
Utilizing Static Analysis and Code Generation to Accelerate Neural
Networks

Lawrence McAfee lcmcafee@stanford.edu
Kunle Olukotun kunle@stanford.edu

Stanford University, 450 Serra Mall, Stanford, CA 94305

Abstract

As datasets continue to grow, neural network
(NN) applications are becoming increasingly
limited by both the amount of available com-
putational power and the ease of developing
high-performance applications. Researchers
often must have expert systems knowledge
to make their algorithms run efficiently. Al-
though available computing power increases
rapidly each year, algorithm efficiency is not
able to keep pace due to the use of gen-
eral purpose compilers, which are not able
to fully optimize specialized application do-
mains. Within the domain of NNs, we have
the added knowledge that network architec-
ture remains constant during training, mean-
ing the architecture’s data structure can be
statically optimized by a compiler. In this pa-
per, we present SONNC, a compiler for NNs
that utilizes static analysis to generate opti-
mized parallel code. We show that SONNC’s
use of static optimizations make it able to
outperform hand-optimized C++ code by up
to 7.8X, and MATLAB code by up to 24X.
Additionally, we show that use of SONNC
significantly reduces code complexity when
using structurally sparse networks.

1. Introduction

Neural networks (NN) have gained much renewed in-
terest in recent years, as they have been shown to out-
perform many application-specific machine learning al-
gorithms across several domains (Bengio, 2009). Given
their potential promise for helping to move the field of
machine learning towards true artificial intelligence,

Appearing in Proceedings of the 29 th International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).

recent research trends have shown researchers’ eager-
ness to test NNs on larger datasets (Raina, 2009; Cai
et al., 2011). However, due to the core linear algebra
routines that compose most applications, NNs are be-
coming increasingly limited by the amount of available
computational power. In cases where large datasets
are desired, researchers typically resort to structurally
sparse networks, which commonly refers to networks
with either dense local receptive fields (Bengio & Le-
cun, 2007) or non-dense receptive fields (Coates & Ng,
2011). However, in order to make larger scale networks
run efficiently, researchers often find themselves need-
ing to have expert systems knowledge to build their
applications.

To the benefit of algorithm efficiency, available compu-
tational power increases each year. This benefits many
applications in general, but the relative efficiency in-
crease many applications see is nowhere near as fast as
the pace of hardware advancement. This is due to the
fact that for most applications, programmers utilize
general purpose compilers to perform much of the opti-
mization work such that the programmer can continue
to focus on the higher-level issues that their domain
requires. However, general purpose compilers (e.g.,
GCC) are not capable of fully optimizing specialized
application domains. Some general purpose platforms
are more specialized to certain domains, such as MAT-
LAB for linear algebra-based development, and are
better suited for many routines that are used to com-
pose NNs. However, as NN applications get more com-
plex, even a platform such as MATLAB is no longer
optimal due to a lack of domain specific knowledge
about the underlying data structures.

Within the domain of NNs, one piece of domain spe-
cific knowledge that can be used to increase efficiency
is knowing that most network architectures – where
the architecture is defined by the choices for layer sizes,
mini-batch size, and interlayer connectivity – do not
change during training. This means that the data
structures used to store the network architecture are



Utilizing Static Analysis and Code Generation to Accelerate Neural Networks

capable of being statically optimized, and then gener-
ated code can be made to run the specific architecture
as efficiently as possible.

In this paper, we present SONNC (pronounced
“sonic”), a Statically Optimizing Neural Network
Compiler1. The main contributions of this paper are:

– SONNC, a neural network compiler that focuses on
statically analyzing and optimizing NNs, and gener-
ates efficient parallel C++ code.

– We demonstrate analyses and optimizations which
use NN domain-specific knowledge.

– We demonstrate the conciseness of code utilizing
SONNC by using SONNC’s front-end interface to
MATLAB.

