e. when the algorithm may output
any predictor, as long as it generalizes well).
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In practice, one typically reverts to minimizing a con-
vex surrogate, such as the hinge-loss, squared loss,
logistic loss, exp-loss etc. Minimizing such a convex
loss is usually easy, and can be done in polynomial
time, but the question then is how well does min-
imizing such a convex surrogate perform relative to
minimizing the actual classification error. An impor-
tant line of work focused on relating the excess loss
to the excess misclassification error, and introducing
the notion of “classification calibrated” loss functions
(Zhang, 2004; Bartlett et al., 2006). As discussed in
detail in Section 4, this notion is relevant only when
the Bayes predictor is in our hypothesis class—i.e. for
linear prediction, when the Bayes predictor is exactly
linear. Here we consider the more realistic agnostic
setting, where we make no such assumption. Instead,
we only rely on the existence of some linear predictor
with small error rate at some margin, and ask the ques-
tion of what misclassification error can be guaranteed
by minimizing a convex loss. We obtain guarantees
for specific loss functions, which allow us to compare
between them, as well as a lower bound that holds
for any convex loss. We now proceed to discuss and
compare our work with other related work.

1.1. More Related Work

Several other authors, beyond those discussed in the
previous section, also address the question of choosing
appropriate surrogate loss functions for binary classi-
fication. Masnadi-Shirazi & Vasconcelos (2009) and
Nock & Nielsen (2008) study various choices of sur-
rogate losses for the classification problem and argue
that the “right” loss depends on the underlying un-
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known distribution. In the agnostic setting, which we
consider here, we do not know the underlying distribu-
tion, and so seek a distribution free guarantee. Christ-
mann & Steinwart (2004) investigate robustness prop-
erties of learning algorithms that are based on convex
risk minimization in terms of the so called influence
function corresponding to the loss. They argue that
most statistical models are intended to be approxi-
mations of true model generating data. Robustness
of the method basically implies that when the true
underlying distributions deviate from the model only
slightly then the performance of the method is not af-
fected much. Hence, they use this to argue about the
e�cacy of algorithms based on convex losses. While
robustness property tells us that deviating from the
model by a small amount doesn’t a↵ect performance
much, it does not address the issue of agnostic learning
where no assumptions are made about the underlying
distribution (except that a hypothesis in the hypoth-
esis class has low risk). In contrast, our work directly
looks at how minimizing a surrogate loss corresponds
to minimizing the misclassification error rate without
any assumptions about the model generating the data
or assuming even that the approximate Bayes optimal,
w.r.t. the surrogate loss, belongs to the hypothesis
class.

In terms of directly minimizing the misclassification er-
ror rate, without using a convex surrogate loss, Kalai
et al. (2008) provide non-asymptotic finite sample
bounds for e�cient binary prediction with half spaces.
However, to do so they assume the inputs are uni-
formly distributed on the surface of a sphere, which is
an extremely strong an unrealistic assumption. Simi-
larly, Kalai & Sastry (2009) also provide an e�cient al-
gorithm for minimizing the misclassification error, but
only under the assumption that the conditional distri-
bution of the label given the input x is some mono-
tonic function of w · x for some w—again significantly
departing from the agnostic setting.

As mentioned earlier, although they focus on boosting
(coordinate descent optimization), Long & Servedio
(2008) essentially establish that if one does not assume
that margin error, ⌫, of the optimal linear classifier is
small enough then any algorithm minimizing any con-
vex loss � (which they think of as a “potential”) can be
forced to su↵er a large misclassification error. They do
not, however, consider the bounded-margin case, that
is when the margin error ⌫ of the best linear classifier is
small compared to the margin M . In concurrent work,
(Long & Servedio, 2011) do show that using convex
surrogate losses for learning can at best only guaran-
tee that the zero-one is bounded by O(⌫/M), which
is a result very similar to our Theorem 4, though this

a much higher constant. They do not however show
lower bounds for specific loss functions which gives one
the tool to compare various convex surrogate losses in
a precise manor. More interestingly, they provide a
randomized improper learning algorithm whose zero-
one loss is bounded by ⌫/(M log( 1

M

))+ ✏ in time poly-
nomial in 1/M and 1/✏ (where ⌫ is the misclassifica-
tion error rate at margin M). This shows that, at
least when improper learning is allowed (i.e. we are
allowed to return a non-linear predictor, as long as it
generalizes well), it is possible to do (slightly) better
than minimizing a convex surrogate. The question of
whether this is possible with proper learning remains
open.

