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Abstract

In this paper, we propose a new Soft
Confidence-Weighted (SCW) online learn-
ing scheme, which enables the conventional
confidence-weighted learning method to han-
dle non-separable cases. Unlike the previ-
ous confidence-weighted learning algorithms,
the proposed soft confidence-weighted learn-
ing method enjoys all the four salient prop-
erties: (i) large margin training, (ii) con-
fidence weighting, (iii) capability to handle
non-separable data, and (iv) adaptive mar-
gin. Our experimental results show that the
proposed SCW algorithms significantly out-
perform the original CW algorithm. When
comparing with a variety of state-of-the-
art algorithms (including AROW, NAROW
and NHERD), we found that SCW generally
achieves better or at least comparable predic-
tive accuracy, but enjoys significant advan-
tage of computational efficiency (i.e., smaller
number of updates and lower time cost).

1. Introduction

Online learning algorithms (Rosenblatt, 1958;
Crammer et al., 2006; Jin et al., 2010; Zhao et al.,
2011a;b) represent a family of fast and simple machine
learning techniques, which usually make few statistical
assumptions and can be applied to a wide range of
applications (Li et al., 2012). Online learning has
been actively studied in machine learning community,
in which a variety of online learning algorithms have
been proposed, including a number of first-order
algorithms such as the well-known Perceptron algo-
rithm (Rosenblatt, 1958) and the Passive-Aggressive
(PA) algorithms (Crammer et al., 2006).
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Recent years have seen a surge of stud-
ies on the second-order online learning algo-
rithms (Cesa-Bianchi et al., 2005; Dredze et al.,
2008; Crammer et al., 2009b; Orabona & Crammer,
2010; Duchi et al., 2011), which have shown that pa-
rameter confidence information can be explored
to guide and improve online learning perfor-
mance (Cesa-Bianchi et al., 2005). For example,
Confidence-weighted (CW) learning (Dredze et al.,
2008; Crammer et al., 2009a) maintains a Gaussian
distribution over some linear classifier hypotheses
and applies it to control the direction and scale of
parameter updates (Dredze et al., 2008). Although
CW learning has formal guarantees in the mistake-
bound model (Crammer et al., 2008), it can overfit in
certain situations due to its aggressive update rules
based upon a separable data assumption. Recently,
an improved online algorithm, i.e., Adaptive Regular-
ization of Weights (AROW) (Crammer et al., 2009b;
Orabona & Crammer, 2010), relaxes such separable
assumption by employing an adaptive regularization
for each training example based upon its current
confidence. This regularization comes in the form
of minimizing a combination of the Kullback-Leibler
divergence between Gaussian distributed weight
vectors and a confidence penalty of vectors.

Although AROW is able to improve the original CW
learning by handling noisy and non-separable cases,
it is not the exact corresponding soft extending part
of CW (Like PA with PA-I and PA-II). In particu-
lar, the directly added loss and confidence regular-
ization make AROW lose an important property of
Confidence-weighted learning, i.e., Adaptive Margin
property. Following the similar idea of soft margin
support vector machines, the adaptive margin assigns
different margins for different instances via a proba-
bility formulation, which enables CW to gain extra
efficiency and effectiveness.

In this work, we extend the confidence-weighted learn-
ing for soft margin learning, which makes our Soft
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Confidence-Weighted (SCW) learning method more
robust than the original CW learning when handling
noisy and non-separable data, and more effective and
efficient than the state-of-the-art AROW algorithm.

The rest of this paper is organized as follows. Sec-
tion 2 reviews related work. Section 3 proposes the
soft confidence-weighted learning method. Section 4
analyzes the mistake bounds and properties of our al-
gorithms. Section 5 conducts an extensive set of em-
pirical experiments, and Section 6 concludes this work.

2. Related Work and Background

2.1. Overview of Online Learning

Online learning operates on a sequence of data exam-
ples with time stamps. At time step t, the algorithm
processes an incoming example xt ∈ R

d by first pre-
dicting its label ŷt ∈ {−1,+1}. After the prediction,
the true label yt ∈ {−1,+1} is revealed and then the
loss ℓ(yt, ŷt), which is the difference between its predic-
tion and the revealed true label yt, is suffered. Finally,
the loss is used to update the weights of the model
based on some criterion. Overall, the goal of online
learning is to minimize the cumulative mistake over
the entire sequence of data examples.

Our work is closely related to several first and
second order online learning algorithms, including
Passive-Aggressive (PA) learning (Crammer et al.,
2006), Confidence-Weighted learning (Dredze et al.,
2008), and Adaptive Regularization of Weights learn-
ing (Crammer et al., 2009b). Below we review the ba-
sics of these algorithms.

