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Abstract

This paper investigates two feature-scoring
criteria that make use of estimated class
probabilities: one method proposed by Shen
et al. (2008) and a complementary approach
proposed below. We develop a theoretical
framework to analyze each criterion and show
that both estimate the spread (across all val-
ues of a given feature) of the probability
that an example belongs to the positive class.
Based on our analysis, we predict when each
scoring technique will be advantageous over
the other and give empirical results validat-
ing our predictions.

1. Introduction

Data sets used to perform classification often contain
redundant and/or irrelevant information. Eliminat-
ing unhelpful features can reduce the computational
complexity of many learning algorithms, increase the
interpretability of the models they produce, and de-
crease the risk of over-fitting. For these reasons, a
great deal of work has been dedicated to the task of
feature selection (Guyon & Elisseeff, 2003).

This paper explores probabilistic feature selection
techniques. We present a feature-scoring criterion
based on the work of Shen et al. (2008) and develop a
novel theoretical framework to analyze their score and
ours. We show that their score approximates an upper-
bound for the improvement in accuracy that each fea-
ture offers to the Bayes-optimal classifier. We demon-
strate that both their scoring method and ours esti-
mate the spread (across all values of a given feature)
of the probability that an example x belongs to the
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positive class. Finally, we begin to characterize when
each scoring technique proves advantageous over the
other.

In the next section we introduce notation, and fol-
low with a discussion of feature selection methods. In
Section 4 we present the scoring criteria and our the-
oretical analysis. Section 5 outlines our predictions
for the relative performance of the scores and gives
preliminary empirical results. We close by discussing
directions for future work.

2. Notation

Here we introduce notation that will be used in the
remainder of this paper. We say that a training set
consists of examples of the form (xi, yi). Each xi is a
vector of feature values taken from the space X , and
yi is a class label taken from the set Y. The goal is
to find a function g : X → Y such that for unseen
examples (x, y) ∈ X × Y, g(x) = y. We use n to refer
to the number of training examples and d to represent
the number of real-valued features for each example.

We use p(x) to represent the density of the distribution
from which feature values are drawn. Given a vector
x ∈ Rd, xj refers to the value of the jth element of
this vector and x−j ∈ Rd−1 is the vector x with the
jth feature removed. Thus we can equivalently express
the density p(x) as p(xj |x−j)p(x−j). The notation
P(y = 1|x) represents the true probability that the

example x belongs to class 1, and P̂(y = 1|x) is an
estimate of this probability. For binary classification,
we take Y = {−1,+1}.
Though all of our notation assumes real-valued fea-
tures, the analysis presented applies equally well to
variables that take on discrete values.
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3. Feature Selection

Feature selection approaches generally fall into three
broad categories: filter, wrapper, and embedded meth-
ods. Filters are effectively pre-processing steps that
score features according to some criterion and select
those with the highest scores. They are fast and
simple, but tend to perform less well than other ap-
proaches, partly because they measure the impact of a
feature without taking into account the way the classi-
fier will use that feature. Embedded methods involve
modification to the training algorithm itself so that
features can be selected as part of the training pro-
cess. They are usually classifier-specific, and thus less
general than other selection techniques. For more on
these approaches, see Guyon & Elisseeff (2003).

In this paper we focus on wrapper methods, which
score a set of features according to the loss (on a test
set) of a classifier trained using only these features
(Guyon & Elisseeff, 2003). This approach considers
variables in the context of others, can apply to virtu-
ally any classifier, and explicitly measures the use of
the feature to the chosen classification algorithm.

A commonly-implemented wrapper approach, known
as recursive feature elimination, greedily constructs
nested subsets of features. Starting with the full set
of features, a series of classifiers are trained. The vari-
ables that cause performance to suffer least when not
used are eliminated, and the process repeats.

The most common criticism of wrapper methods is
that naive implementations tend to be quite slow.
Even using the greedy method described above, for
a data set with d features, O(d2) classifiers must be
trained. This can be prohibitively expensive, so a va-
riety of methods have been developed to approximate
the result of this process (Guyon et al., 2002; Maldon-
ado & Weber, 2009).

4. Feature Selection Using Probabilistic
Outputs

In classification tasks, the most commonly used loss
function is simply the number of classification errors on
the test set, or some close variant such as F -measure.
This approach can have difficulty identifying signif-
icant features in high-dimensional spaces, where the
influence of each feature tends to be small and remov-
ing any single feature is unlikely to notably affect clas-
sification performance.

One way to address this concern is to use algorithms
that output estimated class probabilities. Since a
feature may influence probability estimates without

changing the predicted class label, scoring features ac-
cording to their effect on probability estimates is more
sensitive than considering only the misclassification
rate.

In this section we examine a feature-scoring method
that incorporates class probabilities proposed by Shen
et al. (2008), and introduce our modified feature-
scoring criterion. Both scores are intended to be used
as part of a recursive feature elimination scheme. For
ease of exposition, this section assumes a binary clas-
sification problem.

4.1. Two Feature Scoring Criteria

As discussed above, the sensitivity of class probabili-
ties provides a natural measure of each feature’s impor-
tance. Shen et al. (2008) propose the following feature
ranking criterion based on this idea.

SS(j) =

∫

X

|P(y = 1|x)− P(y = 1|x−j)|p(x)dx. (1)

Because it is impossible to measure the above quan-
tities, the joint density p(x) and the probabilities
P(y = 1|x) and P(y = 1|x−j) must be estimated.
Shen et al. propose four techniques to approximate
(1). They report the best results when using the fol-
lowing estimate:

ŜS(j) =
1

n

n∑

i=1

|P̂(y = 1|xi)− P̂(y = 1|x−ji )|. (2)

The motivation for the scoring system implied by ŜS

is clear: features that cause significant changes in the
estimated class probabilities are ranked higher than
those that do not. At the same time, it seems that
an ideal importance measure should take into account
not only the magnitude of the change in probability
estimates, but also its sign.

