
Estimating the Hessian by Back-propagating Curvature

James Martens JMARTENS@CS.TORONTO.EDU
Ilya Sutskever ILYA@CS.UTORONTO.CA
Kevin Swersky KSWERSKY@CS.TORONTO.EDU

Abstract
In this work we develop Curvature Propagation
(CP), a general technique for efficiently comput-
ing unbiased approximations of the Hessian of
any function that is computed using a computa-
tional graph. At the cost of roughly two gradi-
ent evaluations, CP can give a rank-1 approxima-
tion of the whole Hessian, and can be repeatedly
applied to give increasingly precise unbiased es-
timates of any or all of the entries of the Hes-
sian. Of particular interest is the diagonal of the
Hessian, for which no general approach is known
to exist that is both efficient and accurate. We
show in experiments that CP turns out to work
well in practice, giving very accurate estimates
of the Hessian of neural networks, for example,
with a relatively small amount of work. We also
apply CP to Score Matching, where a diagonal
of a Hessian plays an integral role in the Score
Matching objective, and where it is usually com-
puted exactly using inefficient algorithms which
do not scale to larger and more complex models.

1. Introduction
There are many models and learning algorithms where
it becomes necessary, or is at least very useful, to com-
pute entries of the Hessian of some complicated function.
For functions that can be computed using a computational
graph there are automatic methods available for computing
Hessian-vector products exactly (e.g. Pearlmutter, 1994).
These can be used to recover specific columns of the Hes-
sian, but are inefficient at recovering other parts of the ma-
trix such as large blocks, or the diagonal. For the diagonal
of the Hessian of a neural network training objective, there
are deterministic approximations available such as that of
Becker and Le Cun (1988), but these are not guaranteed to
be accurate.

Recently Chapelle and Erhan (2011) showed how to com-
pute an unbiased estimate of the diagonal of the Gauss-

Appearing in Proceedings of the 29 th International Conference
on Machine Learning, Edinburgh, Scotland, UK, 2012. Copyright
2012 by the author(s)/owner(s).

Newton matrix, and used this to perform precondition-
ing within a Hessian-free Newton optimization algorithm
(Martens, 2010). In this paper we build upon this idea and
develop a family of algorithms, which we call Curvature
Propagation (CP), for efficiently computing unbiased es-
timators of the Hessians of arbitrary functions. Estimat-
ing entries of the Hessian turns out to be strictly harder
than doing the same for the Gauss-Newton matrix, and the
resulting approach is necessarily more complex, requiring
several additional ideas.

As with the algorithm of Chapelle and Erhan (2011), CP
involves reverse sweeps of the computational graph of the
function, which can be repeated to obtain higher-rank esti-
mates of arbitrary accuracy. And when applied to a func-
tion which decomposes as the sum ofM terms, such as typ-
ical training objective functions, applying CP to the terms
individually results in an estimate of rank M , at no addi-
tional expense than than applying it to the sum.

This is useful in several applications. The diagonal of the
Hessian can be used as a preconditioner for first and second
order nonlinear optimizers, which is the motivating appli-
cation of Becker and Le Cun (1988) and Chapelle and Er-
han (2011). Score Matching (Hyvarinen, 2006), a method
for parameter estimation in Markov Random Fields, uses
the diagonal of the Hessian within its objective, making it
expensive to apply to all but the simplest models. As we
will see, our work makes it possible to efficiently apply
score matching to any model.

2. Derivation of CP
In the following section we develop the Curvature Propaga-
tion method (CP) for functions that are defined in terms of
general computational graphs. We will present one version
of the approach that relies on the use of complex arithmetic,
and later also give a version that uses only real arithmetic.

At a high level, we will define complex vector-valued lin-
ear function on the computational graph of our target func-
tion f , and then show through a series of lemmas that the
expectation of the self outer-product of this function is in
fact the Hessian matrix. This function can be computed by
what amounts to a modification of reverse-mode automatic
differentiation, where noise is injected at each node.



Estimating the Hessian by Back-propagating Curvature

2.1. Setting and notation

Let f : Rn −→ R be a twice differentiable function. We
will assume that f can be computed via a computation
graph consisting of a set of nodes N = {i : 1 ≤ i ≤ L}
and directed edges E = (i, j) : i, j ∈ N , where at each
node i there is a vector valued output yi ∈ Rni is com-
puted via yi = fi(xi) for some twice-differentiable func-
tion fi. Here xi ∈ Rmi is the total input to node i, and is
given by the concatenation of vectors yk for k ∈ Pi and
Pi = {k : k is a parent of i} = {k : (k, i) ∈ E}. We
identify node 1 as input or “source” node (so that P1 = ∅)
and node L as the output or “sink” node, with yL = f(y1)
being the final output of the graph.

