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Abstract

In Passive POMDPs actions do not affect the
world state, but still incur costs. When the
agent is bounded by information-processing
constraints, it can only keep an approxima-
tion of the belief. We present a variational
principle for the problem of maintaining the
information which is most useful for minimiz-
ing the cost, and introduce an efficient and
simple algorithm for finding an optimum.

1. Introduction
1.1. Passive POMDPs Planning

Planning in Partially Observable Markov Decision
Processes (POMDPs) is an important task in rein-
forcement learning, which models an agent’s interac-
tion with its environment as a discrete-time stochastic
process. The environment goes through a sequence of
world states Wy, ..., W, in a finite domain W. These
states are hidden from the agent except for an observa-
tion Oy in a finite domain O, distributed by o(O;|W}).

In the standard POMDP, the agent then chooses an
action, which affects the next world state and incurs
a cost. Here we consider Passive POMDPs, in which
the action affects the cost, but not the world state.
We assume that the world itself is a Markov Chain,
with states governed by a time-independent transition
probability function p(Wy|W;_1) and an initial distri-
bution Py (W7).

The agent maintains an internal memory state M, in a
finite domain M. In each step the memory state is up-
dated from the previous memory state and the current
observation, according to a memory-state transition
function q;(M;|M;—1,O;) which serves as an inference
policy. Figure 1 summarizes the stochastic process.

Appearing in Proceedings of the 29" International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).

ROYFQCS.HUJI.AC.IL
TISHBYQCS.HUJI.AC.IL

Weir= =
t+la_

Figure 1. Structure of the Bayes network model of Passive
POMDP planning

The agent’s goal is to minimize the average expected
cost of its actions. In this paper we take the agent’s
memory state to represent the action, and define a cost
function d : W x M — R on the world and memory
states. The planning task is then to minimize

1 n

— E d(Wy, My)

n P} Wi, My
given the model parameters P;, p, o and d.

A Passive POMDP can be viewed as an HMM in which
inference quality is measured by a cost function. Ex-
amples of Passive POMDPs include various gambling
scenarios, such as the stock exchange or horse rac-
ing, where the betting does not affect the world state.
In some settings, the reward depends directly on the
amount of information that the agent has on the world
state (Kelly gambling, see Cover & Thomas, 2006).

When the agent is unbounded it has a simple deter-
ministic optimal inference policy. It can maintain a
belief Bi(W¢|O(), which is the posterior probabil-
ity of the world state W, given the observable history
Oy = O1,...,0;. The belief is a minimal sufficient
statistic of Oy for Wy, and therefore keeps all the rel-
evant information. It can be computed sequentially
by a forward algorithm, starting with By (W1|O1)
Py, (W1)o(O1|W71), and at each step updating

By(Wi[Ow))

X Z By _1(wi—1 ‘O(tfl))p(thwtfl)U(Ot|Wt)a

We—1
normalized to be a probability vector.
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1.2. Information Constraints

The sufficiency of the exact belief allows the agent to
minimize the external cost, but it incurs significant
internal costs. The amount of information which the
agent needs to keep in memory can be large, and even
each observation can be more than the agent can grasp.
Anyway, not all of this information is equally useful in
reducing external costs.

In general, the agent’s information-processing capacity
may be bounded in two ways:

1. The capacity of the agent’s memory may limit its
information rate between M;_; and My, to Rj,.

2. The capacity of the channel from the agent’s sen-
sors to its memory may limit the rate at which the
agent is able to process the observation O; while
it is available, to Rg.

The requirement that the agent keeps sufficient statis-
tics and exact beliefs is unrealistic. Rather, the agent’s
memory M; must be a statistic of O;) which is not suf-
ficient, but is still "good” in the sense that it keeps the
external cost low. We also want it to be "minimal” for
that level of quality, in terms of information-processing
rates, so that the agent keeps only information which
is useful enough. For each step individually, this is
exactly the notion captured by rate-distortion theory,
and here we have a sequential extension of it.

The main results of this paper are the formulation of
the setting described above, and the introduction of
an efficient and simple algorithm to solve it. We prove
that the algorithm converges to a local optimum, and
demonstrate in simulations the tradeoff of memory and
sensing intrinsic to this setting. The application of our
results to previously studied problems, and a compar-
ison to existing algorithms, are left for future work.