– We show that SONNC without any explicit perfor-
mance tuning, outperforms hand-optimized C++ code
by 3.3X–7.8X, and MATLAB code by 9.2X–24X.

2. Related Work

Several machine learning (ML) development platforms
have been introduced recently to help with scaling to
larger applications. A few popular platforms are Op-
tiML (Sujeeth et al., 2011), Theano (Bergstra et al.,
2010), and GraphLab (Low et al., 2010). OptiML
is a domain-specific language for ML built on top of
the heterogeneous computing platform Delite (Chafi
et al., 2011). It provides abstractions to allow a pro-
grammer to develop ML applications, while Delite im-
plicitly takes care of parallelizing and running the ap-
plication across multiple CPUs and GPUs. Theano
is a compiler for symbolic mathematical expressions.
Although meant to be a general symbolic compiler,
Theano is designed to handle ML applications. Pro-
grammers develop their applications using Python and
Numpy data types, and Theano implicity generates
C++ and CUDA. GraphLab provides a parallel ab-
straction similar to MapReduce for running large scale
machine learning applications on a cluster.

Similar to SONNC, each of these platforms provides
useful abstractions for programming large scale ma-
chine learning algorithms. These platforms are de-
signed to optimize ML applications in general by us-
ing optimized routines and data structures. Unlike
SONNC, however, none of these other platforms focus
on statically optimizing NN data structures. Neural
networks are a quickly growing field within ML, and
many NN applications are composed of very computa-
tionally expensive operations. SONNC aims to provide

1Code available at: http://github.com/sonnc/sonnc

these additional abstractions and static optimizations
to allow NNs to run more efficiently.

3. System Overview

SONNC makes it easier for an end user to continue
scaling applications without considering the complex-
ities of tuning high performance code. As an example,
if a user wants to design a network that uses struc-
turally sparse connectivity – either locally dense or
unstructured sparsity – a great deal of development
effort would need to go into developing a sparse data
structure that is efficient for indexing and updating
the nonzero values in the weight matrix. When using
SONNC, however, the user only needs to define the
network’s connectivity at the beginning of her code,
and the rest of the code remains unaffected by the un-
derlying data structure. This way, the programmer
only needs to focus on algorithmic intent rather than
worry about the details of implementation.

In addition to optimizing for data structures of the NN
application, SONNC also optimizes the algorithm’s op-
erations by transforming and condensing sequences of
routines into more efficient routines. NNs typically
have a very straighforward data flow, with minimal
high-level control structures. This makes it possible
to perform alterations on the execution graph to make
the algorithm more efficient by improving caching and
reducing overhead.

3.1. Compiler Stages

The following sections briefly overview each stage of
the compiler, which include building an execution
graph, analyzing and optimizing the data structures
and operations, and then generating efficient parallel
code.

3.1.1. Building an Execution Graph

SONNC is a standalone compiler, rather than a new
programming language. As such, supported data types
and operations must be embedded into an existing lan-
guage to allow a user to use the system in a natural
way. (See Section 5.1 for a description of the currently
available data types in MATLAB.) Once an algorithm
is written, an additional compilation function must be
called to let SONNC perform its optimizations.

SONNC supports two high-level matrix data types: a
dense matrix type and a sparse matrix type. A dense
matrix is used to denote a variable where any element
can contain a nonzero value. A sparse matrix, how-
ever, denotes a variable whose sparsity structure does
not change after initialization. In practice, the sparse



Utilizing Static Analysis and Code Generation to Accelerate Neural Networks

type is typically only used for weight data in a NN. In
addition to these two matrix types, vector and scalar
types are supported. All of the standard linear algebra
operations between matrices and vectors are supported
that are commonly used in NN algorithms, including
multiplication, elemental (e.g., dot) operations, norms,
and non-linearity operations.

When SONNC’s data types are connected together via
the supported operations, an execution graph of the
NN application is implicitly built. This graph contains
the flow of operations necessary to compute the nodes
at the output (i.e., weight and bias updates) from the
nodes at the input (i.e., the training set).