Let Ja
b denote the Jacobian of a w.r.t. b where a and b

are vectors, or in other words,
∂a

∂b
. And let Hc

a,b de-
note the Hessian of the scalar function c w.r.t. a and then
w.r.t. b (the order matters since it determines the dimen-
sion of the matrix). Note that if a and b are quantities as-
sociated with nodes i and j (resp.) in the computational
graph, Ja

b and Hc
a,b will only be well-defined when j does

not depend directly or indirectly on i, i.e. i 6∈ Aj , where
Aj = {k : k is an ancestor of j}. Also note that when
there is no dependency on b of a it will be the case that
Ja
b = 0. Under this notation, the Hessian of f w.r.t. its in-

put is denoted by Hf
y1,y1

, but we will use the short-hand H
for convenience.

For k ∈ Pi, let Ri,k denote the projection matrix which
maps the output yk of node k to the their positions in node
i’s input vector xi, so that we have xi =

∑
k∈Pi

Ri,kyk.

Summarizing, we have the following set of recursive defi-
nitions for computing yL = f(y1) which are iterated for i
ranging from 2 to L:

xi =
∑
k∈Pi

Ri,kyk

yi = fi(xi)

Note that Ri,k need not appear explicitly as a matrix when
implementing these recursions in actual code, but is merely
the formal mathematical representation we will use to de-
scribe the projective mapping which is performed when-
ever outputs from a given computational node k are used
as input to another node i.

2.2. Computing gradients and Hessians

Reverse-mode automatic differentiation1 is a well known
method for computing the gradient of functions which are
defined in terms of computation graphs. It works by start-
ing at the final node L and going backwards through the
graph, recursively computing the gradient of f w.r.t. the
yi for each i once the same has been done for all of i’s

1also known as back-propagation (Rumelhart et al., 1986) in
the context of neural networks

children. Using the vector-valued computational graph for-
malism and notation we have established, the recursions
for computing the gradient ∇f = Jf

y1
(remembering that

f ≡ yL) are given by

Jf
yL

= 1 (1)

Jf
yi

=
∑
k∈Ci

Jf
xk
Jxk
yi

=
∑
k∈Ci

Jf
xk
R>k,i (2)

Jf
xi

= Jf
yi
Jyi
xi

(3)

where Ci = {k : k is a child of i} and we have used the
fact that Jxk

yi
= R>k,i.

For this method to yield a realizable algorithm, it is as-
sumed that for each node i, the function fi is simple enough
that direct computation of and/or multiplication by the “lo-
cal” Jacobian Jyi

xi
= f ′i(xi) is easy. If for a particular node

i this is not the case, then the usual procedure is to split i
into several new nodes which effectively break fi into sev-
eral computationally simpler pieces.

By computing the vector derivative of both sides of each of
the above equations w.r.t. yL, yj , and yj respectively (for
j 6∈ Ai), the following recursions can be derived

Hf
yL,yL

= 0 (4)

Hf
yi,yj

=
∑
k∈Ci

Rk,iH
f
xk,yj

(5)

Hf
xi,yj

= Jyi
xi

>Hf
yi,yj

+MiJ
xi
yj

(6)

where

Mi ≡
ni∑
q=1

Jf
yi,q

Hyi,q
xi,xi

(7)

and where yi,q denotes the q-th component of yi. In deriv-
ing the above it is important to remember thatRk,i is a con-
stant, so that its Jacobian w.r.t. yj is the zero matrix. Also
note that Jf

yi,q
is a scalar and that Hyi,q

xi,xi is Hessian of the
local nonlinearity fi. The overall Hessian of f , Hf

y1,y1
can

be obtained by applying these recursions in a backwards
manner (assuming that the various Jacobians are already
computed).

The additional Jacobian terms of the form Jxi
yj

which ap-
pear in eqn. 6 can be computed according to recursions
analogous to those used to compute the gradient, which are
given by the equations below:

Jxi
xi

= Imi×mi (8)

Jxi
xj

= Jxi
yj
Jyj
xj

(9)

Jxi
yj

=
∑
k∈Cj

Jxi
xk
Jxk
yj

=
∑
k∈Cj

Jxi
xk
Rk,j ∀i 6∈ Aj (10)

Jxi
xj

= 0 ∀i ∈ Aj (11)

where, for convenience, we have defined Jxi,xj
to be zero

whenever i is an ancestor of j, whereas otherwise it would
be undefined.



Estimating the Hessian by Back-propagating Curvature

In general, using these recursions for direct computation
of Hf

y1,y1
will be highly impractical unless the computa-

tion tree for f involves a small total number of nodes, each
with small associated output and input dimensions ni and
mi. The purpose in giving them is to reveal how the “struc-
ture” of the Hessian follows the computation tree, which
will become critically important in both motivating the CP
algorithm and then proving its correctness.

2.3. The S function

We now define an efficiently computable function S that
will allow us to obtain rank-1 estimates of the Hessian.
Its argument consists of an ordered list of vectors V ≡
{vi}Li=1 where vi ∈ R`i , and its output is a n-dimensional
vector (which may be complex valued). It will be defined as
S(V ) ≡ Sy1

(V ), where Syi
(V ) ∈ Cni and Sxi

(V ) ∈ Cmi

are vector-valued functions of V defined recursively via the
equations

SyL
(V ) = 0 (12)

Syi
(V ) =

∑
k∈Ci

R>k,iSxk
(V ) (13)

Sxi(V ) = F>i vi + Jyi
xi

>Syi(V ) (14)

where each Fi is a (not necessarily square) complex-valued
matrix in C`i×mi satisfying F>i Fi = Mi. Such an Fi is
guaranteed to exist because Mi is symmetric, which fol-
lows from the fact that it is a linear combination of Hessian
matrices.