This paper is organized as follows. In section 2 we for-
mulate out setting in information-theoretical terms. In
section 3 we solve the problem for one step by finding
a variational principle and an efficient optimization al-
gorithm. In section 4 we analyze the complete sequen-
tial problem and introduce an algorithm to solve it. In
section b we show two simulations of our solution.

1.3. Related Work

Unconstrained planning in Passive POMDPs is eas-
ily done by maintaining the exact belief, and choos-
ing each action to minimize the subjective expected
cost. Planning in general POMDPs is harder, in one
aspect due to the size of the belief space. Many algo-
rithms plan efficiently but approximately by focusing
on a subset of this space.

Several works do so by optimizing a finite-state con-
troller of a given size (Poupart & Boutilier, 2003; Am-
ato et al., 2010). The belief represented by each state
of the controller is then the posterior probability of
the world state given that memory state. A different
approach is to explicitly select a subset of beliefs, and
use them to guide the iterations (Pineau et al., 2003).
Another is to reduce the dimension of the belief space
to its principle components (Roy & Gordon, 2002).

In this paper we present the novel setting of planning
in Passive POMDPs which is constrained by informa-
tion capacities. This setting allows treatment of rein-
forcement learning in an information-theoretic frame-
work. It may also provide a principled method for be-
lief approximation in general POMDPs. With a fixed
action policy the POMDP becomes a Passive POMDP,
and a bounded inference policy can be computed. This
reduces the belief space, which in turn guides the ac-
tion planning. This decoupling is similar to Chrisman
(1992), and will be explored in future work.

Some research treats POMDPs where the cost is the
Dk between the distributions of the next world state
when it is controlled and uncontrolled (Todorov, 2006;
Kappen et al., 2009). This has interesting analogies to
our setting. Our information-rate constraints define,
in effect, components of the cost which are the Dgp, be-
tween the distribution of the next memory state and
its marginals (see section 3.1). Tishby & Polani (2011)
combine similar information-rate constraints of per-
ception and action together. Future work will explore
and exploit this symmetry in the special case where
the memory information rate is unconstrained.

2. Preliminaries

Assume that the model parameters P;, p, 0 and d are
given. The agent strives to find an inference policy
q(n) such that the average expected cost satisfies

1

— E d(W;,M;) < D.
ntil W, M, ( ty t)_

n

for the minimal D possible. However, the agent oper-
ates under capacity constraints on the channels from
M;_1 and O; to M;. The external cost d parallels the
distortion in rate-distortion theory, while the internal
costs are information rates. The agent actually needs
to minimize a combination of these costs.

Note that the agent will generally have some infor-
mation on the next observation even before seeing it,
i.e. My;_1 and O; will not be independent. The agent
therefore has some freedom in choosing what part of
the information common to M;_1 and O; it remem-
bers, and what part it forgets and observes anew.
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The average information rate in both channels com-
bined cannot exceed their total capacity, that is

1 n
~ > I(Mi_1,0i;My) < Ras + Rs.
t=1

In addition, in each step the portion of the above in-
formation that is absent from O; may only be passed
on the memory channel, and so

1 n

= I(M; 15 M;[O;) < Ruy.

gt
Similarly, information absent from M;_; is subject to
the sensory channel capacity

1 n
o ZI(Ot;Mt‘Mtfl) < Rgs.
t=1

The distortion constraint and the three information-
rate constraints together form the problem of
inference-planning in Passive POMDPs (Problem 1).

The emergence of three information-rate constraints
for two channels is similar in spirit to multiterminal
source coding (Berger, 1977). In their terminology, the
agent needs to implement in each M; a lossy coding
of the correlated sources M;_; and Oy, under capac-
ity constraints, so as to minimize an average expected
distortion. The main difference is that here we chose
to allow the encoding not to be distributed, in keeping
with the ability of memory to interact with perception
in biological agents (Laeng & Endestad, 2012).