3.1.2. Analysis and Optimization

Static graph optimizations. SONNC performs sev-
eral common static compiler optimizations, including
dead code elimination, operation re-writing, subex-
pression elimination, and method fusion. An example
of subexpression elimination is the pre-computing of
all-constant-input operations. For example in the it-
erative shrinkage thresholding algorithm (ISTA), the
algorithm repeatedly runs the update expression:

Z = h(α/L)(Z − 1

L
(ZWT −X)W )

The only variable being updated in this expression is
Z, the approximation to the sparse codes. Hence, to
speed up the update expression, we can expand out
the expression and precompute WTW and XW such
that time is not wasted repeatedly computing these
constant values.

Method fusion is an important optimization for at-
taining high performance. The compiler scans the ex-
ecution graph for recognized operation sequences, and
replaces them with more concise and efficient opera-
tions that typically have better caching and less over-
head. This is a place where having domain specific
knowledge becomes very useful; there are many oper-
ation sequences that are shared between various NN
algorithms. For example, restricted Boltzmann ma-
chines, autoencoders, and backpropogation networks
all share an operation sequence of matrix multiplica-
tion followed by bias addition followed by a nonlinear-
ity. SONNC would recognize this sequence and con-
vert it into its own internal operation, which in the
case of a sigmoid nonlinearity would be called Mult-
BiasSigm. Since the bias and nonlinearity operations
must be applied to each element of the preceding data
matrix, significant savings can be made if these oper-
ations can be performed while the data is still in the
CPU cache immediately following the matrix multipli-

cation. SONNC contains several operation sequences
that it can recognize and replace with more efficient
routines.

Data structure optimization. Since the NN archi-
tecture does not change during training, we can pa-
rameterize the underlying data structures such that
the generated code is optimized to run as efficiently
as possible for the specific network architecture. The
number of threads is also chosen during this stage of
the compiler. The entire data structure optimization
process will be described in greater detail in Section 4.

3.1.3. Multithreading and Code Generation

Once the number of threads is chosen in the previ-
ous stage, the graph is expanded into a multithreaded
graph where each node represents an operation per-
formed by a single thread. Thread synchronization
points are determined during this phase, and this is
the last internal representation of the application be-
fore code generation. C++ code is then generated to
perform the NN application.

4. Data Structure Optimization

Data structure optimization has the single biggest im-
pact on performance in comparison to the other opti-
mizations that SONNC performs. A network’s archi-
tecture, again, is defined by choices for the layer sizes,
mini-batch size, and interlayer connectivity. During
this stage, the underlying data structures are parame-
terized to run efficiently for the specific application.

The number of threads is also chosen during this stage
of optimization. Although not directly a parameter
that affects the underlying data structures, the num-
ber of threads must be chosen jointly with the matrix
blocking size (described below) in order to yield good
parallel performance. Choosing the right number of
threads can have a large impact on performance. The
optimal number of threads varies significantly based
on matrix dimensions and connectivity structures. For
example, even with the same matrix dimensions, the
optimal number of threads between a network that
uses dense local receptive fields and a network that
uses non-dense local receptive fields can vary by a fac-
tor of two or four.

4.1. Underlying Data Structure

Although SONNC contains the two high-level matrix
data types described in Section 3.1.1 (i.e., a dense type
and a sparse type), the system contains several under-
lying data structures including a dense structure, lo-
cally dense sparse structure, a few general sparse struc-



Utilizing Static Analysis and Code Generation to Accelerate Neural Networks

tures, and a hybrid sparse structure. Each of these
underlying structures are appropriate for different cir-
cumstances, and the compiler chooses which to use for
each matrix within a target application. The choice of
an underlying data structure is not always intuitive.
For example, when a user defines a network with dense
local receptive fields, a logical choice for the underlying
data structure might be to use a locally dense sparse
data structure, which stores information on the loca-
tions of rectangular dense blocks within a sparse ma-
trix. In many cases, this is the best data structure to
use for the application. But this is only true when the
receptive field dimension is large enough. When the
receptive field is small (e.g., less than about 5 x 5),
the overhead of performing small dense matrix multi-
plications actually increases above the simpler general
sparse structure. With small enough receptive fields,
the general sparse structure can outperform the locally
dense structure by 1.5X–2X.