To illustrate this point, suppose that we have the
following classification task with two binary attributes:

x1 x2 p(x) P(y = 1|x) P(y = 1|x1) P(y = 1|x2)
0 0 10/22 0.495 0.45 0.66
0 1 1/22 0.000 0.45 0.00
1 0 10/22 0.825 0.75 0.66
1 1 1/22 0.000 0.75 0.00

Note that for an example with features x = (0, 0),
P(y = 1|x) = 0.495, whereas if information about
x1 is not available, we see that P(y = 1|x−1) =
0.66. Though including the first feature in our model
changes our estimated probabilities by 0.165 for all ex-
amples with feature vector (0, 0), this change is only
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beneficial 50.5% of the time, since in the other 49.5% of
cases, the example belongs to the positive class. Equa-
tion (2) does not take this fact into account.

In light of this observation, we propose the following
scoring criterion:

ŜA(j) =
1

n

n∑

i=1

yi(P̂(y = 1|xi)− P̂(y = 1|x−ji )) (3)

This score rewards features when their inclusion moves
estimated probabilities towards the correct class and
punishes for examples such that including the feature
worsens our prediction.

We now have two proposed feature scoring functions
given by ŜS and ŜA. Our next goal is to develop a
theoretical framework to assist in analyzing and un-
derstanding these measures.

4.2. Analysis of the score SS

In this section, we analyze the quantity SS given in (1).
This analysis is motivated by the thought that before
dedicating too much effort to approximating SS , we
would like to ensure that it is a reasonable surrogate
for the importance of a feature. The contributions of
this section are two-fold. First, we demonstrate that
SS provides an upper-bound for the improvement in
accuracy exhibited by the Bayes-optimal classifier due
to the inclusion of the jth feature. We also show that
SS measures the expected mean absolute deviation of
P(y = 1|x) as the jth feature varies.

Ideally, SS should correspond in some way to the util-
ity of the jth feature. Of course, the utility of a feature
depends on the procedure by which the data are used
(i.e., the classification algorithm of choice). Though
Shen et al.’s work focuses on support vector machines
(SVMs), we proceed with a general analysis in this
section. Rather than measuring the utility of a fea-
ture to any particular classifier, we consider the utility
provided by that feature to the best possible classifier.

If the true function P(y = 1|x) were known, predic-
tion error could be minimized by always predicting
the most likely class. This decision rule defines the
Bayes-optimal classifier, and for binary classification
its expected accuracy is given by

∫

X

max{P(y = 1|x), 1− P(y = 1|x)}p(x)dx. (4)

It is natural to measure each feature’s importance by
the improvement in accuracy that it offers the Bayes-
optimal classifier:

SB(j) =

∫

X

max{P(y = 1|x), 1− P(y = 1|x)}p(x)dx

−
∫

X

max{P(y = 1|x−j), 1− P(y = 1|x−j)}p(x)dx, (5)

which can be re-expressed using the identity
max{p, 1− p} = 1/2 + |p− 1/2| as

SB(j) = (6)∫

X

(
|P(y = 1|x)− 1/2| − |P(y = 1|x−j)− 1/2|

)
p(x)dx

The reverse triangle inequality implies that

SB(j) ≤ (7)∫

X

|(P(y = 1|x)− 1/2)− (P(y = 1|x−j)− 1/2)|p(x)dx

=

∫

X

|P(y = 1|x)− P(y = 1|x−j)|p(x)dx = SS(j).

Thus, SS(j) provides an upper-bound for SB(j) that
holds regardless of the number of features, the shape
of their joint density, or the form of P(y = 1|x).

The following computations serve to provide addi-
tional intuition for the quantity measured by SS(j).
We can rewrite SS(j) as:∫
X−j

∫
Xj

|P(y = 1|x)−P(y = 1|x−j)|p(xj |x−j)dxj

p(x−j)dx−j

(8)

The quantity inside of parentheses is the expected
value of |P(y = 1|x) − P(y = 1|x−j)| given x−j . Be-
cause P(y = 1|x−j) = E[P(y = 1|x)|x−j ], this equals
the mean absolute deviation (MAD) of P(y = 1|x)
given x−j (where MAD[Z] = E|Z − E[Z]|). Thus,

SS(j) = EMAD[P(y = 1|x)|x−j ]. (9)

A visualization of this fact is presented in Figure 1.
Intuitively, the most important features are those that
cause significant fluctuation in P(y = 1|x), so using
a measure of the spread of P(y = 1|x) as a feature
ranking criterion seems reasonable. For entirely irrel-
evant features, P(y = 1|x) does not vary as xj does,
so MAD[P(y = 1|x)|x−j ] = 0.

4.3. Analysis of Our Alternative Score

Having provided two reasons that SS seems like a rea-
sonable feature scoring criterion, we now analyze our
modified score ŜA given in (3).
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We first show that using the score ŜA(j) as the cri-
terion for feature removal is equivalent to performing
recursive feature elimination using absolute loss, i.e.
L(P̂(y = 1|xi), yi) = |ti − P̂(y = 1|xi)|, where ti is 1
if yi = 1 and 0 otherwise. To see this, note that a
recursive feature elimination algorithm using this loss
function removes the feature j that minimizes

1

n

n∑

i=1

|ti − P̂(y = 1|x−ji )| = 1

n

n∑

i=1

yi(ti − P̂(y = 1|x−ji ))

=
1

n

n∑

i=1

yi(ti − P̂(y = 1|xi)) + ŜA(j).

(10)

Since the first of these two terms has no j dependence,
it follows that the two algorithms yield identical fea-
ture rankings. By contrast, using the score ŜS(j) does
not correspond to any natural loss function.

We now establish that ŜA(j) estimates a quantity pro-
portional to the expected variance of P(y = 1|x) given
x−j . Note that an example with feature values x con-
tributes P̂(y = 1|x)− P̂(y = 1|x−j) to the sum in (3) if
it belongs to the positive class, and the negative of this
quantity otherwise. Since E[yi|xi] = 2P(y = 1|x) − 1,
given an example x, its expected contribution to (3) is

(2P(y = 1|x)− 1)(P̂(y = 1|x)− P̂(y = 1|x−j)). (11)

Weighting the space X with its density function, it
follows that the quantity approximated by ŜA is:

SA(j) = (12)∫

X

(2P(y = 1|x)−1)(P(y = 1|x)− P(y = 1|x−j))p(x)dx

Since E[P(y = 1|x)] = P(y = 1) = E[P(y = 1|x−j)],
the piece of the integrand corresponding to the -1 van-
ishes, leaving

SA(j)=2

∫

X
P(y = 1|x)2−P(y = 1|x)P(y = 1|x−j)p(x)dx.