Note that these recursions closely resemble those given pre-
viously for computing the gradient (eqn. 1, 2, and 3). The
multiplication by Jyi

xi

> of the vector Syi
(V ) at each stage

of the recursion is easy to perform since this is precisely
what happens at each stage of reverse-mode automatic dif-
ferentiation used to compute the gradient of f . In general,
the cost of computing S is similar to that of computing the
gradient, which itself is similar to that of evaluating f . The
practical aspects computing S(V ) will be discussed further
in section 5.

2.4. Properties of the S function with stochastic inputs

Suppose that the random variable V satisfies:

∀i E
[
viv
>
i

]
= I and ∀j 6= i, E

[
viv
>
j

]
= 0 (15)

For example, each vi could be drawn from a multivariate
normal with mean 0 and covariance matrix I .

We will now give a result which establishes the useful-
ness of S(V ) as a tool for approximating H . The proof
of this theorem and others will be located in the ap-
pendix/supplement.
Theorem 2.1. S(V )S(V )> is an unbiased estimator of
H(≡ Hf

y1,y1
)

In addition to being unbiased, the estimator S(V )S(V )>

is will be symmetric and possibly complex-valued. To

achieve a real valued estimate we can instead use only the
real component of S(V )S(V )>, which itself will also be
an unbiased estimator for Hf

y1,y1
since the imaginary part

of S(V )S(V )> is zero in expectation.

2.5. Avoiding complex numbers
The factorization of the Mi’s and resulting complex arith-
metic associated with using these factors can be avoided
if we redefine V so that each vi is of dimension mi (in-
stead of `i), and we define the real vector-valued functions
T (V ) ≡ Ty1

(V ) and U(V ) ≡ Uy1
(V ) according to the

following recursions:

TyL(V ) = 0 UyL(V ) = 0

Tyi(V ) =
∑
k∈Ci

Jxk
yi
>Txk (V ) Uyi(V ) =

∑
k∈Ci

Jxk
yi
>Uxk (V )

Txi(V ) = Mivi + Jyi
xi

>Tyi(V ) Uxi(V ) = vi + Jyi
xi

>Uyi(V )

Both these recursions for T and U are trivial modification
of those given for S(V ), with the only difference being the
matrix which multiplies vi (it’s F>i for S, Mi for T , and I
forU ). And because they do not involve complex quantities
at any point, they will be real-valued.
Theorem 2.2. T (V )U(V )> is an unbiased estimator ofH

Since H is symmetric, it follows directly from this re-
sult that

(
T (V )U(V )>

)>
= U(V )T (V )> is also an

unbiased estimator of H . Note however that while
both T (V )U(V )> and U(V )T (V )> will be symmet-
ric in expectation (since Hf

y1,y1
is), for any particu-

lar choice of V they generally will not be. This is-
sue can be addressed by instead using the estimator
1

2

(
T (V )U(V )> + U(V )T (V )>

)
which will be symmet-

ric for any V . However, despite the fact that S(V )S(V )>

and this alternative estimator are both symmetric for all V ’s
and also unbiased, they will not, in general, be equal. While
computing both T and U will require a total of 2 sweeps
over the computational graph versus only the one required
for S(V ), the total amount of work will be the same due to
the doubly expensive complex-valued arithmetic required
to evaluate S(V ).

2.6. Matrix interpretation of S, T and U

Suppose we represent V as a large vector v ≡ [v>1 . . . v
>
L ]
>

with dimension m ≡
∑

imi. Then the functions S, T and
U are linear in the vi’s (a fact which follows from the re-
cursive definitions of these functions) and hence v. Thus
S, T , and U have an associated representation as matrices
S̃ ∈ Cn×m, T̃ ∈ Rn×m, and Ũ ∈ Rn×m w.r.t. the coordi-
nate bases given by ṽ.

Then noting that S(V )S(V )> = S̃vv>S̃>, and that condi-
tion (15) is equivalent to E[vv>] = I , we obtain

Hf
y1,y1

= E
[
S̃vv>S̃>

]
= S̃ E

[
vv>

]
S̃> = S̃S̃>



Estimating the Hessian by Back-propagating Curvature

and thus we can see that S̃ has an interpretation as “factor”
of Hf

y1,y1
. Similarly we have T̃ Ũ> = Hf

y1,y1
and Ũ T̃> =

Hf
y1,y1

.

3. A simpler method?
At the cost of roughly two passes through the computa-
tional graph it is possible to compute the Hessian-vector
Hw for an arbitrary vector w ∈ Rn (e.g. Pearlmutter,
1994). This suggests the following simple approach to
computing an unbiased rank-1 estimate ofH: draw w from
a distribution satisfying E[ww>] = I and then take the
outer product of Hw with w. It is easy to see that this is
unbiased, since

E
[
HwwT

]
= H E

[
wwT

]
= H (16)

Computationally, this estimator is just as expensive as CP,
but since there are several pre-existing methods comput-
ing Hessian vector products, it may be easier to implement.
However, we will prove in the next section that the CP es-
timator will have much lower variance in most situations,
and later confirm these findings experimentally. And in ad-
dition to this, there are certain situations, which arise fre-
quently in machine learning applications, where vectorized
implementations of CP will consume far less memory than
similar vectorized implementations of this simpler estima-
tor ever could, and we will demonstrate this in the specific
case when f is a neural network training objective function.