2.2. Passive-Aggressive Learning

As the state-of-the-art first order online learning al-
gorithm, the optimization of Passive-Aggressive (PA)
learning is formulated as:

wt+1 = arg min
w∈Rd

1

2
‖w −wt‖2s.t.ℓ(w; (xt, yt)) = 0 (1)

where the loss function is based on the hinge loss:

ℓ(w; (xt, yt)) =

{

0 if yt(w · xt) ≥ 1
1− yt(w · xt) otherwise

The above optimization has the closed-form solution:

wt+1 = wt + ηPAt ytxt (2)

where ηPAt = ℓ(wt;(xt,yt))
‖xt‖2 . Further, to let PA be able

to handle non-separable instances and more robust,
a slack variable ξ was introduced into the optimiza-
tion (1) using one of two types of penalty: linear and
quadratic, leading to the following two formulations of

soft-margin PA algorithms:

wPA−I
t+1 = arg min

w∈Rd

1

2
‖w−wt‖2 + Cℓ(w; (xt, yt))

wPA−II
t+1 = arg min

w∈Rd

1

2
‖w−wt‖2 + Cℓ(w; (xt, yt))

2

where C is a parameter to tradeoff between passiveness
and aggressiveness. The resulting weight updates to
the soft-margin PA algorithms have the same form as
that of (2), but different coefficients ηt as follows:

ηPA−I
t = min{C, ℓ(wt; (xt, yt))

‖xt‖2
}, ηPA−II

t =
ℓ(wt; (xt, yt))

‖xt‖2 + 1
2C

2.3. Confidence-Weighted Learning

To better exploring the underlying structure between
features, the Confidence-Weighted (CW) learning al-
gorithm assumes a Gaussian distribution of weights
with mean vector µµµ ∈ R

d and covariance matrix
Σ ∈ R

d×d. The weight distribution is updated by
minimizing the Kullback-Leibler divergence between
the new weight distribution and the old one while en-
suring that the probability of correct classfication is
greater than a threshold as follows:

(µµµt+1,Σt+1) = argmin
µµµ,Σ

DKL(N (µµµ,Σ),N (µµµt,Σt))

s.t. P r
w∼N (µµµ,Σ)[yt(w · xt) ≥ 0] ≥ η

This optimization problem has a closed-form solution

µµµt+1 = µµµt + αtytΣtxt Σt+1 = Σt − βtΣtxt
TxtΣt (3)

The updating coefficients are calculated as follows:

αt = max
{

0,
1

υtζ
(−mtψ +

√

mt
2
φ4

4
+ υtφ2ζ)

}

βt =
αtφ√

ut + υtαtφ

where ut = 1
4 (−αtυtφ +

√

αt2υt2φ2 + 4υt)
2, υt =

xt
TΣtxt, mt = yt(µµµt · xt), φ = Φ−1(η)(Φ is the cumu-

lative function of the normal distribution), ψ = 1+ φ2

2 ,
and ζ = 1 + φ2.

2.4. Adaptive Regularization of Weights

Unlike the original CW learning algorithm, the Adap-
tive Regularization Of Weights (AROW) learning
introduces adaptive regularization of the prediction
function when processing a new instance in each learn-
ing step, making it more robust than CW to sudden
changes of label noise in the learning tasks. In partic-
ular, the optimization of AROW is formulated as:

(µµµt+1,Σt+1) = argmin
µµµ,Σ

DKL(N (µµµ,Σ),N (µµµt,Σt))

+
1

2γ
ℓ2(µµµ; (xt, yt)) +

1

2γ
xt
TΣtxt
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where ℓ2(µµµ; (xt, yt)) = (max{0, 1− yt(µµµ · xt)})2 and γ
is a regularization parameter. The optimization has a
closed-form solution similar with CW of (3), but dif-
ferent updating coefficients:

αt = ℓ(µµµt; (xt, yt))βt, βt =
1

xtTΣtxt + γ

3. Soft Confidence-Weighted Learning

In this section we present a new online learning method
that aims to address the limitation of the CW and
AROW learning. Following the same problem settings
of the Confidence-Weighted learning, we assume the
weight vectorw follows the Gaussian distribution with
the mean vectorµµµ and the covariance matrix Σ. Notice
that the probability constraint in the CW learning, i.e.,
Pr

w∼N (µµµ,Σ)[yt(w · xt) ≥ 0] ≥ η can be rewritten as

yt(µµµ · xt) ≥ φ

√

x⊤
t Σxt,

where φ = Φ−1(η). Further, we introduce a loss func-
tion as follows:

ℓφ
(

N (µµµ,Σ); (xt, yt)
)

= max
(

0, φ

√

x⊤
t Σxt − ytµµµ · xt

)

It is easy to verify that satisfying the probability con-
straint (i.e., yt(µµµ · xt) ≥ φ

√

x⊤
t Σxt for any φ > 0)

is equivalent to satisfying ℓφ
(

N (µµµ,Σ); (xt, yt)
)

= 0.
Therefore, the optimization problem of the original
CW can be re-written as follows

(µµµt+1,Σt+1) = argmin
µµµ,Σ

DKL

(

N (µµµ,Σ)‖N (µµµt,Σt)
)

s.t. ℓφ
(

N (µµµ,Σ); (xt, yt)
)

= 0, φ > 0

The original CW learning method employs a very ag-
gressive updating strategy by changing the distribu-
tion as much as necessary to satisfy the constraint
imposed by the current example. Although it results
in the rapid learning effect, it could force to wrongly
change the parameters of the distribution dramatically
when handling a mislabeled instance. Such undesir-
able property makes the original CW algorithm per-
forms poorly in many real-world applications with rel-
atively large noise.