4.2. Data Structure Parameterization

In addition to choosing the correct underlying data
structure, each of these data structures is parameteri-
zable, effectively making a wide range of different un-
derlying structures to choose from. The two most im-
portant of these parameters are the matrix blocking
size and the data layout in memory. These parame-
ters apply to both dense and sparse data structures.
The blocking size determines how the matrix’s data is
partitioned in memory by splitting up the matrix into
separate square blocks. Smaller block sizes increase
concurrency, but also increase overhead in reading and
writing the matrix data. The data layout parameter
sets whether matrix elements are stored in memory us-
ing row-major order, column-major order, or another
format. Both the blocking size and data format sig-
nificantly impact cache reuse. While the block size is
typically set globally for all matrices, the data format
is set individually for each variable and depends heav-
ily on the operations and neighboring variables (in the
execution graph) that directly interact with a variable.
One important point to note is that the compiler must
have knowledge of the L1 and L2 cache sizes in order
to properly set the blocking size. In SONNC’s cur-
rent implementation, it implicitly discovers these val-
ues during installation, which is described in the next
section.

4.3. Joint Parameter Selection

SONNC’s ability to properly choose the underlying
data structure, matrix parameterization, and num-
ber of threads represent the most important aspect
of SONNC as a statically optimizing NN compiler.

Properly tuning these parameters can give up to two
orders of magnitude difference in performance. The
joint impact of these parameters is non-linear, and so
the heuristics used to optimize this stage are critical
to getting good performance. To perform this tun-
ing process, SONNC initially must run several timing
tests during its installation in order to calibrate to the
CPU. SONNC times matrix multiplications for several
matrix dimensions, block sizes, and number of threads
in order to create a large lookup table. To keep this
lookup table from being too large, parameter values
are swept over exponentially, and matrix dimensions
are only tested up to 10,000, block sizes up to 1,000,
and number of threads up to 32. For applications with
matrix dimensions larger than this, timing becomes
more easily predictable from the lookup table. The
timing values in this table are generally nonlinear due
to caching. They are also nonconvex as a function of
the number of threads. Currently, SONNC uses linear
interpolation between data points in order to choose
parameter values for a specific application.

This tuning process is also an ongoing area of active
research for the compiler. Future plans for the tuning
process include training a deep learning algorithm on
the parameter space in order to better learn the non-
linearities. For the current implementation, however,
linear interpolation has shown to work very well when
using power-of-2 spacing when creating the lookup ta-
ble.

One other important point to note is that this parame-
ter selection operation is very fast. Using the parame-
ter values mentioned previously during the installation
phase, SONNC builds a lookup table that is stored
as a 160MB file which is loaded into memory during
each use. When a new application is being optimized,
SONNC simply interpolates the neighboring matrix
settings from the lookup table to set the block size
and thread count. Since this operation only includes
linear array scanning and vector averaging, it required
around 2-2.5 seconds to perform parameter selection.
While more sophisticated and computationally expen-
sive methods were tested, linear interpolation worked
well in practice.

5. Productivity

One of SONNC’s goals is to make it easier to write
concise and expressive code, while attaining the per-
formance of optimized C++ code. This way, program-
mers can focus primarily on the algorithmic intent of
their applications. However, this is often not possible
with nontrivial data structures, such as when network
architectures contain sparse interlayer connectivities.