2. Setting

Let D(x, y) be a distribution over U⇥{+1,�1}, where,
for some d, U = {x 2 Rd : kxk  1} is the d-
dimensional unit sphere. We will often actually con-
sider finite samples, in which case D should be un-
derstood as a uniform distribution over points in the
sample.

A linear predictor is described by a vector and a bias
term: (w, w0), w 2 Rd, w0 2 R. For a loss function
� : R ! R, the �-risk is give by:

RD
�

(w, w0) = E(x,y)⇠D [�(y(hw,xi+ w0))].

When the distribution D is understood from the con-
text, we will simply use R

�

(w, w0). We will be par-
ticularly interested in the 0-1 loss �01(z) = 1 {z  0}
and the margin-loss �

m

(z) = 1 {z < 1}, and the cor-
responding risks:

R01(w, w0) = R
�01(w, w0) = Pr (y(hw,xi+ w0)  0)

R
m

(w, w0) = R
�m(w, w0) = Pr (y(hw,xi+ w0) < 1)

Note that we are considering a prediction of zero as
an error both for the positive class and the negative
class, thus always predicting zero yields an error rate
of one. We are also using �

m

and R
m

to denote the
error relative to a margin of 1, and so we will actually
encode the margin through the norm of w, i.e. the
actual margin is 1/ kwk.

3. Misclassification Error Guarantee

We begin by showing that for any convex loss func-
tion, and any arbitrarily low misclassification error
rate ⌫ > 0, there exists a sample which is linearly
separable with error rate ⌫, but for which the pre-
dictor minimizing the surrogate loss would have error
rate arbitrarily close to 1. In other words, there are
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training samples over which an algorithm that mini-
mizes the surrogate loss will output a classifier whose
actual training error is close to 1, in spite of the fact
that these samples can be classified with small error by
another half-space (which is missed by the loss mini-
mization algorithm, due to having high surrogate loss).
Furthermore, such examples exist even if the domain
space is just the real interval. A similar result was
also essentially shown by Long & Servedio (2008)—
they discuss “boosting”, i.e. loss minimization by co-
ordinate descent, here we refer more directly to the
loss minimizer.

For a loss �(·), define the Misclassification Error

Guarantee relative to the zero-one loss as:

EG(�, ⌫) = sup
D s.t. 9w, w0,
R01(w, w0)  ⌫

sup
(ŵ, ŵ0) s.t. 8

w,w0
R�(ŵ, ŵ0)  R�(w, w0)

R01(ŵ, ŵ0) (1)

That is, we are asking: what is the largest misclassifi-
cation error su↵ered by the linear predictor minimizing
�-risk when the underlying distribution is such that
the misclassification error rate of the best half-space is
bounded by ⌫.

When ⌫ = 0, i.e. in the separable case, this is essen-
tially a question about “classification calibration”, and
we have that for convex �, EG(�, 0) = 0 if and only
if � is di↵erentiable at zero and �0(0) < 0 (Bartlett
et al., 2006)—see Section 4. This is a mild condition
that holds for most common loss functions, but here
we are interested in EG(�, ⌫) for ⌫ > 0.

Our initial claim can be state as follows:

Proposition 1. For any convex function �, and any

⌫ > 0, EG(�, ⌫) = 1.

This follows from the one-dimensional source distribu-
tion below:

• There are ⌫/2 points at x = �1 labelled +1

• There are ⌫/2 points at x = +1 labelled �1

• There are 1�⌫
2 points at x = M labelled +1

• There are 1�⌫
2 points at x = �M labelled �1

Here, the optimal linear predictor is one that labels
points to the right of 0 as positive and left of 0 as
negative, yielding misclassification error ⌫. However as
M ! 0, the minimizer of any classification calibrated
convex surrogate loss will label points to the right of 0
as negative and left of 0 as positive because the points
close to 0 (M close) su↵er small loss under the convex
loss. This simple example shows that EG(�, ⌫) = 1
for any convex loss.