It is also worth noting that this estimator underlies the Hes-
sian norm estimation technique used in Rifai et al. (2011).
That this is true is due to the equivalence between the
stochastic finite-difference formulation used in that work
and matrix-vector products with randomly drawn vectors.
We will make this rigorous in the appendix/supplement.

4. Covariance analysis
Let AB> be an arbitrary matrix factorization of H , with
A,B ∈ Cn×`. Given a vector valued random variable
u ∈ R` satisfying E[uu>] = I , we can use this factoriza-
tion to produce an unbiased rank-1 estimate of the Hessian,
HA,B ≡ (Au)(Bu)> = Auu>B>. Note that the various
CP estimators, as well as the simpler one discussed in the
previous section are all of this form, and differ only in their
choices of A and B.

Expanding we have:

E[HA,B
ij HA,B

kl ] = E

∑
a,b

Ai,auaubBj,b

∑
c,d

Ak,cucudBl,d


(17)

=
∑

a,b,c,d

AiaBjbAkcBld E [uaubucud] (18)

where here (and in the remainder of this section) the sub-
scripts on u refer to scalar components of the vector u and

not elements of a collection of vectors.

If we assume u ∼ G ≡ Normal(0, I), we can use the well-
know formula EG[uaubucud] = δabδcd + δacδbd + δadδbc
and simplify this further to:

=
∑

a,b,c,d

AiaBjbAkcBld(δabδcd + δacδbd + δadδbc)

= (A>i Bj)(A
>
k Bl) + (A>i Ak)(B

>
j Bl) + (A>i Bl)(A

>
k Bj)

= HijHkl + (A>i Ak)(B
>
j Bl) +HilHjk

where Ai is a vector consisting of the i-th row of A, and
similarly for Bi, and where we have used Hij = A>i Bj .
Consequently, the variance is given by:

CovG

[
HA,B

ij , HA,B
kl

]
= EG

[
HA,B

ij HA,B
kl

]
−HijHkl

= (A>i Ak)(B
>
j Bl) +HilHjk

Note that when A = B = S̃, we have that
(A>i Ak)(B

>
j Bl) = (S̃>i S̃k)(S̃

>
j S̃l) = HikHjl. Thus the

estimator H S̃,S̃ has the following desirable property: its
covariance depends only on H and not on the specific de-
tails of the computational graph used to construct the S
function.

If on the other hand we assume that u ∼ K ≡
Bernoilli({−1, 1})`, i.e. K is a multivariate distribution
of independent Bernoulli random variables on {−1, 1},
we have EB [uaubucud] = δabδcd + δacδbd + δadδbc −
2δabδbcδcd, which when plugged into (18) gives:

CovK

[
HA,B

ij HA,B
kl

]
= (A>i Ak)(B

>
j Bl) +HilHjk

− 2
∑
a

BiaAjaBkaAla

= CovG
[
HA,B

ij HA,B
kl

]
− 2

∑
a

BiaAjaBkaAla

Of particular interest is the self-variance of HA,B
ij (i.e.

Var
[
HA,B

ij

]
= Cov

[
HA,B

ij , HA,B
ij

]
). In this case we have

that:

VarK
[
HA,B

ij

]
= VarG

[
HA,B

ij

]
− 2

∑
a

(BiaAja)
2

and we see that variance of estimator that uses K will
always be strictly smaller than the one that uses G,
unless

∑
a(BiaAja)

2 = 0 (which would imply that∑
aBiaAja = Hij = 0).

Returning to the case that u ∼ G, we can prove the follow-
ing result, which shows that when it comes to estimating
the diagonal entries Hii of H , the estimator which uses
A = B = S̃ has the lowest variance among all possible
estimators of the form HA,B :
Theorem 4.1. ∀i and ∀A,B s.t. AB> = H we have:

VarG
[
HA,B

ii

]
≥ VarG

[
H S̃,S̃

ii

]
= 2H2

ii



Estimating the Hessian by Back-propagating Curvature

Moreover, in the particular case of using the ‘simple’ esti-
mator (which is given by A = H,B = I) the variance of
the diagonal entries is given by:

VarG
[
HH,I

ii

]
= H>i Hi +H2

ii =
∑
j 6=i

H2
ij + VarG

[
H S̃,S̃

ii

]
and so we can see that the CP estimator based on S always
gives a lower variance, and is strictly lower in most cases.