Utilizing Static Analysis and Code Generation to Accelerate Neural Networks

For example, if a LRF network is being defined, a
programmer has a choice to use either a custom data
structure or MATLAB’s sparse structure. Unfortu-
nately, either option would require additional hand-
coded routines for efficient random indexing. This in
turn increases code complexity significantly.

When using SONNC, however, the only difference be-
tween whether a user would like to use dense, locally
dense, or unstructured sparse connectivity is a mat-
ter of how the matrix is initialized. The remainder of
the network’s algorithmic description would be data
structure independent. The following section gives an
example of how the SONNC compiler could be used in
practice.

5.1. MATLAB-Embedded Data Types and
Operations

Although SONNC’s main contribution is its power-
ful static optimization routines, a front-end interface
for MATLAB is provided to allow end users to easily
integrate the SONNC back-end into existing applica-
tions. This should in many cases automatically lead
to more concise code and much higher performance for
NN applications. SONNC embeds four data types into
MATLAB: a Vector type, a Scalar type, a DenseMa-
trix type, and a SparseMatrix type.

SONNC also overloads many common symbolic oper-
ators and other methods in MATLAB such that code
can be written using standard MATLAB syntax. Once
a user has declared her variables using SONNC data
types, much of the remainder of her code should be
identical to as it would be otherwise in MATLAB. The
main difference is that the body of the NN convergence
loop is separated from declaration of the convergence
loop construct. The body of the loop is written first,
followed by a declaration of the convergence loop with
its stopping criterion.

5.2. Example Code

Algorithm 1 shows an example use of SONNC data
types inside a MATLAB script that implements a sin-
gle layer LRF backpropogation network. This exam-
ple highlights the use of the four embedded data types
(e.g., DenseMatrix SparseMatrix, Vector, and Scalar),
one control structure (untilConverged), and one other
method, runNN, used to compile and run the appli-
cation. This example demonstrates the SparseMatrix
constructor being initialized with a dense Matlab ma-
trix structure (the LRFs are stored inside a mostly zero
‘dense’ matrix). SparseMatrix can additionally be ini-
tialized with either MATLAB’s sparse data structure,
or a cell array that contains information of the loca-

tions and data of submatrices within a larger sparse
matrix, which is useful for locally dense sparse vari-
ables.

untilConverged specifies the convergence stopping cri-
terion. The convergence loop iterates until the normal-
ized difference between successive values of the Scalar
type cost falls below the specified tolerance. The out-
put of untilConverged is a data type that simply com-
bines the information of the looping structure and the
execution graph, and is used as the input to the com-
piler. The code is then compiled and executed using
the runNN method.

As can be observed in this example code, the NN’s
routines are not dependent on the weight matrix data
structure. SONNC makes it simple to initialize data
structures as desired, without needing to worry about
tuning code for performance.

6. Performance Evaluation

This section presents performance results for a set of
NN applications written in MATLAB using SONNC
data types. We compare these results to hand-
optimized reference implementations written using
both MATLAB and C++ code. In addition, we ana-
lyze the performance improvements achievable due to
SONNC’s static optimizations that were overviewed in
Section 3.1.

6.1. Methodology

We compare the performance results for three differ-
ent NN applications: the restricted Boltzmann ma-
chine (RBM), the autoencoder (AE), and the iterative
shrinkage thresholding algorithm (ISTA). For each of
these algorithms, we use two different sparsity pat-
terns: local receptive fields (LRF) and unstructured
sparsity. These experiments were run on a machine
containing two quad-core Intel Xeon X5550 2.67GHz
processors and 24GB of RAM. The version of MAT-
LAB used is R2011b 7.13. The SONNC applications
are algorithmically identical to the hand-optimized
MATLAB and C++ implementations. For the hand-
optimized versions, we made a reasonable effort to
write efficient sparse routines. To implement LRFs by
hand in both MATLAB and C++, we use an array-
based structure where each entry contains a dense sub-
matrix and the index of its upper left corner. For un-
structured sparsity, we use MATLAB’s builtin sparse
data structure for comparison. In C++ we use the
compressed sparse block format (Buluc et al., 2009),
which has several parallelization benefits. To paral-
lelize the C++ code, we divide the work up evenly