3.1. Surrogate loss minimization when
margins exist

We have just shown that the existence of a linear pre-
dictor with low misclassification error is not enough to
ensure the success of surrogate loss minimization. Our
next step is to analyze the success of this paradigm
under stronger assumptions - the existence of a good
linear classifier with respect to some positive margin.
Our next definition considers the worst possible error
of a surrogate loss minimizer when the data allows a
low error classifier with some margin. Our main result
in this section, Theorem 4, implies that, up to a factor
of 2, the hinge loss is optimal among all convex loss
functions in that respect.

EG(�, ⌫, B)

= sup
D s.t.

9w, w0, kwk  B,
Rm(w, w0)  ⌫

sup
(ŵ, ŵ0) s.t. 8w, w0,

R�(ŵ, ŵ0)  R�(w, w0)

R01(ŵ, ŵ0) (2)

Here, B specifies the margin, and we will sometimes
refer to it directly as M = 1/B. We have that
EG(�, ⌫) = EG(�, ⌫,1). A more careful look at the
lower bound on EG(�, ⌫) in the previous section re-
veals that for ⌫ � 1/(B + 1) = M/(M + 1), we have
EG(�, ⌫, B) = 1 for any convex loss �. However for
smaller values of ⌫, it is possible to get meaningful
bounds on EG(�, ⌫, B). In particular, for the hinge
loss the simple observation that B + 1 times the mar-
gin loss upper bounds the hinge loss in the interval
[�B,B] gives the below upper bound on EG(�, ⌫, B).

Proposition 2. For the hinge loss �hinge(z) =
max(0, 1� z), we have that

EG(�hinge, ⌫, B)  (B + 1)⌫

In order to prove our main result, it would be useful
to generalize the above result a parametric family of
“scaled” hinge losses give by �

��hinge(z) = max(0, 1�
z

�

), with a parameter � > 0. Thus, if � = 1, �
��hinge

is �hinge.

Theorem 3. For all � > 0, if ⌫(B + 1) < 1, then

EG(�
��hinge, ⌫, B) � min

⇢
⌫(B + 1)

2
, 1� 2⌫

�

Using the above theorem, we prove our main result :

Theorem 4. For any convex loss function �, we have

EG(�, ⌫, B) � min

⇢
⌫(B + 1)

2
,
1

2

�
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The above theorem and Proposition 2 together show
that hinge loss is optimal up to constant factor 2.

We would also like to compare the error guarantees
of specific losses or loss families. To this end, we de-
rive the following generic “recipe” for obtaining lower
bounds specific to loss functions (See Appendix, Sec-
tion A for a proof):

Lemma 3.1. For any non-negative convex loss � ,

EG(�, ⌫, B) � (3)

� min

(
sup

�2[0,1]
inf

↵2[0, 4p
5
]

(1�⌫)�(↵)+⌫�(�(B�5)↵
2 )��(2�)

2(�(�2�)��(2�)) ,
1

4

)

Based on the above lemma, we show a lower bound for
any strongly convex loss function, which shows that
choosing strongly convex loss functions is in fact qual-
itatively worse in the worst case sense (See Appendix,
Section B for a proof).

Corollary 5. For any �-strongly convex surrogate loss

that is L-Lipschitz in the interval [�1, 1], we have that

EG(�, ⌫, B) � min

⇢
�

64L
⌫ (B � 1)2,

1

16

�

3.2. Bounds for Specific Losses

Before we proceed we would like to give an alternate
bound to Equation (3) which is often easier to get a
handle on. To this end note that by (3.1) :

EG(�, ⌫, B) � min

(

1
4
,

sup
�2[0,1]

inf
↵2[0, 4p

5
]
max

⇢

�(↵)��(2�)
4�(�2�)��(2�) ,

⌫(�(�(B�5)↵
2 )��(2�))