5. Practical aspects
5.1. Computing and factoring the Mi’s

Computing the matrices Mi for each node i is necessary
in order to compute the S, T and U functions, and for
S we must also be able to factor them. Fortunately, each
Mi can be computed straightforwardly according to eqn. 7
as long as the operations performed at node i are simple
enough. And each Hyi,q

xi,xi is determined completely by the
local function fi computed at node i. The Jacobian term
Jf
yi,q

=
[
Jf
yi

]
q

which appears in the formula for Mi is
just a scalar, and is the derivative of f w.r.t. yi,q . This
can be made cheaply and easily available by performing, in
parallel with the computation of S(V ), the standard back-
wards automatic differentiation pass for computing the gra-
dient of f w.r.t. to y1, which will produce the gradient of
f w.r.t. each yi along the way. Alternatively, this gradient
information may be cached from a gradient computation
which is performed ahead of time (which in many applica-
tions is done anyway).

In general, when Mi is block diagonal or banded diagonal,
so too will Fi (with the same pattern), which will greatly
reduce the associated computational and storage require-
ments. For example, when fi corresponds to the element-
wise nonlinearities computed in a particular layer of a neu-
ral network, Mi will be diagonal and hence so will Fi, and
these matrices can be stored as such. Also, if Mi happens
to be sparse or low rank, without any other obvious special
structure, there are algorithms which can compute factors
Fi which will also be sparse or low-rank.

Alternatively, in the most extreme case, the vector valued
nodes in the graph can be sub-divided to produce a graph
with the property that every node outputs only a scalar and
has at most 2 inputs. In such a case, each Mi will be no
bigger than 2× 2. Such an approach is best avoided unless
deemed necessary since the vector formalism allows for a
much more vectorized and thus efficient implementation in
most situations which arise in practice. Another option to
consider if it turns out thatMi is easy to work with but hard
to factor, is to use the T,U based estimator instead of the
S based one.

It may also be the case that Mi or Fi will have a special
sparse form which makes sampling the entire vector vi un-
necessary. For example, if a node copies a large input vec-
tor to its output and transforms a single entry by some non-
linear function, Mi will be all zeros with a single element

on the diagonal (and hence so will its factor Fi), making
it possible to sample only the component of vi that corre-
sponds to that entry.

5.2. Increasing the rank

As with any unbiased estimator, the estimate can be made
more accurate by collecting multiple samples. Fortunately,
sampling and computing S(V ) for multiple V ’s is trivially
parallelizeable. And it can be easily implemented in vec-
torized code for k samples by taking the defining recur-
sions for S (eqn. 12, 13, and 14) and redefining Syi

(V ) and
Sxi

(V ) to be matrix valued functions (with k columns) and
vi to be a mi × k matrix of column vectors which are gen-
erated from independent draws from the usual distribution
for vi.

In the case where f is a sum of B similarly structured
terms, which occurs frequently in machine learning such as
when f is sum of regression errors or log-likelihood terms
over a collection of training cases, one can apply CP indi-
vidually to each term in the sum at almost no extra cost as
just applying it to f , thus obtaining a rank-k estimate of f
instead of a rank-1 estimate.

5.3. Curvature Propagation for Diagonal Hessian
Estimation in Feedforward Neural Networks

In this section we will apply CP to the specific exam-
ple of computing an unbiased estimate diag(Ĥ) of the
diagonal of H (diag(H)) of a feed-forward neural net-
works with ` layers. The pseudocode below computes
the objective f of our neural network for a batch of B
cases.

1: Input: z1, a matrix of inputs (with B columns, one per case)
2: for all i from 1 to `− 1 do
3: ui+1 ←Wizi
4: zi+1 ← g(ui+1)
5: end for
6: f ←

∑B
b=1 Lb(z`,b)/B

7: Output: f

Here g(x) is a coordinate-wise nonlinearity, zi are matrices
containing the outputs of the neuronal units at layer i for all
the cases, and similarly the matrices ui contain their inputs.
Lb denotes the loss-function associated with case b (the de-
pendency on b is necessary so we can include targets). For
simplicity we will assume that Lb is the standard squared
loss given by Lb(z`,b) = 1/2‖z`,b − tb‖2 for target vector
tb (where t will denote the matrix of these vectors).

The special structure of this objective permits us to ef-
ficiently apply CP to each scalar term of the average∑B

b=1 Lb(z`,b)/B, instead of to f directly. By summing
the estimates of the diagonal Hessians for each Lb(z`,b)/B
we thus obtain a rank-B estimate of H instead of merely
a rank-1 estimate. That this is just as efficient as applying
CP directly to f is due to the fact that the computations of
each z`,b are performed independently of each other.

For ease of presentation, we will redefine V ≡ {vi}Li=1
so that each vi is not a single vector, but a matrix of



Estimating the Hessian by Back-propagating Curvature

such vectors with B columns. We construct the compu-
tational graph so that the element-wise nonlinearities and
the weight matrix multiplications performed at each of the
` layers each correspond to a node in the graph. We define
Sui
≡ Sxji

(V ) where ji is the node corresponding to the
computation of ui (from zi−1 and Wi−1), Szi ≡ Sxki

(V )
where ki is the node correspond to the computation of zi
(from ui), and SWi ≡ [Sy1(V )]Wi where [·]Wi denotes ex-
traction of the rows in y1 corresponding to the i-th weight-
matrix (Wi). Consistent with our mild redefinition/abuse
of notation for V , each of Sui

, Szi , Sy1
, and SWi

will
be matrix-valued with a column for each of the B training
cases. The variables dzi and dui

are the derivatives w.r.t. ui
and zi computed with backpropagation and also have B
columns. Finally, let a � b be the element-wise prod-
uct, a�2 be the element-wise power, outer(a, b) ≡ ab>,
outer2(a, b) ≡ outer(a�2, b�2), and vec(·) be the vector-
ization operator. Under this notation, the algorithm below
estimates the diagonal of the Hessian of f by estimating the
sub-objective corresponding to each case, and then averag-
ing the results. Like the pseudo-code for the neural network
objective itself, it makes use of vectorization, which allows
for an easily parallelized implementation.