To overcome the above limitation of the CW learn-
ing problem, we propose a Soft Confidence-Weighted
(SCW) learning method, which aims to soften the ag-
gressiveness of the CW updating strategy. The idea
of the SCW learning is inspired by the variants of PA
algorithms (PA-I and PA-II) and the adaptive margin.
In particular, we formulate the optimization of SCW
for learning the soft-margin classifiers as follows:

(µµµt+1,Σt+1) = argmin
µµµ,Σ

DKL

(

N (µµµ,Σ)‖N (µµµt,Σt)
)

+ Cℓφ
(

N (µµµ,Σ); (xt, yt)
)

(4)

where C is a parameter to tradeoff the passiveness and
aggressiveness. We denoted the above formulation of
the Soft Confidence-Weighted algorithm, as “SCW-I”
for short. Similar to the variant of PA, we can also
modify the above formulation by employing a squared
penalty, leading to the second formulation of SCW
learning (denoted as “SCW-II” for short):

(µµµt+1,Σt+1) = argmin
µµµ,Σ

DKL

(

N (µµµ,Σ)‖N (µµµt,Σt)
)

+ Cℓφ
(

N (µµµ,Σ); (xt, yt)
)2

(5)

For the optimization of SCW-I, the following proposi-
tion gives the closed-form solution.

Proposition 1. The closed-form solution of the opti-
mization problem (4) is expressed as follows:

µµµt+1 = µµµt + αtytΣtxt,Σt+1 = Σt − βtΣtxt
TxtΣt

where the updating coefficients are as follows:

αt = min{C,max{0, 1

υtζ
(−mtψ +

√

mt
2
φ4

4
+ υtφ2ζ)}}

βt =
αtφ√

ut + υtαtφ

where ut = 1
4 (−αtυtφ +

√

αt2υt2φ2 + 4υt)
2,υt =

xt
TΣtxt,mt = yt(µµµt · xt),φ = Φ−1(η),ψ = 1 + φ2

2 and
ζ = 1 + φ2.

Similarly, the following proposition gives the closed-
form solution to the optimization of SCW-II.

Proposition 2. The closed-form solution of the opti-
mization problem (5) is:

µµµt+1 = µµµt + αtytΣtxt,Σt+1 = Σt − βtΣtxt
TxtΣt

The updating coefficients are as follows:

αt = max{0, −(2mtnt + φ2mtυt) + γt

2(n2
t + ntυtφ2)

}

βt =
αtφ√

ut + υtαtφ

where γt = φ
√

φ2m2
tυ

2
t + 4ntυt(nt + υtφ2), and nt =

υt +
1
2C .

The detailed proofs of Proposition 1 and 2 can be
found in Appendix section. Finally, Algorithm 1 sum-
marizes the proposed SCW-I and SCW-II algorithms.

4. Analysis and Discussions

We first give an overview about the comparison of the
proposed SCW methods with respect to several exist-
ing first-order and second-order online learning algo-
rithms, followed by the discussions on the nonlinear
extension and the bound analysis.
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Algorithm 1 SCW learning algorithms (SCW)

INPUT: parameters C > 0, η > 0.
INITIALIZATION: µµµ0 = (0, . . . , 0)⊤, Σ0 = I.
for t = 1, . . . , T do

Receive an example xt ∈ R
d;

Make prediction: ŷt = sgn(µµµt−1 · xt);
Receive true label yt;
suffer loss ℓφ

(

N (µµµt−1,Σt−1); (xt, yt)
)

;

if ℓφ
(

N (µµµt−1,Σt−1); (xt, yt)
)

> 0 then

µµµt+1 = µµµt+αtytΣtxt,Σt+1 = Σt−βtΣtxtTxtΣt
where αt and βt are computed by either Propo-
sition 1 (SCW-I) or Proposition 2 (SCW-II);

end if

end for

4.1. Comparison with the existing methods

Following the study of AROW, we qualitatively exam-
ine the properties of different algorithms in Table 1.
Unlike the previous second-order algorithms, the pro-
posed SCW algorithm enjoys all the four salient prop-
erties. In particular, SCW improves over the origi-
nal CW algorithm by adding the capability to handle
the non-separable cases, and improves over AROW by
adding the adaptive margin property. To the best of
our knowledge, SCW is the first second-order online
learning that holds all the four properties.