3. One-Step Optimization
3.1. Variational Principle

Before we consider the long-term planning required of
the agent in Problem 1, we focus on the choice of g,
in the final step, given the other transitions, that is,
given the joint distribution of M,,_1, W, and O,,. We
define the joint belief 6, (M,_1,W,) to be the joint
distribution of M,,_1 and W,,, and have

];T(Mn—la an On) = en(Mn—la Wn)O'(Onan)

We are interested in the rate-distortion region which
includes all points (Rys, Rg, D) which are achievable,
that is, for which there exists some g, (M,|M,_1,0x)

with def
Dy, (qn) = E d(Wn,Mn) <D
de
Teo, (qn) & I(M,,_1, 0,5 M,) < Ry + Rs
de
Taro, () 2 T(M,_1; M,|0,) < Rut

de
Tso, (qn) < 1(Op; My|M,_y) < Rs.

For any information-rate pair (Rps, Rg), the minimal
achievable D lies on the boundary Dy (R, Rs) of the
rate-distortion region. When 6,, and ¢, are clear from
context, we refer to these quantities as D, Z¢, Zas, Zs
and D*. We find D*(Ry, Rs) by minimizing the ex-
pected distortion under information-rate constraints.
The minimum exists because all our formulas are con-
tinuous, and the solution space for g, is closed.

Let Gn(M,|Mn—1), Gn(M,|Oy) and §,(M,) be the
marginals of ¢, (M,|M,—1,0,). We expand the terms
of the problem using these conditional probability dis-
tributions, to have
i E n n Mn— y Un d ny in
8, o OO

An,qn M
My

o E o DxL(gn(Mn|My—1,0n); Gn(M,)) < Ry + Rs
n—1,Un

M E o DKL(Qn(Mn|Mn717On)7én(Mn|On)) S RM

M EO DKL(qn(Mn‘MnflaOn),Qn(Mn|Mn71)) S RS
n—1,Yn

under normalization constraints.” We may waive the
constraints of non-negative probabilities, which will es-
sentially never be active as we shall see later. Also note
that we optimize over ¢, and ¢, as distinct parame-
ters. This is justified by theorem 1 which states that,
at the optimum, ¢, are indeed the marginals of ¢,.

1

Let the Lagrange multipliers for the constraints be ¢,
~vm and s, and their sum v = vo + yar + 5. Leav-
ing aside terms of logg,, the pointwise terms in the
Lagrangian will be

G(da (jny Mn—l, Wna On, Mn)
= d(an Mn) — ¢ log (jn(Mn)

M IOg @L(M7L|On) — s IOg (jn(Mn|Mn—1)
In the following analysis, several expectations of this
function will be useful:

L4 ng (d7 Q’I’h Mn,]_, On7 M’I’L)
= B G(da(jnanflaanOn;Mn%

 Wa|M, 1,0,
i GQn (d7 LYHa Mn—h Wn)
= E G(da @n,Mn—I;anonyMn)v

On My |Mn—1,Wy

i ng »dn (d7 qn)

= M’nfl,WEnyOn’Mn G(d7 Gn> Mp_1, Wy, Op, Mn)

= Do, (qn) + vcH(qn(M,))

!The information-rate constraints result from the n-step

Problem 1 by fixing the first n —1 steps, if we consider that
only two of the constraints are actually used in any instance
(see corollary 3).
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where H is the entropy function. The Lagrangian of
the problem, up to normalization terms and additive
constants, can now be written as

Ll(an Qn; any YC,YM, ’YS) = Gf)n,qn (d7 (jn) - 'YH(QH)-
3.2. Properties of the One-Step Lagrangian

Theorem 1. For any fized 6,, L1 is conver in g,
and q,. L1 is strictly convex in parameters which are
conditional on my_1 and o,, with Prg (my,_1,0,) >0,
and at the minimum these satisfy

Qn(Mn‘Mn—laOn) (1)

_ eXp(_fY_lG&,L (d> Qn7 Mnfla O’m Mn))
Zn(Mn—lyOn) ’

where Z,, is a normalizing partition function, and

QR(MR) = Z 1:9) (mnflaon)Qn(Mnlmnflaon)

Mn—1,0n

Mn—1

Cjn(Mn‘Mn—l) = Z Igr(on|Mn—1)qn(Mn|Mn—lv On)-

(2)