1: Sz` ← vj` ; dz` ← z` − t
2: Su` ← Sz` ; du` ← dz`
3: for all i from `− 1 down to 1 do
4: Szi ←W>i Sui+1 ; dzi ←W>i dui+1

5: [diag(Ĥ)]Wi ← vec(outer2
(
zi, Sui+1

)
/B)

6: Ki ← g′′(ui)� dzi
7: Sui ← Szi � g′(ui) + vki �K

�1/2
i

8: dui ← dzi � g′(ui)
9: end for

For i < `, each Ki is a B-columned matrix of vectors con-
taining the diagonals for each training case of the local ma-
trices Mki

for each case occurring at node ki. Because
Mj corresponds to an element-wise non-linear function, it
is diagonal, and so K�1/2i will be a matrix of vectors cor-
responding to the diagonals of the factors Fki (which are
themselves diagonal). Note that the above algorithm makes
use of the fact that the local matrices Mji can be set to zero
and the estimator of the diagonal will remain unbiased.

At no point in the above implementation do we need to
store any matrix the size of SWi

, as the computation of
[diag(Ĥ)]Wi , which involves an element-wise square of
SWi and sum over cases (as accomplished by line 5), can be
performed as soon as the one and only contribution to SWi

from other nodes in the graph is available. This is desir-
able since SWi

will usually be much larger than the various
other intermediate quantities which we need to store, such
as zi or Sui

. In functions f where large groups of param-
eters are accessed repeatedly throughout the computation
graph, such as in the training objective of recurrent neural
networks, we may have to temporally store some matrices
the size Sy1 (or certain row-restrictions of this, like SWi )
as the contributions from different cases are collected and
summed together, which can make CP less practical. No-

tably, despite the structural similarities of back-prop (BP)
to CP, this problem doesn’t exist with BP since one can
store incomplete contributions from each case in the batch
into a single n dimensional vector, which is impossible in
CP due to the need to take the entry-wise square of Sy1

before summing over cases.

6. Hardness of exact computation
An approach like CP wouldn’t be as useful if there was an
efficient and exact algorithm for computing the diagonal of
the Hessian of the function defined by an arbitrary com-
putation graph. In this section we will argue why such an
algorithm is unlikely to exist.

To do this we will reduce the problem of multiplying two
matrices to that of computing (exactly) the diagonal of
the Hessian of a certain function f , and then appeal to
a hardness due to Raz and Shpilka (2001) which shows
that matrix multiplication will require asymptotically more
computation than CP does when it is applied to f . This
result assumes a limited computational model consisting
of bounded depth arithmetic circuits with arbitrary fan-in
gates. While not a fully general model of efficient compu-
tation, it nonetheless captures most natural algebraic for-
mulae and algorithms that one might try to use to compute
the diagonal of f .

The function f will be defined by: f(y) ≡
1/2y>W>ZWy, where Z ∈ R2n×2n is symmetric,
and W ≡ [P>Q]> with P ∈ Rn×n and Q ∈ Rn×n.

Note that f may be easily evaluated in O(n2) time by mul-
tiplying y first by W , obtaining z, and then multiplying
z by Z, obtaining Zz, and finally pre-multiplying by z>
obtaining z>Zz = y>W>ZWy. Thus applying CP is rel-
atively straight-forward, with the only potential difficulty
being that the matrix Z, which is the local Hessian associ-
ated with the node that computes z>Zz, may not be easy
to factorize. But using the T /U variant of CP gets around
this issue, and achieves aO(n2) computational cost. More-
over, it is easy to see how the required passes could be im-
plemented by a fixed-depth arithmetic circuit (with gates
of arbitrary fan-in) with O(n2) edge-cost since the critical
operations required are just a few matrix-vector multiplica-
tions. The goal of the next theorem is to show that there
can be no such circuit of edge cost O(n2) for computing
the exact Hessian of f .
Theorem 6.1. Any family of bounded depth arithmetic cir-
cuits with arbitrary fan-in gates which computes the diag-
onal of f given inputs W and Z will have an edge count
which is superlinear in n2.