Utilizing Static Analysis and Code Generation to Accelerate Neural Networks

Algorithm 1 LRF Backprop Net (SONNC-based)

% MATLAB data type initialization
% Sparsity set inside a mostly−zero ...

dense matrix
V mat = getTrainingData();
T mat = getTrainingTargets();
W mat = setLocalRFs();
bias mat = zeros(1, hidden dim);
lr mat = 0.01;

% MiNNCS data type initialization
V = DenseMatrix(V mat);
T = DenseMatrix(T mat);
W = SparseMatrix(W mat);
bias = Vector(bias mat);
lr = Scalar(lr mat);

% Define a single backprop iteration
H = V * W;
H = bsxfun(@plus, H, bias);
H = sigmoid(H);
dH = (H − T) .* H .* (1 − H);

W update = W − lr * (V' * dH);
bias update = bias − lr * sum(dH, 1);
err = (T − H) .ˆ 2;
cost = sum(sum(err));

% Build array for updated variables
updates = containers.Map();
updates(W) = W update;
updates(bias) = bias update;

% Build execution graph
outputs = {W, bias, cost};
graph = buildGraph(outputs, updates);

% Declare convergence parameters
tol = 1e−6;
mainLoop = untilConverged(cost, tol, ...

graph);

% Execute backprop net
runNN(mainLoop);

over the number of threads in the processor.

In the following discussion, the SONNC-based code,
hand-optimized MATLAB, and hand-optimized C++
code will be simply referred to as SONNC, MATLAB,
and C++ code, respectively.

One important point to note for using MATLAB’s
sparse data structure is that writing to only the
nonzero elements as the result of a matrix multipli-
cation is an inefficient process. This significantly im-
pacts performance for AEs and RBMs for the unstruc-
tured sparsity experiments. While these results are in-
cluded for completeness, a more fair comparison is to

the C++ implementation in this case.

Timing was only performed between the lines of code
immediately before and after the convergence loop, so
as not to be affected by initialization procedures. Each
application was run 10 times using 100 iterations of the
convergence loop in order to smooth out any fluctua-
tions due to caching and other variables. We present
here the averaged time of the last five executions.

6.2. Performance Comparison

Figures 1–4 show the performance comparison between
the SONNC, MATLAB, and C++ implementations.
The reported speedup is relative to the hand-optimized
version in each case. In each experiment, the SONNC
code runs significantly faster than either of the hand-
coded implementations.

SONNC shows the most benefit for the AE and
RBM with unstructured sparsity, attaining over 200X
speedup over MATLAB in some cases (Figure 1). This
is because, as mentioned above, updating the nonzeros
of the MATLAB sparse structure is an inefficient pro-
cess. In the other tests, SONNC yields around 9X–24X
speedup over MATLAB. In contrast to the AE and
RBM, ISTA obtains relatively modest speedup (about
10X) over MATLAB when using unstructured spar-
sity because in ISTA the weight matrix never needs
to be updated. SONNC also performs better than
the C++ code, generally yielding around 4.2X–7.8X
speedup (Figure 2). The important thing to note here
is that optimizations performed by SONNC – i.e., us-
ing knowledge of the sparsity structure – allow it to
outperform C++ code that is optimized primarily for
load balance.

When using LRFs (Figures 3–4), however, the MAT-
LAB implementation is able to run much more effi-
ciently for the weight updates than when using un-
structured sparsity. When using locally dense spar-
sity, MATLAB is still able to utilize its underlying
BLAS imiplementation to perform the matrix multi-
plications. Even when using LRF sparsity, however,
SONNC is still able to yield 15X-24X speedup over
MATLAB, and 3.3X–6.1X speedup over C++.