Proof. For any fixed 0,,, L1 is convex since all its terms
are convex. Non-zero terms only involve m,_; and
on with Prg, (my,—_1,0,) > 0. Focusing on these pa-
rameters, the distortion terms are linear, and the in-
formation terms strictly convex. The unique feasible
extremum of £; is then the global minimum. Differen-
tiating by each parameter gives equations 1 and 2. [

If follows from theorem 1 that complementary slack-
ness conditions are sufficient for optimality. Ta-
ble 1 shows these conditions, the information rates
(Rur, Rs) where the solution meets the boundary, and
a subgradient of the boundary at that point. For ex-
ample, if the minimum of £, with vy, = vg = 0 sat-
isfies Zo > Iy + Zg, then for any information-rate
pair in the interval [(IC —7s,Is),(Zp, Ie —IM)} the
minimal achievable distortion is D and (—vy¢o, —y¢) is
a subgradient of the boundary.

Theorem 2. For any joint belief 0, the boundary
Dy (Rar, Rs) of the rate-distortion region is continu-
ous and convex. Any point (Ryr, Rs, D) on the bound-
ary at which (—ap, —as) is a subgradient, is achieved
by minimizing L1 for multipliers

if Ic < Im+Zs
if Ic > Iy +Zs
and ay < ag
if Ic > Ty +Zs

and apr > ag

(0, anr, us)

(OlM,0,0éS — OzM)
(ves vy, vs) =

(as,anm — as,0)

Table 1. Achievability of the rate-distortion boundary by a
minimizer of L£i; If the shown Conditions are met by the
multipliers and the minimum of £;, then D is the minimal
distortion for the shown Rates, and the shown Subgradient
is a subgradient of D* at that point

Conditions Rates Subgradient

%g 2 gM +Zs (Zar, Is) (=vm, —7s)

%f Zng +Zs (Ze —Zs,Is) (=70, —vc —7s)

%i :2 (_;)ZM +Ts (Zum,Ie —Im) | (=ve — M, —c)

e BT o
Proof. Let transitions ¢, and ¢, achieve the

rate-distortion boundary at (Ra,Rs,D) and
(R);, Ry, D"), respectively, and let 0 < A < 1. Then
by equations 2 and the convexity of the Kullback-
Leibler divergence, the transition Ag, + (1 — )¢,
(over-)achieves  the  rate-distortion  constraints
XMRwy,Rs,D) + (1 — N (R}, Rg, D). The rate-
distortion region is therefore convex, and so is its
boundary. The boundary is continuous by the
continuity of the problem.

For a positive information-rate pair (Rps, Rg), hav-
ing M, independent of M, _; and O, makes all
information-rate constraints inactive. This satisfies
the Slater condition, and the multipliers detailed in
the theorem are then the Karush-Kuhn-Tucker multi-
pliers necessary for g, to be optimal. O

Corollary 3. Let D¢, Dy, and DY be the boundaries
of the rate-distortion regions obtained by keeping each
two of the three information-rate constraints. Then D*
is their mazimum.

3.3. Optimization Algorithm

An algorithm which alternatingly minimizes £, over
each parameter with the others fixed, in the style of
Blahut-Arimoto (Cover & Thomas, 2006), will allow
us to find the minimum.

Theorem 4. Algorithm 1 converges® monotonically to
the global minimum of L.

Proof. L1 is non-increasing in each iteration and is
bounded from below, which guarantees its monotonic
convergence. That is

2For the sake of clarity, here and in the rest of this paper

strict convexity, uniqueness of minimum and convergence
should all be taken with respect to events and transitions
of positive probability, as justified by theorem 1.
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Algorithm 1 Last-Step Optimization

Input: Pi,p,0.d,vc,vm,7s,0n
Output: optimal ¢,
r+0
Initialize some suggestion for g;,
repeat
Compute the marginals 7}, of ¢, (eq. 2)
Compute a new value for ¢! from 7, (eq. 1)
r—r+1
until ¢, converges

L1(dr, @) = L1(ay™,an) —=— 0.
r—>00
But ¢-™! is the unique minimum of the continuous
Lagrangian. This implies that ¢, also converges to
a solution ¢} with marginals ;. By the continuity
of the Lagrangian’s derivatives, they are all 0 at this
solution. O

4. Sequential Rate-Distortion
4.1. Variational Principle

Returning to the entire process of Problem 1, the se-
quence of joint beliefs 03 ,) = 02,...,0, depends re-
cursively on 61 and the policy g(,). Foreach 1 <t <n

Orp1 (Mg, Wita) (3)

= Z at(mt—lawt) Pq)tr(Mtth+1|mt—1’wt)7
me—1,Wt
with 6; given as the independent distribution of M,
and Wj.