The basic idea of the proof is to use the existence of such a
circuit family to construct a family of circuits with bounded
depth and edge count O(n2), that can multiply arbitrary
n × n matrices (which will turn out to be the matrices P
andQ that parameterize f ), contradicting a theorem of Raz
and Shpilka (2001) which shows that any such circuit fam-



Estimating the Hessian by Back-propagating Curvature

ily must have edge count which is superlinear n2. The fol-
lowing lemma accomplishes this construction:

Lemma 6.2. If an arithmetic circuit with arbitrary fan-in
gates computes the diagonal of the Hessian of f for ar-
bitrary P , Q and Z then, there is also a circuit of twice
the depth + O(1), and three times the number of edges +
O(n2), which computes the product PQ for arbitrary input
matrices P,Q ∈ Rn×n.

The results presented in this section rule out, or make
extremely unlikely, the possible existence of algorithms
which could perform a constant number of backwards and
forwards “passes” through the computational graph of f to
find its exact Hessian.

7. Related work
The simplest way of computing the entries of the Hes-
sian, including the diagonal, is by using an algorithm for
Hessian-vector multiplication and running through the vec-
tors ei for i = 1...n, recovering each column of H in turn.
Unfortunately this method is too expensive in most situ-
ations, and in the example function f used in Section 6,
would require O(n3) time.

The method of Chapelle and Erhan (2011) can be viewed
as a special case of CP, where all the Mi’s except for the
Mi associated with the final nonlinearity are set to zero.
Because of this, all of the results proved in this paper also
apply to this approach, but with the Hessian replaced by the
Gauss-Newton matrix.

Becker and Le Cun (1988) gave an approach for approx-
imating the diagonal of the Hessian of a neural network
training objective using a deterministic algorithm which
does several passes through the computation tree. This
method applies recursions similar to (4)-(6), except that all
the “intermediate Hessians” at each layer are approximated
by their diagonals, thus producing a biased estimate (unless
the intermediate Hessians really are diagonal). We numer-
ically compare CP to this approach in Section 8.

In Bishop (1992), a method for computing entries of the
Hessian of a feedforward neural network was derived. This
method, while being exact, and more efficient than the
naive approach discussed at the start of this section, is not
practical for large networks, since it requires a number of
passes which will be at least as big as the total number of
hidden and outputs units. CP by contrast requires only 1
pass to obtain a single unbiased rank-B estimate, where B
is the number of training cases.

8. Experiments
8.1. Accuracy Evaluation

In this section we test the accuracy of CP on a small neural
network as we vary the number of samples. The network
consists of 3 hidden layers, each with 20 units. The input

and output layers are of size 256 and 10 respectively giv-
ing a total of 6190 parameters. We tested both a network
with random weights set by Gaussian noise with a variance
of 0.01, and one trained to classify handwritten digits from
the USPS dataset 2. For the random vectors v, we tested
both Gaussian and {−1, 1}-Bernoulli noise using the CP
estimators based on using S and T /U , and the simpler es-
timator discussed in Section 3 based on using H/I . For
the sake of comparison, we also included the deterministic
method of (Becker and Le Cun, 1988). The experiments
were carried out by picking a subset of 1000 data points
from the USPS dataset and keeping it fixed. Note that sam-
ple size refers to the number of random vectors generated
per data case. This means that a sample size of 1 corre-
sponds to an aggregation of 1000 rank-1 estimates.

Our results in 8.1 show that the accuracy of each estimator
improves by roughly an order of magnitude for every order
of magnitude increase in samples. It also shows that the S-
based estimator along with binary noise is by far the most
efficient and the simple H/I based estimator is the least
efficient by an order of magnitude.

8.2. Score-Matching Experiments

To test the effectiveness of CP in a more practical sce-
nario, we focus on estimating the parameters of a Markov
random field using the score matching technique. Score
matching is a simple alternative to maximum likelihood
that has been widely used to train energy-based models
(Köster and Hyvärinen, 2007; Swersky et al., 2011). One
of its drawbacks is that the learning objective requires the
diagonal Hessian of the log-likelihood with respect to the
data, which can render it unreasonably slow for deep and
otherwise complicated models.

Our specific test involves learning the parameters of a
covariance-restricted Boltzmann machine (cRBM; Ranzato
et al., 2010). This can be seen as a two-layer network where
the first layer uses the squared activation function followed
by a second layer that uses the softplus activation function:
log(1+exp(x)). The details of applying score matching to
this model can be found in Swersky et al. (2011).

In this experiment, we attempted to train a cRBM using
stochastic gradient descent on minibatches of size 100. Our
setup is identical to Ranzato et al. (2010). In particular, our
cRBM contained 256 factors and hidden units. We trained
the model on 11000 image patches of size 16×16 from the
Berkeley dataset 3. For our training procedure, we optimize
the first layer for 100 epochs, then freeze those weights and
train the second layer for another 25 epochs.