2(�(�2�)��(2�))

�

)

For the first term in the max, note that for some
fixed x2 the ratio �(x1)��(x2)

x1�x2
is monotonically non-

decreasing in x1 and so,

EG(�, ⌫, B)

� min

(

1
4
, sup
�2[0,1]

inf
↵2[0, 4p

5
]
max

⇢

2��↵
8� ,

⌫(�(�(B�5)↵
2 )��(2�))

2(�(�2�)��(2�))

�

)

Further note that for � > ↵, 2��↵

4� � 1
4 and so we can

conclude that,

EG(�, ⌫, B) � min

(

sup
�2[0,1]

⌫(�(�(B�5) �
2 )��(2�))

2(�(�2�)��(2�)) ,
1
8

)

(4)

Example 3.1 (Hinge Loss). The hinge loss is give by

�(z) = max(1� z, 0). Simply using Theorem 4 we get

EG(�, ⌫, B) � min

⇢
⌫(B + 1)

2
,
1

2

�

Example 3.2 (Squared Hinge Loss). The squared

hinge loss is given by �(z) = max(1 � z, 0)2. Using

Equation 4 with � = 1
2 , we get

EG(�, ⌫, B) � min

⇢
⌫(B � 1)2

128
,
1

8

�

Example 3.3 (Exponential Loss). Exponential loss

is given by �(z) = e�z

. For Exponential loss using

Equation 4 with � = 1/2 we get

EG(�, ⌫, B) � min

⇢
⌫(eB � 1)

2(e2 � 1)
,
1

8

�

Example 3.4 (Logistic Loss). For Logistic loss is

given by �(z) = log(1 + e�z). For logistic loss, us-

ing Equation 4 with � = 1/2 we get,

EG(�, ⌫, B) � min

(
⌫
�
log(1 + e(B�5)/4)� 0.32

�

2
,
1

8

)

Notice that for large B this behaves similar to hinge
loss. Also notice that the squared hinge loss (and sim-
ilarly square loss) behave quadratically in B and ex-
ponential loss has exponential dependence on B. Thus
we see that for large B hinge loss gives qualitatively
better bound that squared loss of exponential loss.

3.3. General Hypothesis Classes

The misclassification error guarantee (EG) was spe-
cific to linear predictors (with norm bounded by B).
One can easily generalize this definition of misclassifi-
cation error guarantee w.r.t. an arbitrary hypothesis
class H as follows :

EGH(�, ⌫, B)

= sup
D s.t. 9h 2 H,

sup
x,x0 |h(x) � h(x0)|  2B,

Rm(h)  ⌫

sup
bh 2 H s.t.

8h 2 H, R�(bh)  R�(h)

R01(bh) (5)

Since the linear hypothesis with norm bounded by B
is a particular case of a hypothesis class that satisfies
sup

x,x

0 |hw,xi � hw,x0i|  2B, we have that for any
loss � :

EG(�, ⌫, B)  supH EGH(�, ⌫, B)

On the other hand, note that Proposition 2 was only
based on the fact that hinge loss can be bounded by
the margin loss times the maximum value of the loss
(given maximal value of predictor is B). Hence the
proposition directly extends to any hypothesis class
and so we can conclude that

sup
H

EGH(�hinge, ⌫, B)  ⌫(B + 1). (6)
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And so, all our upper and lower bounds can
also be interpreted as upper and lower bounds on
supH EGH(�hinge, ⌫, B), i.e. on the best misclassifica-
tion error guarantee that is possible based only on the
loss function, and is required to hold independent of
the hypothesis class.

Furthermore, by Theorem 4, the right hand side in (6)
is in turn bounded by 2EG(�hinge, ⌫, B), and we see
that the “extreme” hypothesis class for the hinge-loss
is the linear class. This can also be extended to the
other commonly used losses referred to in Section 3.2.
Hence, even if we want misclassification error guaran-
tees that focus only on the loss and are required to
hold regardless of the hypothesis class, studying the
linear class, i.e. EG(�, ⌫, B), is often su�cient.