Adding the constraints of equation 3 with multipliers
Ut my wesr» the Lagrangian of Problem 1 is

_ 1 _
L (qn) Any» O2.m)) = - Zﬁl(QtaQﬁeta’YC’a’YMa'YS)
t=1

1 n—1
_EE E Vtmy wiyr 9t+1(mt»wt+1)

t=1 m¢,weq1

- Z O (me—1, we) Pr(mye, wepr|me—1,wy)
me—1,We a

up to normalization terms and additive constants.

Solving L,, is much more difficult than £;. L, is not
convex, and each step may affect all future steps. Intu-
itively, remembering some feature of the sample in one
step is less rewarding if this information is discarded in
a future step, and vice versa. This leads to £,, having
many local minima.

4.2. Local Optimization Algorithm

Nevertheless, Problem 1 still has some structure which
can be insightful to explore. In particular, it has some
interesting similarities to the standard POMDP plan-
ning problem. Differentiating £, by ¢: we now get

qt(Mt‘Mt—laOt) (4)
_ exp(—y~ G, (A, Gr, My_1, Oy, My))
Z(My—1,0y) ’
with
A7 (Wy, My) = d(Wy, M, E ,
¢ (Wi, My) (Wi t)‘FWMth Vi, My,Wi g1

where 7, = 0. ¢; now depends on the future through
the multiplier vector ;. Note how the expectation
of v ar, w,,., given W; plays a parallel role to that of
d(Wt, Mt) .

L, is linear in each #;, and at the optimum must in
fact be constant in every non-trivial component of 6;.
This gives us a recursive formula for computing v, _q
from 74, ¢ and . For 1 < t < n, and whenever
0 < 0:(Mi—1, W) < 1, we have

Ve, o w, = G, (A7, Ge, My—1, W) (5)

— E H M| M;_1,0 A .
VOf,\Wt (qe(Me|Mi—1,0¢)) + Ay,

Note that equation 5 is a linear backward recursion
for 7;. The multipliers Xt come from the constraints
that 6, is a probability distribution function. It has no
consequence, however, since it is independent of M;_1,
and is normalized out when 7;_; is used to compute
g:+—1 in equation 4.

At this point, we can introduce the following general-
ization of algorithm 1, which finds the optimal transi-
tion ¢, given the joint belief #; and the policy suffix

d(t+1,n) = Gt+15--+sqn-

Algorithm 2 One-Step Optimization

Input: Pi,p,o,d,vc,7m,7s, 0t 4t+1,n)
Output: optimal g
r+0
Initialize some suggestion for ¢
repeat
Compute 6

(t+17n)
Compute the marginals (T(”t ) of q(rt n) (eq. 2)

T

from 60; and Upn—1) (eq. 3)

Compute 77, ,,_, recursively backward (eq. 5)

Compute g; +1

rer+1
until ¢/ converges

from 67, g, and 7} (eq. 4)

This is a forward-backward algorithm. In each iter-
ation we compute 011 ,) = 0¢y1,...,0, recursively
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forward, and then ¥ ,,_1) = #,..., V1 recursively
backward. The algorithm is guaranteed to converge
monotonically to an optimal solution, since £,, is still
strictly convex in each ¢; separately. In fact, all our
theorems and proofs regarding algorithm 1 carry over
to this generalization.

4.3. Joint-Belief MDP

Expanding the recursion of ; in equation 5 to a closed
form, and disregarding A;, we find that for 1 <t <n
and consistent parameters3

['nftJrl(q(t,n); at) (6)

1
= m Z 9t<mt717wt)yt71,mt,1,wt-
me—1,W
If we extend the recursion by another step to define

Uy, we get that our minimization target is

1
Ly(qny;01) = — E

Vo, Mo, Wi -
n Mo,Wi o

The minimization

Vi(0;) = min E

Vt—1,M;—1, W
q(t,m) Mi—1,Wy K

can be looked at as the cost-to-go given the joint belief
0; before step t. Importantly, the recursive formula 5,
when minimized over g ), is a Bellman equation. It
contains a recursive term

E Vi My, W,
My, 1
My W1 |My—1,We o

which is the expected future cost, and other terms
which are the expected immediate costs, internal and
external, of implementing ¢; in step ¢.