Table 1. Property comparison of online algorithms.
Algorithm Large Confi- Non- Adaptive

Margin dence Separable Margin

PA Yes No Yes No
SOP No Yes Yes No
IELLIP No Yes Yes No
CW Yes Yes No Yes
AROW Yes Yes Yes No
NHERD Yes Yes Yes No
NAROW Yes Yes Yes No
SCW Yes Yes Yes Yes

4.2. Extension to Nonlinear Cases

Similar to other linear online learning methods, the
proposed SCW learning can be extended to nonlinear
cases. The following lemma shows the possibility of
extending the proposed SCW algorithms to nonlinear
cases using kernel tricks.

Lemma 1. (Representer Theorem)
The mean µµµi and covariance Σi parameters computed
by the soft confidence weight algorithm can be written
as linear combinations of the input vectors with coef-
ficients that depend only on inner products of input

vectors, i.e.,

Σi =

i−1
∑

p,q=1

π(i)
p,qxpxq

T + aI, µµµi =

i−1
∑

p

νp
(i)xp

where νi
(i) = 1 and νp

(i+1) = νp
(i) +

αiyi
∑i−1

q πp,q
(i)xq

Txi for p < i, and

πp,q
(i+1) = −βi

∑

r,s πp,r
(i)πs,q

(i)xr
Txs + πp,q

(i),

πp,i
(i) = πi,p

(i) = −βi
∑i−1
p,r πp,r

(i)(xr
Txi),

πi,i
(i+1) = −βi.

The above lemma can be proved by induction similar
to the proof in (Crammer et al., 2008).

4.3. Analysis of the Loss Bound

Our analysis begins with the definition of confidence
loss, which is used in (Crammer et al., 2008). The
loss is a function of the margin mi normalized by√
v, i.e., m̃i =

mi√
vi
. We modified the confidence loss

in (Crammer et al., 2008) as an upper-bounded loss
by:

ℓφi
(m̃i) =

{

0 m̃i ≥ φ

min{fφ(m̃i),
C2(1+φ2)υi

φ2 } m̃i < φ

where fφ(m̃) =
(−m̃ψ+

√

m̃2 φ4

4
+φ2ζ)2

φ2ζ
. It is easy to see

that the loss ℓφ(m̃) holds the properties of Lemma 5
in (Crammer et al., 2008) for SCW-I.

We have the following loss bound.

Theorem 1. Let (x1, y1)...(xn, yn) be an input se-
quence for SCW-I. Assume there exist µµµ∗ and Σ∗

such that for all i for which the algorithm made an
update(αi > 0),

µµµ∗Txiyi ≥ µµµi+1
Txiyi, xi

TΣ∗xi ≤ xi
TΣi+1xi

Then the following bound holds:

∑

i

ℓφi
(m̃i) ≤

∑

i

(αi)
2
υi

≤ (1 + φ2)

φ2
(− log detΣ∗ + Tr(Σ∗) + µµµ

∗TΣn+1
−1

µµµ
∗ − d)

The above theorem can be proved by applying Lemma
7 and property 6 in Lemma 5 in (Crammer et al.,
2008). If we let ℓφi

(m̃i) upper bound the 0 − 1 loss
by choosing an appropriate C, then our mistake num-
ber is also bounded by

(1 + φ2)

φ2
(− log detΣ∗ +Tr(Σ∗) +µµµ∗TΣn+1

−1µµµ∗ − d).
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5. Empirical Evaluation

5.1. Datasets and compared algorithms

We adopt a variety of datasets from different domains:

• synthetic data: we generated this data set
by the method described in (Crammer et al.,
2008), which is used to examine the effec-
tiveness of second-order algorithms. Follow-
ing (Crammer et al., 2009b), we also generated
another version with 0.1 noise to examine the ro-
bustness of second-order algorithms.

• Digital recognition: we use two benchmarks:
“USPS” 1 and “MNIST” 2. For binary classifi-
cation, we choose “1” vs “all” for “USPS”, and
“1” vs “2” for “MNIST”.

• Face data: we use the MIT-CBCL face imags 3.
• Machine Learning datasets: we randomly choose
several public machine learning datasets from 4.

Table 2 shows the statistics of the list of datasets used.