The main reason we focus our presentation on linear
predictors is that learning linear predictors (possibly
linear in a feature space, which includes kernel meth-
ods) combined with convex losses is essentially the only
situation that yields a convex optimization problem,
which is one of our goals when using convex surro-
gates.

4. Classification Calibration and the

Misclassification Error Guarantee

An important line of work focused on relating the ex-

cess loss to the excess misclassification error, and in-
troducing the notion of “classification calibrated” loss
functions (Zhang, 2004; Bartlett et al., 2006). A basic
notion here is that of a loss being “classification cali-
brated”, i.e. ensuring that zero excess loss (beyond the
Bayes optimal) translates to zero excess misclassifica-
tion error (beyond the Bayes optimal). This ensures
that if we consider a class rich enough to include the

Bayes optimal predictor then minimizing the expected
loss indeed also minimizes the misclassification error.
Classification calibration can be seen as an extreme
point of the misclassification error guarantee (EG) in
two ways:

First, for any convex loss �, EG(�, 0) = 0 if and only
if � is classification calibrated (both are equivalent to
the derivative at zero being defined and negative). Dis-
cussing ⌫ = 0 corresponds to considering only the sep-
arable case, which is in a sense the point of intersection
of our study and that of Zhang (2004); Bartlett et al.
(2006).

Second, we can think of classification calibration as re-
ferring to EGM, where M is the set of all measurable
functions. That is, a surrogate loss � is classification
calibrated if and only if EGM(�, nu) = ⌫.

Analyzing either EG(�, 0) or EGM(�, ⌫) is not satis-
factory as they don’t correspond to the agnostic learn-
ing case where we are interested in doing as well as
the best hypothesis in the function class of interest.
Typically, classification calibration based results are
used in conjunction with approximation theory to ar-
gue that as the number of training samples increase
one can consider richer and richer hypothesis classes,
and hence eventually converge to the set of all measur-
able functions M, where EGM(�, ⌫), and hence the
notion of classification calibration, is relevant. How-
ever, such an analysis typically only establishes asymp-
totic behavior (unless strong assumptions are made).
The analysis in this work neither needs to assume that
data is linearly separable nor assume that the Bayes
optimal predictor under the surrogate loss function is
linear (with norm bounded by B).

For example, based on Zhang (2004), Rosasco et al.
(2004) argue that the hinge loss (and also logistic loss)
enjoy better rates than other losses like squared loss.
However these results are also based on convergence
to the Bayes optimal and so we either need to take
very rich hypothesis classes or assume that the Bayes
optimal predictor under surrogate loss is contained in
the hypothesis class used.

5. Including Estimation Error Rates

It is interesting to consider how misclassification error
guarantee (EG) combines with estimation error rate.
In practice, we get a finite training sample and when
picking the hypothesis that minimizes some empirical
loss, the estimation error involved in minimizing em-
pirical objective, rather than the true expected objec-
tive, comes into the picture. While choosing the loss �
one should take into account both the misclassification
error guarantee (EG) associated with the loss and also
the associated estimation error for the problem. For
example, thinking of only estimation error, one might
think that squared error is better as one might expect
a 1/n rate where n is the sample size. However, EG
for squared loss is large as we argued in Section 3.2.

For high dimensional cases, one can argue that hinge
loss is the loss of choice even when we take estima-
tion error into account. For the conservative update
algorithm w.r.t. the hinge loss with its corresponding
analysis by (Shalev-Shwartz, 2007), or for the exact
minimizer (which corresponds to the SVM) of empiri-
cal hinge loss using results in (Srebro et al., 2010) (and
noticing that hinge loss upper bounds a smooth ver-
sion of margin loss which in turn upper bounds the
zero-one loss) one can show that if bw

n

is the linear
predictor returned by one of these algorithms, then, in
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expectation over training sample