This suggests viewing our problem as a joint-belief
MDP. Here the states are the joint beliefs 6;, the ac-
tions are ¢;, and the next state always follows deter-
ministically according to equation 3. This determinism
allows us to use a time-dependent policy ¢(,), rather
than a state-dependent one, and will prove useful in
finding a solution.

The belief space of a standard POMDP can be looked
at as the state space of a belief MDP, with the same
actions and observations, and a linear transition func-
tion. If memory states are approximate beliefs, then
our model is more like a further abstraction, where the
MDP state space is the set of distributions over the
belief space. Table 2 summarizes the main differences
between this joint-belief MDP and the belief-MDP rep-
resentation of discrete-action finite-horizon POMDPs.

3When the Lagrangian is written in terms of the policy
and the initial joint belief, the other parameters are taken
to be consistent with them.

Table 2. Differences in belief-MDP representation of
POMDPs and Bounded Passive POMDPs

POMDP
beliefs, A(W)

same as POMDP
discrete

Bounded Passive POMDP
joint beliefs, (A(M)W

State space

memory-state transitions

Action space .
continuous

deterministic
linear in joint belief

stochastic

State transition linear in belief

internal4external cost
Dki,+linear in joint belief

external cost

Policy cost linear in belief

continuous
concave in joint belief

piecewise-linear

Value function A .
concave in belief

One important difference is in the structure of the
value function. The expected cost L£,,_;41 of a fixed
policy suffix q(; ) consists of some linear terms of ex-
pected distortion, but also some strictly convex terms.
The latter all take the form of a Kullback-Leibler di-
vergence between ¢/, for some t' > ¢, and a marginal
G, the latter depending on 6, through equations 2 and
the recursion 3.

That this cost is not linear makes the representation of
the value function a challenge, but a greater difficulty
is the size of the policy space, which is finite in discrete-
action finite-horizon POMDPs, but continuous here.
Minimizing over it does not yield a piecewise-linear
function of the joint belief, although it is still contin-
uous, and the convex mixing of policies shows that it
is still concave?. It is unclear how to finitely represent
the resulting value function in our case.

4.4. Bounded Planning Algorithm

Perhaps surprisingly, the determinism of the joint-
belief MDP allows us to define a local criterion for
optimality. Together with iterations of algorithm 2
which make local improvements, this will guarantee
convergence to a local optimum.

Our algorithm is a simple forward-backward algo-
rithm, with a building block (algorithm 2) which is
itself forward-backward. In each iteration we compute
recursively forward the joint beliefs 6, for the current
policy ¢(n). Then we compute recursively backward a
new policy qzn), by finding in each step t a policy suffix
which is locally optimal for #;. The criterion for opti-
mality is that in each step we can use either qét +1n)
from the previous step or q(¢41 ) from the previous it-
eration, and whichever leads to a lower cost is chosen.

Theorem 5. Algorithm 3 converges monotonically to
a limit cost L*. For any ¢ > 0, any q(’n) which costs
within € of L* is also within € of a local minimum of

41f rewards are used instead of costs, the value function

is convex.
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Algorithm 3 Passive POMDP Bounded Planning
Inpl'It: 017pa g, d7 YC,VM,VS, T
Output: locally optimal g,
r<+0
Initialize some suggestion for q(rn)
repeat
97{ — 91
Compute 6, ,, from 67 and g, ;) (eq. 3)
fort < ntoldo
r+1, : T
q(ttn)t < arg mlnq(tm) ‘CnftJrl(q(t,n); at)
s.t. gu+1,n) € {q€;1£f$1aq(t+lm)} (alg. 2)

end for
r+1 r+1,1
Uny < )

r—r+1
until En(q(rn); 61) converges

the bounded-inference-planning problem (section 2), in
the sense that for any 1 <t < n, the global minimum
given q(rt_l) and q(rtJrl n) is at most € better than qz’n).