(13)

As in (8), we move the integral with respect to the jth

feature inside and observe that

E[P(y = 1|x)P(y = 1|x−j)|x−j ]=P(y = 1|x−j)2, (14)

=E[P(y = 1|x)|x−j ]2.

Using the fact that Var[Z] = E[Z2]− E[Z]2, we get

SA(j) = 2E[Var(P(y = 1|x))|x−j ]. (15)

This holds regardless of the dimension d, the density
p(x), or form of P(y = 1|x). Because the variance
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for a particular synthetic problem as the class balance
varies.

The following computations serve to provide addi-
tional intuition for the quantity measured by SS(j).
We can rewrite SS(j) as:

Z

X�j

0
@
Z

Xj

|P(y = 1|x) � P(y = 1|x�j)|p(xj |x�j)dxj

1
A

p(x�j)dx�j

The quantity inside of parentheses is the expected
value of |P(y = 1|x)� P(y = 1|x�j)| given x�j , other-
wise known as the mean absolute deviation (MAD) of
P (y = 1|x) given x�j (where MAD[Z] = E|Z�E[Z]|).
Thus,

SS(j) = E MAD[P(y = 1|x)|x�j ]. (6)

For entirely irrelevant features, P(y = 1|x) does not
vary in Xj , so MAD[P(y = 1|x)] = 0. Intuitively, the
most important features are those that cause signifi-
cant fluctuation in P(y = 1|x), so using a measure of
the spread of P(y = 1|x) as a feature ranking criterion
is very reasonable.

4.3. Analysis of Our Proposed Alternative

In this section, we analyze our modified score (3). We
begin by establishing that this score fits into the re-
cursive feature elimination framework.

In fact, using the score ŜA(j) as the criterion for
feature removal is equivalent to performing recursive
feature elimination using the loss function L(P̂(y =

1|xi), yi) = |ti � P̂(y = 1|xi)|, where ti is an indicator
that yi = 1. To see this, note that a recursive feature
elimination algorithm using absolute loss removes the
feature j that minimizes

1

n

nX

i=1

|ti � P̂(y = 1|x�j
i )|

=
1

n

nX

i=1

yi(ti � P̂(y = 1|x�j
i ))

=
1

n

nX

i=1

yi(ti � P̂(y = 1|xi)) + ŜA(j).

Since the first of these two terms has no j dependence,
it follows that the two algorithms yield identical fea-
ture rankings.

We now move on to establishing that (3) is in fact
estimating a quantity that is proportional to the ex-
pected variance of P(y = 1|x) given x�j . Note that

an example with feature values x contributes P̂(y =

1|x) � P̂(y = 1|x�j) to the sum in (3) if it belongs
to the positive class, and the negative of this quantity
otherwise. Thus, the expected contribution of this ex-
ample to (3) is

(2P(y = 1|x) � 1)(P̂(y = 1|x) � P̂(y = 1|x�j)).

Weighting the space X with its density function, it
follows that the quantity approximated by ŜA is:

SA(j) =

Z

X

(2P(y = 1|x) � 1)(P(y = 1|x) (7)

� P(y = 1|x�j))p(x)dx

Since E[P(y = 1|x)] = P(y = 1) = E[P(y = 1|x�j)],
the piece of the integrand corresponding to the -1 van-
ishes, leaving

SA(j) = 2

Z

X
P(y = 1|x)2

� P(y = 1|x)P(y = 1|x�j)p(x)dx.

As before, we can move the integral with respect to
the jth feature inside and observe that P(y = 1|x�j) =
E[P(y = 1|x)|x�j ]. This yields that the above quan-
tity is twice the expected conditional variance of P(y =
1|x) given x�j . This observation holds regardless of
the dimension d, the density p(x), or the way in which
the function P(y = 1|x) varies in X . Because the vari-
ance measures the spread of a distribution, this in-
dicates that SA matches our intuitive understanding
that features to which P(y = 1|x) is very sensitive are
more important.

4.4. Further Discussion

Above we established that both SS(j) and SA(j) mea-
sure the expected variation in the probability P(y =
1|x) as the jth feature fluctuates. A natural conclu-
sion to draw from this is that SS and SA are likely
to assign each feature similar scores. In fact, we can
show that for any feature j, SS(j) and SA(j) cannot
be “too far” apart. More precisely, the following chain
of inequalities holds:

0  SA(j), SB(j)  SS(j) 
p

SA(j)/2  1/2. (8)

To help with visualization, these three scores are plot-
ted in Figure 1 for a variation of the synthetic prob-
lem from Weston & Watkins (1999). In this problem,
most features are noise following a normal distribution,
while the informative features are all of the form:

Xc,p ⇠
⇢

yN(c, 1) : with probability p
N(0, 1) : otherwise

(9)
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It seems that an ideal importance measure should take
into account not only the magnitude of the change in
probability, but also its sign. To illustrate this point,
suppose that we have a model P̂ such that for some
xi, P̂(y = 1|xi) = 0.8 and P̂(y = 1|x�j

i ) = 0.6. The

fact that the output changes by 0.2 indicates that P̂
is sensitive to feature j, but it does not necessarily
mean that this feature is improving classification per-
formance. If xi is in the negative class, this suggests
that P̂(y = 1|xi) should be as low as possible, so the
presence of feature j worsens predictions in this case.
In light of this observation, we propose the following
scoring criterion:

ŜA(j) =
1

n

nX

i=1

yi(P̂(y = 1|xi) � P̂(y = 1|x�j
i )) (3)

where the value of any yi is 1 in the positive case and
-1 otherwise. This formulation incorporates the sign
of the change by rewarding features when their inclu-
sion moves estimated probabilities towards the correct
class and punishing for cases when including the fea-
ture worsens our prediction.

We now have two proposed feature scoring functions
given by ŜS and ŜA. Our next goal is to develop a
theoretical framework to assist in analyzing and un-
derstanding these measures.

4.2. Analysis of Shen’s Score for Binary
Classification

In this section, we analyze the quantity SS estimated
by ŜS . This analysis is motivated by the thought that
before dedicating too much e↵ort to approximating SS ,
we would like to ensure that it is a reasonable surrogate
for the importance of a feature. The contributions of
this section are two-fold. First, we demonstrate that
SS provides an upper-bound for the improvement in
accuracy exhibited by the Bayes-optimal classifier due
to the inclusion of the jth feature. We also show that
SS measures the expected mean absolute deviation of
P(y = 1|x) as the jth feature varies.