R01(ŵn)  2 inf
w:kwkB

R�hinge(w) +O

✓

B2

n

◆

 2 (B + 1)⌫ +O

✓

B2

n

◆

(7)

where ⌫ = inf
w:kwkB

R01(w). In order to com-
pare this with the squared loss, we first note that
the best misclassification error guarantee one can give
for an algorithm that minimizes the expected squared
loss is bounded by EG(�squared, ⌫, B) � min{⌫(B �
1)2/128, 1/8}. Further, when the dimensionality is
large (compared to the sample size) then the estima-
tion error rate for the squared loss (with linear pre-
dictors) can be lower bounded by B2/n (see for in-
stance (Srebro et al., 2010)) and so the best guarantee
that can be provided on the classification risk of es-
timator obtained by minimizing squared loss scales is
⌫(B � 1)2 + B2/n. Comparing this with the upper
bound in equation 7 shows that the hinge loss is qual-
itatively superior (in the worst case) even if one takes
into account the estimation error rates.

A similar analysis can be repeated w.r.t. other losses
where e↵ectively hinge loss (and also logistic loss) can
be shown to have qualitatively better performance
than, for instance, squared loss or exponential loss, or
any strongly convex loss. We would like to point out
that the low-dimensional analysis requires a bit more
care, as the estimation error for the squared loss might
be much lower than for methods based on other loss
functions.

6. Proofs of Theorems 3 and 4

Proof of Theorem 3. The distribution for this theorem
is as follows:

• There are ⌫ points at x = �1 labelled +1

• There are � points at x = �M labelled �1

• There are 1� � � ⌫ points at x = M labelled +1

Although the data lies on the real line, we consider the
example to be in R2. Now consider the classifier found
when minimizing the convex surrogate loss �

M�hinge.
We aim to show that the vector w? = (0,�1) with
w?

0 = M is the optimal classifier. It has R
�

(w?,w?

0) =
2�. The margin loss of (w?,w?

0) is clearly �. Any
other classifier that misclassifies fewer than � points,
must cross the x-axis.

Case 1

Assume that we have a classifier that misclassifies
fewer than � points, and that this classifier intersects

the x-axis between [�M, 0] and mislabels only (and
all) ⌫ points at x = �1. Assume that it crosses at
�c 2 [�M, 0]. Assume also that it crosses the x-axis
with some angle ✓. Thus, w = (sin(✓),�cos(✓)) and
w0 = sin(✓)c.

Consider the case where (w, w0) is further than M
away from the 1 � � � ⌫ points at x = M . Then,
R

�

(w, w0) = ⌫(1+ sin(✓)(1�c)
M

+�(1� sin(theta)(M�c)
M

).

By taking the derivative, we can see this is increasing
as ✓ increases, thus taking ✓ to be as small as possible
while maintaining the M distance from the points at
x = M is best. This gives, sin(✓) = M

M+c

, which yields

R
�

(w, w0) =
1

M+c

· (⌫(1 +M) + 2c�).

Finally, taking the derivative with respect to c we find
that if � < ⌫ 1+M

2M then R
�

(w, w0 is minimized at c =
M with a cost of R

�

(w, w0) = ⌫ 1+M

2M + �.

We do not need to consider similar classifiers that in-
tersect the x-axis between (0,M ], as they will only
increase the cost of points at x = �1 and add cost of
points from x = M . This will never beat the classifier
mentioned above when c = 0, which is already beaten
by the classifier with c = M .

Case 2

Now assume that we have a classifier that misclassi-
fies fewer than � points and that this classifier inter-
sects the x-axis between [� 1+M

2 ,�M ], and that the
classifier mislabels only (and all) 1 � � � ⌫ points at
x = M . Assume the classifier crosses the x-axis at po-
sition �c, and that it crosses with some angle ✓. Thus,
w = (�sin(✓), cos(✓)) and w0 = sin(✓)c.

If the classifier is at least distance M from all of the
points, then R

�

(w, w0) � (1 � � � ⌫) 2c
c�M

, which is
minimized when c is largest. Thus, R

�

(w, w0) � 2(1�
� � ⌫) 1+M

1�M

. Note that 2� < 2(1 � � � ⌫) 1+M

1�M

if ⌫ <
M

1+M

, which is one of our assumptions. So, for this
case, (w, w0) is not optimal.