Proof. In iteration r, q(n) from the previous iteration
is feasible for q(:)l. Therefore the cost of q’("n) is non-
increasing in r and converges monotonically to a limit
L*.

Let q(rn) be within some € > 0 of L*. Fixany 1 <t <mn,
and let ¢ achieve the global optimum given q(rt_l) and

q(THLn). Then
L0(q);01) — € < La(q()' 01)
(i) r r Lty g
= n((‘](t—l)a‘](t’n) ); 01)
(b) T * '
< En((q(t—1)7qt’q(t—i-l,n));al)v
where
(a) follows recursively from (g}, qz";-i,lt’$1) being fea-
sible for 67, in iteration r, for each 1 < t' < ¢,

and

T

(b) follows from (g7, q(;; ;) being feasible for 6 in
iteration r.
O

Where algorithm 3 runs algorithm 2, it can initial-
ize ¢ to g from the previous iteration. This may
speed up each iteration, particularly when the algo-
rithm has nearly converged. In addition, when run-
ning algorithm 3 with different sets of multipliers, it
converges much faster if each run is initialized with the
previous result. Empirically, this also leads to much
better local minima if the runs are sorted in order of
decreasing multipliers.

Figure 2. Boundary of the rate-distortion region for the se-
quential symmetric channel simulation
The parts from left to right: yar = 0; yar =75 =0; 75 =0

Figure 3. Contour map of the rate-distortion boundary for
the sequential symmetric channel simulation

5. Simulations
5.1. Symmetric Channel

Figure 2 shows the boundary of the rate-distortion
region for the 30-step sequential symmetric channel
problem. The domains W, O and M are all binary.
The agent observes the state correctly with probabil-
ity 0.8. The state remains the same for the next step
independently with probability 0.8. The distortion is
the delta function.

The boundary consists of three parts as in corollary 3.
They have vy = 0 (left), yar = vs = 0 (middle) and
vs = 0 (right). Empirically, taking vo = 0 is never
feasible, as no optimal solution ever has Z¢ < Zp;+Zs.

To clarify this further, figure 3 shows a colored contour
map of the boundary. The lower the distortion, the
higher the required information rates. The tradeoff
between memory and perception is illustrated by the
negative slope of the contours.
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Figure 4. Contour map of the rate-distortion boundary for
the Kelly gambling simulation

5.2. Kelly Gambling

Three horses are running in 10 races. Each horse has
a fitness rating f; € {1,2,3}, and the winning horse is
determined by softmax, i.e. horse ¢ wins with proba-
bility proportional to exp(f;). Between the races, the
fitness of each horse may independently grow by 1,
with probability 0.1 if it is not maxed out, or drop by
1, with probability 0.1 if it is not depleted. Each horse
keeps its fitness with the remaining probability.

The only observations are side races performed be-
fore each race: 2 random horses compete (with soft-
max) and the identities of the winner and the loser
are announced. The memory state is a model of the
world, consisting of the presumed fitness fl of each
horse. The log-optimal proportional gambling strategy
is used (Kelly gambling, see Cover & Thomas, 2006),
betting on horse 7 a fraction of the wealth proportional
to exp( ﬁ) Each bet is double-or-nothing, and the dis-
tortion is the expected log return on the portfolio.

Figure 4 shows the contour map, which is not convex
in this instance.

6. Conclusion

We have presented the problem of planning in Pas-
sive POMDPs with information-rate constraints. This
problem takes the form of a sequential version of rate-
distortion theory, and accordingly we were able to pro-
vide algorithms which globally optimize each step in-
dividually. Unfortunately, the full problem is not con-
vex, and we expect that it has very hard instance sets.

Nevertheless, typical instances with some locality in
their transitions and observations are expected to be
easier. We have introduced an efficient and simple
algorithm for finding a local minimum, and have used
it to illustrate the problem with two simulations. In
doing so, we have demonstrated the emergence of a

memory-perception tradeoff in the problem.

Our work has been motivated by the problem of plan-
ning in general POMDPs, which may benefit from be-
lief approximation which is principled by information
theory. The application of our current results to this
problem is left for future work.
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