Ideally, SS would correspond in some way to the util-
ity of the jth feature. Of course, the utility of a feature
depends on the procedure by which the data are used
(i.e., the classification algorithm of choice). Though
Shen et al.’s work focuses on support vector machines
(SVMs), we proceed with a general analysis in this
section. Rather than measuring the utility of a fea-
ture to any particular classifier, we consider the utility
provided by that feature to the best possible classi-
fier. If the true class probability function P(y = 1|x)

were known, prediction error could be minimized by
always predicting the most likely class. This decision
rule defines the Bayes-optimal classifier, and can be
summarized for two-class problems as follows:

g(x) =

⇢
1 P(y = 1|x) � 0.5
�1 P(y = 1|x) < 0.5

It is straightforward to see that the expected accuracy
of this classifier is

Z

X

max{P(y = 1|x), 1 � P(y = 1|x)}p(x)dx.

It is natural to measure each feature’s importance by
the improvement in accuracy that it o↵ers the Bayes-
optimal classifier:

SB(j) =

Z

X

max{P(y = 1|x), 1 � P(y = 1|x)}p(x)dx

(4)

�
Z

X

max{P(y = 1|x�j), 1 � P(y = 1|x�j)}p(x)dx

which can be re-expressed using the identity
max{p, 1 � p} = 1/2 + |p � 1/2| as

SB(j) = (5)Z

X

�
|P(y = 1|x) � 1/2| � |P(y = 1|x�j) � 1/2|

�
p(x)dx

We can show that when scoring a single variable with
balanced classes, SS(j) is precisely equal to the im-
provement in optimal accuracy provided by the jth

feature.

We now consider the correspondence between SS and
SB . The reverse triangle inequality implies that

SB(j) Z

X

|(P(y = 1|x) � 1/2) � (P(y = 1|x�j) � 1/2)|p(x)dx

=

Z

X

|P(y = 1|x) � P(y = 1|x�j)|p(x)dx

= SS(j).

Thus, SS(j) provides an upper-bound for SB(j) that
holds regardless of the number of features, the shape
of their joint density, or the functional form of P(y =
1|x). For a visualization of how far these two can be
from each other, see Figure 1, which plots SS and SB
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It seems that an ideal importance measure should take
into account not only the magnitude of the change in
probability, but also its sign. To illustrate this point,
suppose that we have a model P̂ such that for some
xi, P̂(y = 1|xi) = 0.8 and P̂(y = 1|x�j

i ) = 0.6. The

fact that the output changes by 0.2 indicates that P̂
is sensitive to feature j, but it does not necessarily
mean that this feature is improving classification per-
formance. If xi is in the negative class, this suggests
that P̂(y = 1|xi) should be as low as possible, so the
presence of feature j worsens predictions in this case.
In light of this observation, we propose the following
scoring criterion:

ŜA(j) =
1

n

nX

i=1

yi(P̂(y = 1|xi) � P̂(y = 1|x�j
i )) (3)

where the value of any yi is 1 in the positive case and
-1 otherwise. This formulation incorporates the sign
of the change by rewarding features when their inclu-
sion moves estimated probabilities towards the correct
class and punishing for cases when including the fea-
ture worsens our prediction.

We now have two proposed feature scoring functions
given by ŜS and ŜA. Our next goal is to develop a
theoretical framework to assist in analyzing and un-
derstanding these measures.

4.2. Analysis of Shen’s Score for Binary
Classification

In this section, we analyze the quantity SS estimated
by ŜS . This analysis is motivated by the thought that
before dedicating too much e↵ort to approximating SS ,
we would like to ensure that it is a reasonable surrogate
for the importance of a feature. The contributions of
this section are two-fold. First, we demonstrate that
SS provides an upper-bound for the improvement in
accuracy exhibited by the Bayes-optimal classifier due
to the inclusion of the jth feature. We also show that
SS measures the expected mean absolute deviation of
P(y = 1|x) as the jth feature varies.

Ideally, SS would correspond in some way to the util-
ity of the jth feature. Of course, the utility of a feature
depends on the procedure by which the data are used
(i.e., the classification algorithm of choice). Though
Shen et al.’s work focuses on support vector machines
(SVMs), we proceed with a general analysis in this
section. Rather than measuring the utility of a fea-
ture to any particular classifier, we consider the utility
provided by that feature to the best possible classi-
fier. If the true class probability function P(y = 1|x)

were known, prediction error could be minimized by
always predicting the most likely class. This decision
rule defines the Bayes-optimal classifier, and can be
summarized for two-class problems as follows:

g(x) =

⇢
1 P(y = 1|x) � 0.5
�1 P(y = 1|x) < 0.5

It is straightforward to see that the expected accuracy
of this classifier is

Z

X

max{P(y = 1|x), 1 � P(y = 1|x)}p(x)dx.

It is natural to measure each feature’s importance by
the improvement in accuracy that it o↵ers the Bayes-
optimal classifier:

SB(j) =

Z

X

max{P(y = 1|x), 1 � P(y = 1|x)}p(x)dx

(4)

�
Z

X

max{P(y = 1|x�j), 1 � P(y = 1|x�j)}p(x)dx

which can be re-expressed using the identity
max{p, 1 � p} = 1/2 + |p � 1/2| as

SB(j) = (5)Z

X

�
|P(y = 1|x) � 1/2| � |P(y = 1|x�j) � 1/2|

�
p(x)dx

We can show that when scoring a single variable with
balanced classes, SS(j) is precisely equal to the im-
provement in optimal accuracy provided by the jth

feature.

We now consider the correspondence between SS and
SB . The reverse triangle inequality implies that

SB(j) Z

X

|(P(y = 1|x) � 1/2) � (P(y = 1|x�j) � 1/2)|p(x)dx

=

Z

X

|P(y = 1|x) � P(y = 1|x�j)|p(x)dx

= SS(j).

Thus, SS(j) provides an upper-bound for SB(j) that
holds regardless of the number of features, the shape
of their joint density, or the functional form of P(y =
1|x). For a visualization of how far these two can be
from each other, see Figure 1, which plots SS and SB
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for a particular synthetic problem as the class balance
varies.