Score-matching requires the derivatives (w.r.t. the model
parameters) of the sum of the diagonal entries of the Hes-

2http://cs.nyu.edu/˜roweis/data/usps_all.
mat

3http://www.cs.berkeley.edu/projects/
vision/grouping/segbench

http://cs.nyu.edu/~roweis/data/usps_all.mat
http://cs.nyu.edu/~roweis/data/usps_all.mat
http://www.cs.berkeley.edu/projects/vision/grouping/segbench
http://www.cs.berkeley.edu/projects/vision/grouping/segbench


Estimating the Hessian by Back-propagating Curvature

100 101 102 103

Sample Size per Case

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

S
u
m

 o
f 

S
q
u
a
re

d
 E

rr
o
r Det

B-S
B-U/T
G-S
G-U/T
B-H/I
G-H/I

(a) Random Weights

100 101 102 103

Sample Size per Case

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

S
u
m

 o
f 

S
q
u
a
re

d
 E

rr
o
r Det

B-S
B-U/T
G-S
G-U/T
B-H/I
G-H/I

(b) Trained Weights

0 20 40 60 80 100 120 140
Epoch

−1200

−1000

−800

−600

−400

−200

0

S
co

re
 M

a
tc

h
in

g
 O

b
je

ct
iv

e

Train-approx::Eval-approx
Train-approx::Eval-exact
Train-exact::Eval-approx
Train-exact::Eval-exact

(c) Score Matching cRBM

Figure 1. 1(a)-1(b): Accuracy of various estimators for the diagonal Hessian of a small neural network as the number of randomly drawn
vectors per data case increases. B and G indicate the type of noise used (Binary or Gaussian), S and U /T are the complex and non-
complex variants of CP, H/I is the simple approach discussed in Section 3, and Det is the approach of Becker and Le Cun (1988). 1(c):
Score matching loss versus epoch when training using exact minibatch gradient and approximate minibatch gradient. In addition, when
training with exact or approximate methods we also evaluate and plot the approximate/exact objective to ensure that they are not too
different. Training the second layer begins after epoch 100.

Figure 2. Covariance filters (left) and examples of second-layer
pooling (right) from a cRBM learned with score matching on nat-
ural image patches using a stochastic objective.

sian (w.r.t. the data). We can thus use CP to estimate the
score-matching gradient by applying automatic differentia-
tion to the CP estimator itself (sampling and then fixing the
random noise V ), exploiting the facts that the linear sum
over the diagonal respects expectation, and the derivative
of the expectation over V is the expectation of the deriva-
tive, and so this will indeed produce an unbiased estimate
of the required gradient.

A random subset of covariance filters from the trained
model are shown in Figure 8.2. As expected the filters ap-
pear Gabor-like, with various spatial locations, frequencies,
and orientations. The second layer also reproduces the de-
sired effect of pooling similar filters from the layer below.

To demonstrate that learning can proceed with no loss in
accuracy we trained two different versions of the model,
one where we use the exact minibatch gradient, and one
where we use approximate gradients via our estimator. We
plot the training loss versus epoch, and our results in Fig-
ure 1(c) show that the noise incurred from our unbiased ap-
proximation does not affect accuracy during learning with
minibatches. Unfortunately, it is difficult to train for many
epochs in the second layer because evaluating the exact ob-
jective is prohibitively expensive in this model.

ACKNOWLEDGEMENTS

We thank Olivier Chapelle for his helpful discussions.

REFERENCES

S. Becker and Y. Le Cun. Improving the convergence of back-
propagation learning with second order methods. In Proceed-
ings of the 1988 connectionist models summer school, pages
29–37. San Matteo, CA: Morgan Kaufmann, 1988.

C. Bishop. Exact calculation of the hessian matrix for the multi-
layer perceptron. Neural Computation, 4(4):494–501, 1992.

O. Chapelle and D. Erhan. Improved preconditioner for hessian
free optimization. In NIPS Workshop on Deep Learning and
Unsupervised Feature Learning, 2011.

A. Hyvarinen. Estimation of non-normalized statistical models by
score matching. Journal of Machine Learning Research, 6(1):
695, 2006.

U. Köster and A. Hyvärinen. A two-layer ica-like model esti-
mated by score matching. Artificial Neural Networks–ICANN
2007, pages 798–807, 2007.

J. Martens. Deep learning via Hessian-free optimization. In
Proceedings of the 27th International Conference on Machine
Learning (ICML), 2010.

B. A. Pearlmutter. Fast exact multiplication by the hessian. Neural
Computation, 1994.

M. Ranzato, A. Krizhevsky, and G.E. Hinton. Factored 3-way re-
stricted boltzmann machines for modeling natural images. In
Proc. Thirteenth International Conference on Artificial Intelli-
gence and Statistics (AISTATS), 2010.

R. Raz and A. Shpilka. Lower bounds for matrix product, in
bounded depth circuits with arbitrary gates. In In Proceed-
ings of the thirty-third annual ACM symposium on Theory of
computing, pages 409–418. ACM Press, 2001.

S. Rifai, G. Mesnil, P. Vincent, X. Muller, Y. Bengio, Y. Dauphin,
and X. Glorot. Higher order contractive auto-encoder. In Pro-
ceedings of the ECML/PKDD 2011, 2011.

D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning rep-
resentations by back-propagating errors. Nature, 323(6088):
533–536, 1986.

K. Swersky, M. Ranzato, D. Buchman, B.M. Marlin, and
N. de Freitas. On autoencoders and score matching for en-
ergy based models. In International Conference on Machine
Learning, 2011.

B. Walter and V. Strassen. The complexity of partial derivatives.
Theoretical Computer Science, 22(3):317–330, 1983.