Finally, for this case, we have where the points at x =
�M are within the margin of the classifier, and so
they contribute to the �-loss. Let c0 = c � M . This

gives R
�

(w, w0) = �(1 � sin(✓)c0

M

) + (1 � � � ⌫)(1 +
sin(✓)(c0+2M)

M

).

Using the derivative, we find that it is minimal
when sin(✓) = M

1�c

0�M

. This yields R
�

(w, w0) =
1

1�c

0�M

(�2�(c0 +M) + (1 � ⌫)(1 +M)). Taking the
derivative with respect to c0, yields the minimum when
c0 = 0 (which means c = M). Therefore, the cost is
R

�

(w, w0) =
1

1�M

(�2�M + (1 � ⌫)(1 +M)). Again,

we find that this cost is larger than 2� when ⌫ < M

1+M

.
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Provided 1 � � � ⌫ > ⌫, we do not need to con-
sider similar classifiers that intersect the x-axis be-
tween [�1,� 1+M

2 ), as they always have higher cost.

Remaining cases

Any classifiers outside of those discussed in Case 1 and
Case 2 misclassify at least � points, as long as � < 1

2 .

Therefore, since R
�

(w?,w?

0) = 2� we merely need that
2� < ⌫ 1+M

2M + � to handle Case 1, which is true when
� < ⌫ 1+M

2M . This was our assumption.

Finally, the EG(·) found here applies to all �
��hinge

losses because �
M�hinge(x) = �

��hinge(
�

M

x), and thus
they are equivalent losses with respect to their er-
ror guarantee. Thus what we have shown is that
EG(�

��hinge, ⌫, B) � � for any � such that ⌫ < � <
⌫(B+1)

2 and 1 � � > 2⌫. Thus taking the largest of
such �’s gives the final form of the bound.

Proof of Theorem 4. There exists an ↵, with 0 < ↵
such that the horizontal line above the x-axis, labelling
all points as +1, has cost � ·�(�↵)+(1��) ·�(↵) < 1,
as long as � < 1

2 , which holds for this theorem since
� < ⌫M+1

2M .

For any convex function �, there exists a � > 0 such
that �(x) � �

��hinge(x), for all x. Thus, any classifier
(w,w0) that misclassifies fewer than � points must sat-
isfy R

�

(w,w0) � �+ ⌫

2 · (1+B). This follows from the
proof of Theorem 3, because it is the minimum value
of R

���hinge(w,w0), where (w,w0) misclassifies fewer
than � points.

However, for any classifiers (w,w0) that misclassifies
fewer than � points, it is some distance c away from
at least ⌫ points that it misclassifies, where c > 0.
This follows from our distribution having three groups
of points: a group of size ⌫, a group of size �, and
a group of size 1 � � � ⌫. The smallest group size is
⌫ because � > ⌫ and 1 � � > 2⌫ and that (w,w0)
must misclassify at least one of the groups of points.
Therefore, R

�

(w,w0) � � + ⌫

2 · (1 + B) + ⌫(�(�c) �
�
��hinge(�c)).

Note that �(�c) � �
��hinge(�c) � 0. From here, we

break the analysis into two cases. First, for all x  0,
�(x) = �

��hinge(x). Second, is where there exists x0 <
0 such that �(x0) > �

��hinge(x0).

For both cases, we will make use of the cost of a hor-
izontal line above the x-axis that labels all points as
+1. Recall from above that the cost of this classi-
fier, which is (0, w0

0) for some w0
0 > 0, is given by

� · �(�↵) + (1 � �) · �(↵) < 1. Also, this inequality
holds for any �(·). We refer to this classifier as h⇤ and

its risk is R
�

(h⇤).

Case 1:

In this case, �(�c) � �
��hinge(�c) = 0 for all c > 0.

Thus, we are back to R
�

(w,w0) � � + ⌫

2 · (1 + B).
However, we can simplify R

�

(h⇤) in this case.

R
�

(h⇤) = � · �(�↵) + (1� �) · �(↵)
= � · �

��hinge(�↵) + (1� �) · �(↵)

Now, since R
�

(w,w0) � �+ ⌫

2 · (1+B) for any convex
loss function �(·), we can replace �(x) with �0(x) =
�(kx) for any k > 0 and the same inequality must
hold for �0(x). Further, �0(x) = �

��hinge(kx), for all
x  0 and k > 0. Recall that as x ! 1, �0(x) ! 0.
Let �0

��hinge(x) = �
��hinge(kx).