The following computations serve to provide addi-
tional intuition for the quantity measured by SS(j).
We can rewrite SS(j) as:

Z

X�j

0
@
Z

Xj

|P(y = 1|x) � P(y = 1|x�j)|p(xj |x�j)dxj

1
A

p(x�j)dx�j

The quantity inside of parentheses is the expected
value of |P(y = 1|x)� P(y = 1|x�j)| given x�j , other-
wise known as the mean absolute deviation (MAD) of
P (y = 1|x) given x�j (where MAD[Z] = E|Z�E[Z]|).
Thus,

SS(j) = E MAD[P(y = 1|x)|x�j ]. (6)

For entirely irrelevant features, P(y = 1|x) does not
vary in Xj , so MAD[P(y = 1|x)] = 0. Intuitively, the
most important features are those that cause signifi-
cant fluctuation in P(y = 1|x), so using a measure of
the spread of P(y = 1|x) as a feature ranking criterion
is very reasonable.

4.3. Analysis of Our Proposed Alternative

In this section, we analyze our modified score (3). We
begin by establishing that this score fits into the re-
cursive feature elimination framework.

In fact, using the score ŜA(j) as the criterion for
feature removal is equivalent to performing recursive
feature elimination using the loss function L(P̂(y =

1|xi), yi) = |ti � P̂(y = 1|xi)|, where ti is an indicator
that yi = 1. To see this, note that a recursive feature
elimination algorithm using absolute loss removes the
feature j that minimizes

1

n

nX

i=1

|ti � P̂(y = 1|x�j
i )|

=
1

n

nX

i=1

yi(ti � P̂(y = 1|x�j
i ))

=
1

n

nX

i=1

yi(ti � P̂(y = 1|xi)) + ŜA(j).

Since the first of these two terms has no j dependence,
it follows that the two algorithms yield identical fea-
ture rankings.

We now move on to establishing that (3) is in fact
estimating a quantity that is proportional to the ex-
pected variance of P(y = 1|x) given x�j . Note that

an example with feature values x contributes P̂(y =

1|x) � P̂(y = 1|x�j) to the sum in (3) if it belongs
to the positive class, and the negative of this quantity
otherwise. Thus, the expected contribution of this ex-
ample to (3) is

(2P(y = 1|x) � 1)(P̂(y = 1|x) � P̂(y = 1|x�j)).

Weighting the space X with its density function, it
follows that the quantity approximated by ŜA is:

SA(j) =

Z

X

(2P(y = 1|x) � 1)(P(y = 1|x) (7)

� P(y = 1|x�j))p(x)dx

Since E[P(y = 1|x)] = P(y = 1) = E[P(y = 1|x�j)],
the piece of the integrand corresponding to the -1 van-
ishes, leaving

SA(j) = 2

Z

X
P(y = 1|x)2

� P(y = 1|x)P(y = 1|x�j)p(x)dx.

As before, we can move the integral with respect to
the jth feature inside and observe that P(y = 1|x�j) =
E[P(y = 1|x)|x�j ]. This yields that the above quan-
tity is twice the expected conditional variance of P(y =
1|x) given x�j . This observation holds regardless of
the dimension d, the density p(x), or the way in which
the function P(y = 1|x) varies in X . Because the vari-
ance measures the spread of a distribution, this in-
dicates that SA matches our intuitive understanding
that features to which P(y = 1|x) is very sensitive are
more important.

4.4. Further Discussion

Above we established that both SS(j) and SA(j) mea-
sure the expected variation in the probability P(y =
1|x) as the jth feature fluctuates. A natural conclu-
sion to draw from this is that SS and SA are likely
to assign each feature similar scores. In fact, we can
show that for any feature j, SS(j) and SA(j) cannot
be “too far” apart. More precisely, the following chain
of inequalities holds:

0  SA(j), SB(j)  SS(j) 
p

SA(j)/2  1/2. (8)

To help with visualization, these three scores are plot-
ted in Figure 1 for a variation of the synthetic prob-
lem from Weston & Watkins (1999). In this problem,
most features are noise following a normal distribution,
while the informative features are all of the form:

Xc,p ⇠
⇢

yN(c, 1) : with probability p
N(0, 1) : otherwise

(9)
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It seems that an ideal importance measure should take
into account not only the magnitude of the change in
probability, but also its sign. To illustrate this point,
suppose that we have a model P̂ such that for some
xi, P̂(y = 1|xi) = 0.8 and P̂(y = 1|x�j

i ) = 0.6. The

fact that the output changes by 0.2 indicates that P̂
is sensitive to feature j, but it does not necessarily
mean that this feature is improving classification per-
formance. If xi is in the negative class, this suggests
that P̂(y = 1|xi) should be as low as possible, so the
presence of feature j worsens predictions in this case.
In light of this observation, we propose the following
scoring criterion:

ŜA(j) =
1

n

nX

i=1

yi(P̂(y = 1|xi) � P̂(y = 1|x�j
i )) (3)

where the value of any yi is 1 in the positive case and
-1 otherwise. This formulation incorporates the sign
of the change by rewarding features when their inclu-
sion moves estimated probabilities towards the correct
class and punishing for cases when including the fea-
ture worsens our prediction.

We now have two proposed feature scoring functions
given by ŜS and ŜA. Our next goal is to develop a
theoretical framework to assist in analyzing and un-
derstanding these measures.

4.2. Analysis of Shen’s Score for Binary
Classification

In this section, we analyze the quantity SS estimated
by ŜS . This analysis is motivated by the thought that
before dedicating too much e↵ort to approximating SS ,
we would like to ensure that it is a reasonable surrogate
for the importance of a feature. The contributions of
this section are two-fold. First, we demonstrate that
SS provides an upper-bound for the improvement in
accuracy exhibited by the Bayes-optimal classifier due
to the inclusion of the jth feature. We also show that
SS measures the expected mean absolute deviation of
P(y = 1|x) as the jth feature varies.