Additionally, as detailed in Section 5, SONNC is able
to yield these levels of performance with much more
succint code. If the user ever wants to switch their net-
work between a dense, LRF, or unstructured sparse in-
terlayer connectivity, it is just a matter of changing the
matrix’s initialization, and all the performance bene-
fits will automatically be available due to the implicit
compiler optimizations.



Utilizing Static Analysis and Code Generation to Accelerate Neural Networks

1.00E-004 1.00E-005 1.00E-006 1.00E-007
0

50

100

150

200

250

300

10
.4

10
.4

9.
2

9.
9

21
1

21
2

18
4

13
9

24
2

23
8

21
9

14
9

General Sparse NN Connectivity (vs. MATLAB)

100K x 100K Dimension

ISTA
RBM
AE

Sparsity

S
pe

ed
up

Figure 1. Speedup relative to hand-coded MATLAB using
general sparse connectivity.

1.00E-004 1.00E-005 1.00E-006 1.00E-007
0
1
2
3
4
5
6
7
8
9

4.
8

4.
5

4.
4

4.
2

7.
4

7.
3

6.
4

5.
8

7.
8

7.
8

7.
2

6.
6

General Sparse NN Connectivity (vs. C++)

100K x 100K Dimension

ISTA
RBM
AE

Sparsity

S
pe

ed
up

Figure 2. Speedup relative to hand-coded C++ using gen-
eral sparse connectivity.

6.3. Impact of Optimizations

Figures 5 and 6 present the impact of two of the more
important optimizations described in Section 3.1. Fig-
ure 5 shows the impact of proper matrix parameter-
ization, which includes choosing the best underlying
data structure format and number of threads. Tuning
these parameters has the most impact of any optimiza-
tion stage. This figure demonstrates the nonlinearity
of jointly tuning the matrix blocking size and number
of threads. For any given block size, there is typically a
single optimal setting for the number of threads. How-
ever, each block size has a different optimal setting for
the number of threads, since smaller block sizes can
utilize more threads. But smaller block sizes also have
increasingly more overhead. This figure shows that,
in this case, selecting the correct combination of these
parameters has a 1.5X impact on performance for the
two different block sizes.

Figure 6 shows the impact of method fusion. SONNC
has a large number of common and NN-specific oper-

10 x 5 5 x 5 2 x 5 1 x 5
0

5

10

15

20

25

30

15
.9

15
.1 17

.4

16
.7

16
.7 20

.2

19
.6

18
.219
.4 22

.4 23
.6

24
.0

Local Receptive Field NN Connectivity (vs. MATLAB)

100K x 500K Dimension

ISTA
RBM
AE

LRF Dimension

S
pe

ed
up

Figure 3. Speedup relative to hand-coded MATLAB using
local receptive field connectivity.

10 x 5 5 x 5 2 x 5 1 x 5
0

1

2

3

4

5

6

7

3.
3 3.
5 3.
8

3.
74.

5 5.
3

5.
4 5.

7

4.
9 5.
1 5.
4 5.
5

Local Receptive Field NN Connectivity (vs. C++)

100K x 500K Dimension

ISTA
RBM
AE

LRF Dimension

S
pe

ed
up

Figure 4. Speedup relative to hand-coded C++ using local
receptive field connectivity.

ation sequences that it can recognize and replace with
more efficient routines. The new routines typically op-
timize cache reuse by combining adjacent operations
into the same loop. An example of this is the MultBi-
asSigm method described in Section 3.1.2. This figure
shows that method fusion is able to attain a 1.9X to
2.6X speedup for the tested algorithms. Less speedup
is attained for ISTA, which is algorithmically simpler
than the AE or RBM, and so has fewer operation se-
quences that can be fused.