Table 2. List of datasets used in the experiments.
dataset # training examples # features

splice 1000 60
svmguide3 1243 21
Synthetic data 5000 20
MITface 6977 361
usps1vsall 7291 256
mushrooms 8124 112
mnist1vs2 14867 784
w7a 24692 300
codrna 59535 8
ijcnn1 141691 22
covtype 581012 54

We compare our methods with various online learning
algorithms, including Perceptron (Rosenblatt, 1958),
PA (Crammer et al., 2006), ROMMA (Li & Long,
1999) and its aggressive version agg-ROMMA, Second-
Order Perceptron (Cesa-Bianchi et al., 2005), Confi-
dence Weighted Learning (Crammer et al., 2008), Im-
proved Ellipsoid Method for Online Learning(IELLIP)
(Yang et al., 2009), AROW (Crammer et al., 2009b),
Normal HERD (NHERD) (Crammer & D.Lee, 2010)
and NAROW (Orabona & Crammer, 2010). Fol-
lowing the similar parameter setting methods
in (Dredze et al., 2008) and (Crammer et al., 2009b).
The parameter r in AROW, paramter b in NAROW
and parameters C in PA-I, PA-II, NHERD, SCW-I
and SCW-II are all determined by cross validation
to select the best one from {2−4, 2−3, ..., 23, 24}, the
parameter η in CW, SCW-I and SCW-II are deter-
mined by cross validation to select the best one from

1
http://www-i6.informatik.rwth-aachen.de/~keysers/usps.html

2
http://yann.lecun.com/exdb/mnist/

3
http://cbcl.mit.edu/software-datasets/FaceData2.html

4
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

{0.5, 0.55, ..., 0.9, 0.95}, the parameter b in IELLIP is
determined by cross validation to select the best one
from {0.1, 0.2, ..., 0.9}. After the best parameters are
determined, all the experiments were conducted over
20 random permutations for each dataset. All the re-
sults were reported by averaging over these 20 runs.
We evaluate the performance by three metrics: (i) on-
line cumulative mistake rate, (ii) number of updates
(which would be closely related to the potential num-
ber of support vectors in kernel extension), and (iii)
running time cost.

5.2. Experimental Results

Table 3 summarizes the results of our empirical evalu-
ation, where we only show margin-based second-order
learning algorithms due to space limitation. For a
more complete comparison, please refer to our sup-
plemental material. The bold elements indicate the
best performance with paired t-test at 95% significance
level. We can draw several observations as follows.

First of all, by examining the overall mistakes, we
found that second-order algorithms usually outper-
forms first-order algorithms, and margin based algo-
rithms usually outperforms non-margin based meth-
ods. This shows the efficacy of “Large Margin” and
“Confidence” properties for learning better classifiers.

Second, by examining the original CW algorithm, we
found that, it significantly outperforms the first-order
algorithms (e.g. Perceptron, ROMMA, and PA al-
gorithms) on the synthetic data without noise, but
fails to outperform the first-order algorithms on some
real-world datasets that often have noisy data. This
empirical result verifies the importance of “Handling
Non-separable” property in producing robust classi-
fiers when dealing with noisy data.

Further, we found that AROW significantly outper-
forms CW in many real-world datasets (except min-
ist). However, AROW usually produces considerably
more updates and spends more running time than CW.
This verifies that the importance of “adaptive margin”
property of both CW and SCW to reduce the number
of updates as well as the running time.

Moreover, among all the compared algorithms, SCW
often achieves the best or close to the best performance
in terms of accuracy, number of updates, and running
time cost. Finally, Figure 1 shows the online results
of 13 algorithms with respect to varied numbers of
samples in online learning process. The results again
validate the advantages of SCW in both efficacy and
efficiency among all the state-of-the-art algorithms.

http://www-i6.informatik.rwth-aachen.de/~keysers/usps.html
http://yann.lecun.com/exdb/mnist/
http://cbcl.mit.edu/software-datasets/FaceData2.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Table 3. Evaluation of cumulative performance of the proposed SCW and other state-of-the-art algorithms.

Algorithm svmguide3 codrna
#Mistakes #Updates Time(s) #Mistakes #Updates Time(s)

CW 0.294 ± 0.011 702.6 ±13.5 0.038 ±0.001 0.157 ± 0.040 9278.9 ±62.8 1.083 ±0.018
NHERD 0.224 ± 0.012 1170.3 ±21.6 0.052 ±0.004 0.089 ± 0.032 32232.9 ±8679.4 3.086 ±1.180
AROW 0.218 ± 0.005 1174.7 ±15.7 0.045 ±0.001 0.066 ± 0.000 26055.1 ±328.0 2.041 ±0.218
NAROW 0.308 ± 0.096 1229.7 ±8.1 0.051 ±0.000 0.182 ± 0.054 54557.1 ±4935.7 6.979 ±1.428
SCW-I 0.209 ± 0.007 540.4 ±13.2 0.033 ±0.001 0.065 ± 0.000 7328.8 ±326.1 0.952 ±0.021

SCW-II 0.213 ± 0.008 954.2 ±50.9 0.044 ±0.001 0.066 ± 0.000 12070.3 ±438.0 1.183 ±0.047

Algorithm splice usps ”1” vs ”all”
#Mistakes #Updates Time(s) #Mistakes #Updates Time(s)