Ideally, SS would correspond in some way to the util-
ity of the jth feature. Of course, the utility of a feature
depends on the procedure by which the data are used
(i.e., the classification algorithm of choice). Though
Shen et al.’s work focuses on support vector machines
(SVMs), we proceed with a general analysis in this
section. Rather than measuring the utility of a fea-
ture to any particular classifier, we consider the utility
provided by that feature to the best possible classi-
fier. If the true class probability function P(y = 1|x)

were known, prediction error could be minimized by
always predicting the most likely class. This decision
rule defines the Bayes-optimal classifier, and can be
summarized for two-class problems as follows:

g(x) =

⇢
1 P(y = 1|x) � 0.5
�1 P(y = 1|x) < 0.5

It is straightforward to see that the expected accuracy
of this classifier is

Z

X

max{P(y = 1|x), 1 � P(y = 1|x)}p(x)dx.

It is natural to measure each feature’s importance by
the improvement in accuracy that it o↵ers the Bayes-
optimal classifier:

SB(j) =

Z

X

max{P(y = 1|x), 1 � P(y = 1|x)}p(x)dx

(4)

�
Z

X

max{P(y = 1|x�j), 1 � P(y = 1|x�j)}p(x)dx

which can be re-expressed using the identity
max{p, 1 � p} = 1/2 + |p � 1/2| as

SB(j) = (5)Z

X

�
|P(y = 1|x) � 1/2| � |P(y = 1|x�j) � 1/2|

�
p(x)dx

We can show that when scoring a single variable with
balanced classes, SS(j) is precisely equal to the im-
provement in optimal accuracy provided by the jth

feature.

We now consider the correspondence between SS and
SB . The reverse triangle inequality implies that

SB(j) Z

X

|(P(y = 1|x) � 1/2) � (P(y = 1|x�j) � 1/2)|p(x)dx

=

Z

X

|P(y = 1|x) � P(y = 1|x�j)|p(x)dx

= SS(j).

Thus, SS(j) provides an upper-bound for SB(j) that
holds regardless of the number of features, the shape
of their joint density, or the functional form of P(y =
1|x). For a visualization of how far these two can be
from each other, see Figure 1, which plots SS and SB
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ŜA(j) =
1

n

nX

i=1

yi(P̂(y = 1|xi) � P̂(y = 1|x�j
i )) (3)

where the value of any yi is 1 in the positive case and
-1 otherwise. This formulation incorporates the sign
of the change by rewarding features when their inclu-
sion moves estimated probabilities towards the correct
class and punishing for cases when including the fea-
ture worsens our prediction.

We now have two proposed feature scoring functions
given by ŜS and ŜA. Our next goal is to develop a
theoretical framework to assist in analyzing and un-
derstanding these measures.

4.2. Analysis of Shen’s Score for Binary
Classification

In this section, we analyze the quantity SS estimated
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Figure 1. A hypothetical dependence of P(y = 1|x) on xj ,
for a fixed choice of x−j . If p(xj |x−j) is uniform on [0, 10],
the gray region represents MAD[P(y = 1|x)|x−j ]. SS(j) is
the expected area of the gray region across all possibilities
for x−j .

measures the spread of a distribution, this indicates
that SA (like SS) matches our intuitive understanding
that features to which P(y = 1|x) is very sensitive are
more important.

We have established that both SS(j) and SA(j) mea-
sure the expected variation in P(y = 1|x) along the
jth dimension. Intuitively, this suggests that SS(j)
and SA(j) should be “similar.” In fact, we can show
that the following chain of inequalities holds:

0 ≤ SA(j), SB(j) ≤ SS(j) ≤
√
SA(j)/2 ≤ 1/2. (16)

To help visualize the above inequalities, SS , SA, and
SB are plotted in Figure 2 for a variation of the syn-
thetic problem from Weston & Watkins (1999) 1.

It is worth noting that although SS and SA are closely
related, this does not mean that they rank features
identically. In the task presented in Section 4.1,
SS(x1) = 0.15 > SS(x2) = 0.109 and SA(x1) =
0.0495 < SA(x2) = 0.0765, so even though true proba-
bilities are known, SS and SA select different features.

5. Experimental Evaluation

In practice, SS and SA cannot be directly computed
and must be estimated by ŜS and ŜA, respectively. In
this section we make predictions regarding ŜS and ŜA

and provide results from several tests comparing them.

Computing either ŜS and ŜA is essentially a two-step
process. First, the training data is used to fit the func-

1 In Weston’s problem, most features are noise following
a normal distribution, while the informative features are all
of the form:

Xc,p ∼
{

yN(c, 1) : with probability p
N(0, 1) : otherwise

Thus, even informative features take noisy values with
probability 1 − p. Note that features of this form are in-
creasingly informative as c and p increase. This method
for generating features has since been adopted elsewhere,
including by Shen et al. (2008).
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0.35Figure 2. Scores assigned by SS (red, large dashes), SA (green, small dashes), and SB (blue, solid) to Xc,0.7 in isolation
for c ∈ (0.2, 0.6, 1.0, 1.4). The x-axis represents the percentage of examples belonging to the positive class. When classes
are balanced, SS and SB are equal, and SS is always at least as large as the other two.

tion P̂(y = 1|x). Then, this estimate is used to com-
pute the sums in (2) and (3), which approximate the
density p(x). It came to our attention that because
ŜS does not use the labels of each example in this sec-
ond step, the sum in (2) can be taken over any mix
of labeled and unlabeled examples. In many domains,
large sets of unlabeled examples are available while
labeled training data is relatively sparse, so using un-
labeled data in this way could substantially improve
the performance of ŜS .

Both ŜS and ŜA approximate the term P(y = 1|x) −
P(y = 1|x−j) by assuming a functional form for P(y =
1|x) and fitting parameter values to the training data.
Even with a large training set, these estimates may
be significantly biased if P(y = 1|x) does not have the
assumed form. We argue that including yi in ŜA may
alleviate this problem. To illustrate our point, suppose
that x0 is such that P(y = 1|x0) = 1/2. Then even if

the estimates P̂(y = 1|x0) and P̂(y = 1|x−j0 ) are ter-
ribly wrong, as the number of training examples with
feature vector x0 grows, we see a law of large numbers
effect: the 50% of positive examples with feature vec-
tor x0 should cancel the corresponding negative exam-
ples in the sum from (3). By contrast, bad estimates

for P̂(y = 1|x0) and P̂(y = 1|x−j0 ) could cause a large

contribution when computing ŜS(j) via (2), regardless
of the training set size.