7. Conclusion

Many promising neural network learning algorithms
are facing computational challenges as they scale to
larger datasets. Although the available computational
power increases each year, the pace of neural net-
work algorithmic efficiency does not advance as quickly
due to the use of general purpose compilers that NN
programmers rely on to optimize their applications.
As NNs are applied to larger datasets, and algorithm



Utilizing Static Analysis and Code Generation to Accelerate Neural Networks

50 100 200 500 1000 2000 5000 10000 20000 50000
0

100
200
300
400
500
600
700
800
900

Impact of Matrix Parameterization

4 threads
32 threads

Block size

E
xe

cu
tio

n 
tim

e 
(m

s)

Figure 5. Matrix parameterization is a difficult and non-
linear process. The matrix blocking size and number of
threads must be chosen jointly in order to maximize per-
formance.

ISTA RBM AE
0

0.5

1

1.5

2

2.5

3

Impact of Method Fusion

No fusion
Fusion

Algorithm

S
pe

ed
up

 (r
el

at
iv

e 
to

 n
o 

fu
si

on
)

Figure 6. Method fusion gives a 1.9X to 2.6X performance
increase. ISTA, being a simpler algorithm, does not have
as many fusable operations and therefore does not benefit
as much from fusion as the AE and RBM.

complexity increases, application efficiency is becom-
ing critical in order to continue advancing the field
of research. In this paper, we presented SONNC, a
compiler that performs static optimization of a NN
application in order to generate high performance par-
allel code. In addition to standard compiler optimiza-
tions, SONNC relies on the domain specific knowledge
that NN architecture does not change during training,
which allows the compiler to optimize the underlying
data structures used to store the network’s architec-
ture. We showed that SONNC was able to outperform
MATLAB implementations by 9X–24X, and C++ im-
plementations by 3.3X–7.8X. Additionally, we demon-
strated how programmer productivity can be increased
when using SONNC. SONNC abstracts the underlying
data structure, which reduces code complexity, but
still allows algorithms to attain performance better

than optimized C++ code.

References

Bengio, Y. Learning deep architectures for ai. In Foun-
dations and Trends in Machine Learning, 2009.

Bengio, Y. and Lecun, Y. Scaling learing algorithms
towards ai. In Large-Scale Kernel Machines, 2007.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P.,
Pascanu, R., Desjardins, G., Turian, J., Warde-
Farley, D., and Bengio, Y. Theano: A cpu and
gpu math expression compiler. In Proceedings of the
Python for Scientific Computing Conference, 2010.

Buluc, A., Fineman, J., Frigo, M., Gilbert, J., and
Leiserson, C. Parallel sparse matrix-vector and
matrix-transpose-vector multiplication using com-
pressed sparse blocks. In Parallelism in Algorithms
and Architectures, 2009.

Cai, Z., Vagena, Z., Jermaine, C., and Haas, P. Very
large scale bayesian inference using mcdb. In Big
Learn Workshop, Advances in Neural Information
Processing Systems, 2011.

Chafi, H., Sujeeth, A., Brown, K., Lee, H., Atreya, A.,
and Olukotun, K. A domain-specific approach to
heterogeneous parallelism. In Principles and Prac-
tice of Parallel Programming, 2011.

Coates, A. and Ng, A. Selecting receptive fields in
deep networks. In Advances in Neural Information
Processing Systems, 2011.

Low, Y., Gonzalez, J., Kyrola, A., Bickson, D.,
Guestrin, C., and Hellerstein, J. Graphlab: A new
framework for parallel machine learning. In 26th
Conference on Uncertainty in Artificial Intelligence,
2010.

Raina, R. Large-scale deep unsupervised learning
using graphics processors. In Proceedings of the
26th Annual International Conference on Machine
Learning, 2009.

Sujeeth, A., Lee, H., Brown, K., Chafi, H., Wu, M.,
Atreya, A., Olukotun, K., Rompf, T., and Odersky,
M. Optiml: An implicitly parallel domain-specific
language for machine learning. In Proceedings of the
28th International Conference on Machine Learn-
ing, 2011.