CW 0.271 ± 0.009 555.4 ±9.6 0.066 ±0.001 0.013 ± 0.001 493.7 ±21.4 2.723 ±0.100
NHERD 0.245 ± 0.010 805.6 ±22.3 0.092 ±0.015 0.014 ± 0.002 2421.5 ±225.4 11.555 ±1.003
AROW 0.241 ± 0.006 741.5 ±24.9 0.077 ±0.002 0.012 ± 0.001 1449.0 ±132.9 7.004 ±0.564
NAROW 0.269 ± 0.015 717.9 ±35.2 0.085 ±0.017 0.018 ± 0.003 2153.8 ±251.0 10.293 ±1.184
SCW-I 0.229 ± 0.006 541.1 ±8.9 0.065 ±0.002 0.012 ± 0.001 385.5 ±9.7 2.221 ±0.049

SCW-II 0.240 ± 0.010 479.80 ±12.4 0.050 ±0.001 0.011 ± 0.001 385.0 ±10.1 2.221 ±0.054

Algorithm ijcnn1 w7a
#Mistakes #Updates Time(s) #Mistakes #Updates Time(s)

CW 0.093 ± 0.001 30678.0 ±146.9 4.844 ±0.142 0.104 ± 0.000 2432.2 ±48.9 17.166 ±0.398
NHERD 0.084 ± 0.001 85104.4 ±4283.4 25.014 ±3.075 0.101 ± 0.001 12348.4 ±378.5 79.163 ±2.388
AROW 0.081 ± 0.000 73082.1 ±1272.3 16.959 ±1.199 0.099 ± 0.001 10233.0 ±246.5 65.264 ±1.502
NAROW 0.099 ± 0.020 105937.2 ±8231.1 39.643 ±6.898 0.108 ± 0.001 23666.6 ±179.0 150.379 ±1.174
SCW-I 0.058 ± 0.002 10561.5 ±704.5 2.450 ±0.073 0.097 ± 0.000 4118.6 ±23.7 14.852 ±0.190

SCW-II 0.072 ± 0.003 21792.1 ±3840.6 3.823 ±0.568 0.099 ± 0.001 5634.8 ±78.2 24.557 ±0.493

Algorithm mnist ”1” vs ”2” MITface
#Mistakes #Updates Time(s) #Mistakes #Updates Time(s)

CW 0.012 ± 0.000 856.8 ±26.7 67.803 ±1.643 0.028 ± 0.001 835.8 ±19.4 8.944 ±0.207
NHERD 0.108 ± 0.010 5258.7 ±415.0 335.360 ±24.026 0.025 ± 0.001 3316.7 ±201.5 33.258 ±1.998
AROW 0.036 ± 0.001 4519.0 ±241.0 288.433 ±14.286 0.027 ± 0.001 1884.8 ±134.4 19.037 ±1.346
NAROW 0.038 ± 0.002 5819.1 ±356.2 372.040 ±21.925 0.031 ± 0.002 2389.8 ±215.4 24.185 ±2.158
SCW-I 0.011 ± 0.001 868.3 ±22.8 68.507 ±1.399 0.025 ± 0.001 756.1 ±14.6 8.131 ±0.175

SCW-II 0.011 ± 0.001 742.9 ±34.0 60.901 ±2.081 0.024 ± 0.001 774.0 ±20.2 8.320 ±0.207

Algorithm mushrooms covtype
#Mistakes #Updates Time(s) #Mistakes #Updates Time(s)

CW 0.002 ± 0.000 315.8 ±18.0 0.289 ±0.005 0.405 ± 0.001 389870.8 ±2278.9 879.788 ±9.014
NHERD 0.002 ± 0.001 3724.4 ±448.3 1.245 ±0.125 0.259 ± 0.002 521225.6 ±12104.9 1166.939 ±34.727
AROW 0.002 ± 0.000 1815.0 ±185.5 0.662 ±0.056 0.243 ± 0.000 531187.0 ±455.4 1193.212 ±4.858
NAROW 0.002 ± 0.000 3340.8 ±386.0 1.138 ±0.109 0.367 ± 0.009 546704.0 ±8814.8 1269.775 ±45.753
SCW-I 0.002 ± 0.000 327.6 ±21.1 0.288 ±0.006 0.233 ± 0.000 238415.6 ±1917.1 264.846 ±2.501

SCW-II 0.002 ± 0.000 152.7 ±5.7 0.241 ±0.010 0.239 ± 0.000 451193.3 ±3783.0 881.011 ±9.477

Algorithm synthetic data synthetic data with 0.1 noise
#Mistakes #Updates Time(s) #Mistakes #Updates Time(s)