Our work from Section 4 and the above discussion lead
us to the following predictions:

• Because variance is the square of standard devia-
tion, which in turn is closely related to the mean
absolute deviation, the score from ŜA should vary
approximately as the square of ŜS .
• When the training set is sampled disproportion-

ately from the domain, applying ŜS to large sets
of unlabeled examples will provide a more consis-
tent estimate of each feature’s utility than either
ŜA or ŜS applied only to the labeled training data.
• In cases where the assumed model does not fit

the true dependence between X and Y, ŜA should
identify relevant variables more reliably than ŜS .

We test the first two predictions in Sections 5.1 and
5.2, while leaving the third for future work. Addition-
ally, we present preliminary results from applying ŜS

and ŜA to a real-world data set in Section 5.3.

5.1. Relationship Between ŜS and ŜA: a
Simple Case

To confirm the prediction that ŜA should vary approx-
imately as the square of ŜS , we ran a trial on the syn-
thetic variables Xc,p as described earlier, with c rang-
ing from 0 to 3 in steps of 0.25 and p in [0, 1] with steps
of 0.1. For each (c, p) pair, we trained a linear SVM
on a two-variable training set, where the first variable
was Xc,p and the second was Gaussian noise.

Support vector machines typically do not provide
probability estimates, but Vapnik (1998), Hastie &
Tibshirani (1998) and Platt (1999) have all proposed
methods for using SVMs to generate probabilities. For
tests in this section, we obtained and modified source
code from Shen et al., which derives probability esti-
mates using the technique proposed in (Platt, 1999)
and an SVM implementation from LIBSVM. Results
from these trials are shown in Figure 3, and confirm
our prediction beautifully.
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Figure 3. ŜS(Xc,p) (x-axis) plotted against

√
ŜA(Xc,p)/2,

with each point representing a different (c, p) pair. Though
these values are computed using (2) and (3) respectively,

ŜS ≈
√

ŜA/2, just as predicted by (1) and (12).
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5.2. Incorporating Unlabeled Examples

We designed the next test to explore the potential ben-
efit of using unlabeled examples when computing ŜS .
In this section, we use ŜSU to represent the score (2)
augmented by additional unlabeled examples and ŜS

to stand for the same score applied only to the labeled
training instances.

For the purposes of this experiment, we constructed
a synthetic data set with five nominal features. Each
feature is independent of all others and takes on three
possible values, say a, b, and c. The frequency with
which each variable takes each value is given below:

x1 x2 x3 x4 x5

a 1/4 1/4 1/3 1/3 1/2
b 1/2 1/2 1/3 1/6 1/4
c 1/4 1/4 1/3 1/2 1/4

All but the first feature are noise (i.e. they do not
affect the probability that the example belongs to the
positive class). We chose P(y = 1|x1 = a) = 1/4,
P(y = 1|x1 = b) = 1/2, P(y = 1|x1 = c) = 3/4.

Tests described in this section and 5.3 were conducted
with a Naive Bayes classifier designed for nominal fea-
tures. We made this choice because Naive Bayes clas-
sifiers explicitly provide estimated class probabilities.
Additionally, they afford a natural (and efficient) way

to compute P̂(y = 1|x−j): missing values are handled
by simply not including probabilities from that feature
(Kononenko, 1991). Note that on this data set the fea-
tures are independent, so with adequate training data
a Naive Bayes classifier should replicate the true class
probabilities.

Experiments were conducted in three trials. Each trial
contained tests on nine different sizes of training sets.
For each training size and each trial, 500 runs were
performed. A single run for a specified trial and train-
ing size consisted of sampling an appropriate number
of training examples, training a Naive Bayes classifier
on these examples, and using this classifier (along with
a collection of unlabeled examples when appropriate)
to compute ŜA(j), ŜS(j), and ŜSU (j) for j = 1 . . . 5.
For each algorithm, we recorded the number of times
(out of 500 runs) that it successfully ranked the first
feature as the most informative.

The difference between the three trials was the man-
ner in which training examples were selected. During
the first trial, examples were drawn from the original
distribution. During the second, the x1 training val-
ues were equally likely to be a, b, and c (effectively
undersampling from b and oversampling from a and
c, thereby making x1 seem more informative than it

actually is). In the third trial, x1 took the values a

and c each with probability 1/8, and took the value b

with probability 3/4. This has the effect of understat-
ing the importance of x1. In all trials, the dependency
P(y = 1|x) remained unchanged and the unlabeled ex-
amples provided to ŜS were drawn from the original
distribution. This design allowed us to explore the
question of how each scoring system fares when there
is bias in the process of selecting training examples.
The results, shown for different training set sizes, are
displayed in Figure 4.

When sampling proportionately from the data set, the
three scores performed comparably. On the second
trial (which we refer to as the “oversampling” trial
due to the fact that it overstates the importance of
X1), ŜS and ŜA identified x1 as the top feature more
often than in the first trial (as expected), while ŜSU

performed nearly identically to the first trial. This
suggests that our estimate for P(y = 1|x) is sufficiently
accurate that incorporating unlabeled examples yields
scores as if the training examples had been sampled
proportionately. On the third (“undersampling”) trial,
both ŜS and ŜA identified x1 as the most important
feature in fewer cases than either of the other trials.
The degradation is most notable for ŜS . Meanwhile,
ŜSU performed at approximately the same level as on
the other trials. The amount by which ŜSU outper-
forms the other methods on the third trial appears to
be independent of the number of training examples.
These results suggest that when the training data is
not representative of the entire domain and unlabeled
examples are available, using them in scoring can be
very beneficial. When no unlabeled examples are avail-
able, ŜA provides a more reliable measure of each fea-
ture’s importance than ŜS .

5.3. Breast Cancer Results

Here we test the performance of ŜS and ŜA on a real-
world data set: Breast Cancer, available from the
UCI repository (http://archive.ics.uci.edu/ml/
datasets/). The task is to predict, based on 9 discrete
features (each taking values in the set {1, 2, . . . , 10}),
whether a tumor is malignant or benign.