R�0(h⇤) = ��0(�↵) + (1� �)�0(↵)
= ����hinge(�k↵) + (1� �)�(k↵)

= ��0
��hinge(�↵) + (1� �)(�0

��hinge(↵) + ✏�0)

= R�0
��hinge

(h⇤) + (1� �)✏�0

< R�0
��hinge

(h⇤) + ✏�0

As k ! 1, ✏
�

0 ! 0. Finally, we have from Theorem 3,
that, for all k > 0, R

�

0
��hinge

(h⇤) < � + ⌫

2 · (1 + B).
This implies that there exists an ✏ > 0 such that
R

�

0
��hinge

(h⇤) + ✏ < � + ⌫

2 · (1 + B). Take k to be
large enough such that ✏

�

0  ✏. This implies that
R

�

0(h⇤) < R
�

0
��hinge

(h⇤) + ✏ < � + ⌫

2 · (1 +B).

Therefore, there exists a k > 0 such that for �0(x) =
�(kx), EG(�0(x), ⌫, B) � �.

Finally, because �0(x) = �(kx), where k > 0, they are
equivalent losses. Therefore, EG(�(x), ⌫, B) � �.

Case 2:

Consider loss �0(x) = �(kx), where k > 0 is large
enough such that �(�kc) � �

��hinge(�kc) > 1 � � �
⌫

2 · (1 + B). This is possible since �(·) is convex and
we assumed that for some x < 0, �(x) > �

��hinge(x).

Therefore, R
�

0(w,w0) > 1. But we know that there
exists ↵ > 0 such that (0, w0

0), with w0
0 > 0 (i.e. a

horizontal line above the x-axis that labels all points
as +1) has cost � · �0(�↵) + (1� �) · �0(↵) < 1. Thus,
for �0(·), EG(�0(·), ⌫, B) � �.

Finally, because �0(x) = �(kx), where k > 0, they are
equivalent losses. Therefore, if 0 < ⌫ < M

M+1 = 1
B+1 ,

then EG(�(·), ⌫, B) � �, for all � such that ⌫ < � <
⌫

2 · (1 +B) and 1� � > 2⌫.
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To conclude the proof note that as already mentioned,
when ⌫(B+1) � 1 we anyway get that EG(�, ⌫, B) �
1 and what we showed in the proof is that when ⌫(B+
1) < 1, then EG(�, ⌫, B) � � for any � s.t. � <
⌫(B+1)

2 and 1 � � > 2⌫. Since B > 1, ⌫ < 1/2 from
which we conclude the proof.

7. Discussion

In this paper, we provide lower bounds on the best
misclassification error achievable by algorithms min-
imizing convex surrogate losses in terms of the M -
margin error. Specifically, we show that the misclas-
sification error rate of the linear predictor minimizing
expected hinge loss is bounded by ⌫(B+1), where ⌫ is
the bound on the M -margin error and B = 1/M . Fur-
ther, by showing that when using linear predictors any
algorithm minimizing any convex loss has a misclassi-
fication error of at least ⌫(B+1)

2 , we conclude that the
hinge loss is optimal up to factor 2. We also show lower
bounds for specific convex losses and that any strongly
convex loss has a qualitatively worse guarantee when
compared to hinge loss. We argue that the analysis
can be used to qualitatively compare convex surrogate
losses used for binary classification, and show that the
hinge loss is the loss of choice for classification prob-
lems. The relationship of the misclassification error
guarantee term, which we introduce in this paper, with
the notion of classification calibration of loss function
is also explored. Specifically, we show how classifica-
tion calibration can be seen as arising from an extreme
case of our misclassification error guarantee term. As
an example of the implications of our results, we ar-
gue that even when one takes estimation error rates
into consideration, hinge loss is optimal up to con-
stant factor (in the worst case sense, at least for high
dimensional problems).
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