CW 0.017 ± 0.001 262.9 ±6.7 0.071 ±0.000 0.293 ± 0.005 2811.1 ±33.9 0.129 ±0.007
NHERD 0.120 ± 0.016 3202.9 ±292.6 0.134 ±0.006 0.208 ± 0.017 4114.6 ±150.7 0.156 ±0.003
AROW 0.026 ± 0.003 2128.0 ±167.3 0.084 ±0.004 0.133 ± 0.003 4122.8 ±60.7 0.136 ±0.001
NAROW 0.101 ± 0.019 3302.0 ±315.0 0.125 ±0.009 0.236 ± 0.024 4242.8 ±171.8 0.154 ±0.007
SCW-I 0.018 ± 0.001 317.9 ±8.6 0.071 ±0.000 0.135 ± 0.002 1373.1 ±38.9 0.094 ±0.006

SCW-II 0.020 ± 0.001 326.0 ±6.6 0.071 ±0.000 0.145 ± 0.005 2138.9 ±211.7 0.111 ±0.008

6. Conclusion

This paper proposed the Soft Confidence-Weighted
(SCW) learning, a new second-order online learning
method with state-of-the-art empirical performance.
Unlike the existing second-order algorithms, SCW en-
joys all the four properties: (i) large margin training,
(ii) confidence weighting, (iii) adaptive margin, and
(iv) capability of handling non-separable data. Em-
pirically, we found the proposed SCW algorithms per-
form significantly better than the original CW algo-
rithm, and outperform the state-of-the-art AROW al-
gorithm for most cases in terms of both accuracy and
efficiency. Future work will conduct more in-depth
analysis of the mistake bounds and its multi-class ex-
tension (Crammer et al., 2009a).

Appendix: Proof of Proposition 1 and 2
Proof. First, when ℓφ

(

N (µµµt,Σt); (xt, yt)
)

= 0, it
is easy to see the solution is valid. When
ℓφ
(

N (µµµt,Σt); (xt, yt)
)

> 0, it is easy to see the op-

timization problem is equivalent to

DKL

(

N (µµµ,Σ)‖N (µµµt,Σt)
)

+ Cξ,

s.t. ℓ
φ
(

N (µµµ,Σ); (xt, yt)
)

≤ ξ and ξ ≥ 0

Since
∑

is positive semi-definite (PSD), it can be writ-
ten as

∑

= Υ2 to make the optimization with a convex
constraint in µµµ and Υ simultaneously. But for conve-
nient, we will still use Σ instead of Υ2 in the following
analysis. The Lagrangian of the above optimization is

L(µµµ,Σ, ξ, τ, λ)
= DKL

(

N (µµµ,Σ)‖N (µµµt,Σt)
)

+ Cξ

+τ (φ
√

x⊤
t Σxt − ytµµµ · xt − ξ)− λξ

= DKL

(

N (µµµ,Σ)‖N (µµµt,Σt)
)

+ξ(C − τ − λ) + τ (φ
√

x⊤
t Σxt − ytµµµ · xt)

=
1

2
log(

detΣt

detΣ
) +

1

2
Tr(Σ−1

t Σ) +
1

2
(µµµt −µµµ)⊤Σ−1

t (µµµt −µµµ)

−d

2
+ ξ(C − τ − λ) + τ (φ

√

x⊤
t Σxt − ytµµµ · xt)
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Figure 1. Evaluation of online performance of the proposed SCW and other state-of-the-art algorithms.

where τ ≥ 0 and λ ≥ 0 are Lagrange multipliers. We
now find the minimum of the Lagrangian with respect
to the primal variables µµµ, Σ and ξ.

∂L
∂µµµ

= Σ−1
t (µµµ−µµµt) + τ (−ytxt) = 0 ⇒ µµµ = µµµt + τytΣtxt

∂L
∂Σ

= 0 ⇒ Σ−1
t+1 = Σ−1

t + τφ
xtx

⊤
t

√

x⊤
t Σt+1xt

and C − τ − λ = 0, so τ = C − λ ≤ C, thus τ ∈ [0, C]
The KKT conditions for the optimization are:

φ

√

x⊤
t Σxt − ytµµµ · xt − ξ ≤ 0,−ξ ≤ 0, τ, λ ≥ 0

τ (φ
√

x⊤
t Σxt − ytµµµ · xt − ξ) = 0, λξ = 0

Case 1. τ 6= 0
As τ(φ

√

x⊤
t Σxt−ytµµµ·xt−ξ) = 0 implies (φ

√

x⊤
t Σxt−

ytµµµ · xt − ξ) = 0, the KKT conditions are simplified:

−ξ ≤ 0, τ > 0, λ ≥ 0

φ

√

x⊤
t Σxt − ytµµµ · xt − ξ = 0, λξ = 0

Sub-case 1.1. λ 6= 0
When λ 6= 0, λξ = 0, implies ξ = 0. The KKT condi-
tions are simplified as

τ > 0, λ > 0, ξ = 0, φ
√

x⊤
t Σxt − ytµµµ · xt = 0

Finally, we have the following:

Σt+1 =
(

Σ−1
t + τφ

xtx
⊤
t

√

x⊤
t Σt+1xt

)−1

= Σt − Σtxt

(

τφ
√

x⊤
t Σt+1xt + τφx⊤

t Σtxt

)

x
⊤

t Σt

Let ut = x⊤
t Σt+1xt, vt = x⊤

t Σtxt, mt = yt(µµµt ·xt),
multiplying by x⊤

t (left) and xt (right), we get ut =
vt − vt(

τφ√
ut+τφvt

)vt, which can be used to solve ut:

√
ut =

−τφvt +
√

τ2φ2v2t + 4vt
2

.