The distribution of feature values is far from uniform:
averaged across all features, 46.2% of values are 1,
while only 1.1% take the value 9, and the values 6,7,8
each occur with frequency below 4%. Because we
wished to see how ŜS and ŜA performed when pre-
sented with limited training data (in particular, as few
as ten labeled examples), this meant that for any given
training set, it was likely that most of the possible fea-
ture values would not be present in the training data.

http://archive.ics.uci.edu/ml/datasets/
http://archive.ics.uci.edu/ml/datasets/
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(c) ŜSU

Figure 4. Number of times (out of 500) correctly picking the one informative feature from five total features, plotted
against training set size. Between the two methods that use only labeled examples, ŜA is less sensitive to changes in how
training points are sampled than ŜS is. Both methods suffer when the training data is undersampled from informative
regions of the input space. Results for ŜSU indicate that incorporating unlabeled examples provides a measure of each
feature’s utility that is far more robust to variations in the sampling of the training set.

To alleviate this problem, we converted each feature
into a binary attribute according to the mapping f
given by:

f(x) =
(
I(x1 ≤ 5), I(x2 = 1), I(x3 = 1), I(x4 = 1),

I(x5 ≤ 2), I(x6 = 1), I(x7 ≤ 3), I(x8 = 1), I(x9 = 1)
)
.

Our basic classifier achieved a leave-one-out error rate
of 23/699 on the original data set. On the transformed
data with binary features, this rate was 24/699, indi-
cating that for a Naive Bayes classifier, effectively no
predictive power is lost by our transformation.

In order to easily evaluate ŜS and ŜA, we augmented
the data set by adding three purely noisy binary fea-
tures. We conducted experiments on sets of size
10, 20, . . . , 100. For each size, 20 runs were conducted.
A run consisted of sampling a set of positive and nega-
tive examples with replacement from the full data set.

Given a training set of n examples, n classifiers were
trained, each using all but one example to compute
estimates for P̂(y = 1|x) and P̂(y = 1|x−j) on the
held-out data point. These estimates were used to
compute ŜS and ŜA, thereby obtaining a ranking of
the features.

For each training size, we computed the aggregate rank
for each feature by ranking them on the basis of their
average rank across all 20 runs. As shown in Table 1,
for all training sizes and both scores, the three unin-
formative features were among the five features with
the lowest aggregate rank. Additionally, across all runs
and training sizes, neither score ever ranked one of our
dummy features as its top choice.

When provided with at least 30 training examples, ŜS

ranked all three noisy features among the bottom four
on all 20 runs. ŜA did not perform quite as well: even
with 100 training examples, on two of 20 runs one
of the uninformative features was ranked as highly as
fifth.

It is difficult to infer much from the ranking of the orig-
inal features, because all of them are at least weakly
predictive of the class label. ŜS and ŜA generally
agreed that feature 9 was the least useful of the original
features. As one might hope, when we tested the per-
formance of classifiers trained on each possible pairs of
features, those using x9 performed least well.

6. Conclusions

In this paper, we have considered the feature scoring
algorithm presented by Shen et al. (2008) and pro-
posed our own related score for use in feature selec-
tion tasks. We focused on these techniques because
they consider the importance of each variable in the
context of others and can score variables even in high-
dimensional contexts where each feature’s impact on
the final prediction is small. Our primary contribution
is a careful analysis of Shen et al. (2008)’s score, SS ,
and our alternative criterion SA.

We demonstrated that the quantity SS(j) is the ex-
pected conditional mean absolute deviation of P(y =
1|x) given x−j , and that SA(j) is the expected condi-
tional variance of P(y = 1|x) given x−j . These proofs
suggest that each score is a reasonable criterion for fea-
ture selection, as SS and SA select as important the
features whose values have the greatest influence on
P(y = 1|x).
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ŜS 10 20 30 40 50 60 70 80 90 100
x10 9 11 12 12 12 12 12 12 12 12
x11 11 12 11 11 11 11 11 11 11 11
x12 10 9 9 10 10 10 10 10 10 10

ŜA 10 20 30 40 50 60 70 80 90 100
x10 10 9 10 10 10 9 8 11 9 10
x11 12 10 9 12 9 11 11 12 10 9
x12 8 11 8 10 12 8 12 9 8 11

Table 1. Aggregate rank (among 12 features) given by ŜS (left) and ŜA (right) to the three noise features x10, x11, x12

in our Breast Cancer Data set, for training sizes ranging from 10 to 100. Even when provided with only ten training
examples, the aggregate rank for each noise feature was always among the bottom five. On individual runs, these features
were occasionally ranked higher than 8th, though for ŜS this occurred only when training with 10 or 20 examples.

As alternative justification for SS we proved that SS(j)
provides an upper-bound for the improvement in ac-
curacy of the Bayes-optimal classifier due to the infor-
mation provided by the jth feature. Additionally, we
hypothesized that the approximation ŜS could benefit
from unlabeled examples. For a simple synthetic task,
we confirmed that this data improved the robustness of
ŜS to variations in the way that the labeled examples
were sampled.

We motivated our score, ŜA(j), by observing that it
measures both the magnitude and the sign of changes
in estimated class probabilities due to the jth feature.
We proved that using ŜA to eliminate features from
the data set is equivalent to minimizing total loss on
the training set when using an L1 loss function. For
the problem described in Section 5.2, we concluded
that when there was no unlabeled data available to
supplement the training set, ŜA was less sensitive than
ŜS to sampling variations in the training data.

7. Future Work

We view this paper as a beginning, rather than con-
clusive, investigation of feature selection using proba-
bilistic outputs. As such, there are many interesting
directions for future work.

Much of the analysis here pertains to the quantities
SS and SA, but in practice we are forced to use ap-
proximations. An open question is the extent to which
the approximations used in this paper are “good.” One
way to quantify this would be to give sufficient condi-
tions for these estimates to converge to SS and SA as
the number of training examples grows.

We argued in Section 5 that the fact that ŜA incorpo-
rates the sign of changes in predictions should help to
mitigate the presence of bias due to modeling assump-
tions. One major goal for the future is to validate this
prediction, either empirically or theoretically.

The eventual goal of this work is to develop the theory
of feature selection using probabilistic outputs to the
point where, given a data set, we can choose a feature
scoring algorithm that is likely to perform well in the
specified domain. In order to accomplish this, we hope

to perform tests on real-world data to determine the
extent to which the theory developed in this paper
extends to different learning algorithms and domains.
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