And φ
√

x⊤
t Σxt−ytµµµ·xt = 0 implies φ

√
ut−mt−τvt =

0. Thus, φ
−τφvt+

√
τ2φ2v2t+4vt
2 −mt − τvt = 0, which

can be rearranged as: v2t (1+φ
2)τ2+2mtvt(1+

φ2

2 )τ +
(m2

t − φ2vt). The larger root is then

τ =
−mtvt(1 +

φ2

2
) +

√
∆

v2t (1 + φ2)
,

where ∆ = m2
tv

2
t (1 +

φ2

2 )2 − v2t (1 + φ2)(m2
t − φ2vt).

If τ ∈ (0, C), then λ = C − τ ∈ (0, C).
Sub-case 1.2. λ = 0
C − τ − λ = 0 implies τ = C. The KKT conditions
can be simplified as:

−ξ ≤ 0, τ = C, λ = 0, φ
√

x⊤
t Σxt − ytµµµ · xt − ξ = 0
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We thus have:

φ

√

x⊤
t Σxt − ytµµµ · xt

= [φ
−τφvt +

√

τ 2φ2v2t + 4vt

2
−mt − τvt]|τ=C = ξ ≥ 0

It is easy to verify that

f
′(τ ) =

−φ2vt

2
+

φ3v2t τ

2
√

τ 2φ2v2t + 4vt
− vt = 0

has no solution on [0,+∞) and f ′(0) = −φ2vt
2 −vt < 0.

As a result, f ′(τ) < 0, τ ∈ [0,+∞), which implies f(τ)
is decreasing on [0,+∞).

f(C) ≥ 0 = f(θ)

where θ =
−mtvt(1+

φ2

2
)+

√

m2

tv
2

t (1+
φ2

2
)2−v2t (1+φ2)(m2

t−φ2vt)

v2t (1+φ
2)

,

which thus implies C ≤ θ.
Case 2. τ = 0
When τ = 0, since C − τ − λ = 0, λ = C, the KKT
condtions are simplified as

φ

√

x⊤
t Σxt − ytµµµ · xt ≤ 0, τ = 0, λ = C, ξ = 0

Thus, µµµt+1 = µµµt and Σt+1 = Σt; as a result,

φ
√

x⊤
t Σtxt − ytµµµt · xt ≤ 0, which contradicts with

ℓφ
(

N (µµµ,Σ); (xt, yt)
)

> 0.

For SCW-II, the Lagrangian of the optimization is

L(µµµ,Σ, ξ, τ, λ) = DKL

(

N (µµµ,Σ)‖N (µµµt,Σt)
)

+ Cξ
2

+τ (φ
√

x⊤
t Σxt − ytµµµ · xt − ξ)− λξ

= DKL

(

N (µµµ,Σ)‖N (µµµt,Σt)
)

+ξ(Cξ − τ − λ) + τ (φ
√

x⊤
t Σxt − ytµµµ · xt)

=
1

2
log(

detΣt

detΣ
) +

1

2
Tr(Σ−1

t Σ) +
1

2
(µµµt −µµµ)⊤Σ−1

t (µµµt −µµµ)

−d

2
+ ξ(Cξ − τ − λ) + τ (φ

√

x⊤
t Σxt − ytµµµ · xt)

where τ ≥ 0 and λ ≥ 0 are Lagrange multipliers. We
now find the minimum of the Lagrangian with respect
to the primal variables µµµ, Σ and ξ.

∂L
∂µµµ

= Σ−1
t (µµµ−µµµt) + τ (−ytxt) = 0 ⇒ µµµ = µµµt + τytΣtxt

∂L
∂Σ

= 0 ⇒ Σ−1
t+1 = Σ−1

t + τφ
xtx

⊤
t

√

x⊤
t Σt+1xt

and 2Cξ−τ−λ = 0, so ξ = τ+λ
2C . The KKT conditions

for the optimization are:

φ

√

x⊤
t Σxt − ytµµµ · xt − ξ ≤ 0

ξ ≥ 0, τ ≥ 0, λ ≥ 0

τ (φ
√

x⊤
t Σxt − ytµµµ · xt − ξ) = 0

λξ = 0

The rest proof is similar to that of SCW-I.
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