
A fast and simple algorithm for training neural probabilistic
language models

Andriy Mnih amnih@gatsby.ucl.ac.uk

Gatsby Computational Neuroscience Unit, University College London

Yee Whye Teh ywteh@gatsby.ucl.ac.uk

Gatsby Computational Neuroscience Unit, University College London

Abstract

In spite of their superior performance, neural
probabilistic language models (NPLMs) re-
main far less widely used than n-gram mod-
els due to their notoriously long training
times, which are measured in weeks even for
moderately-sized datasets. Training NPLMs
is computationally expensive because they
are explicitly normalized, which leads to hav-
ing to consider all words in the vocabulary
when computing the log-likelihood gradients.

We propose a fast and simple algorithm for
training NPLMs based on noise-contrastive
estimation, a newly introduced procedure for
estimating unnormalized continuous distri-
butions. We investigate the behaviour of the
algorithm on the Penn Treebank corpus and
show that it reduces the training times by
more than an order of magnitude without af-
fecting the quality of the resulting models.
The algorithm is also more efficient and much
more stable than importance sampling be-
cause it requires far fewer noise samples to
perform well.

We demonstrate the scalability of the pro-
posed approach by training several neural
language models on a 47M-word corpus with
a 80K-word vocabulary, obtaining state-of-
the-art results on the Microsoft Research
Sentence Completion Challenge dataset.

Appearing in Proceedings of the 29 th International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).

1. Introduction

By assigning probabilities to sentences, language mod-
els allow distinguishing between probable and improb-
able sentences, which makes such models an impor-
tant component of speech recognition, machine trans-
lation, and information retrieval systems. Probabilis-
tic language models are typically based on the Markov
assumption, which means that they model the condi-
tional distribution of the next word in a sentence given
some fixed number of words that immediately precede
it. The group of words conditioned on is called the
context, denoted h, while the word being predicted is
called the target word, denoted w. n-gram models,
which are effectively smoothed tables of normalized
word/context co-occurrence counts, have dominated
language modelling for decades due to their simplicity
and excellent performance.

In the last few years neural language models have be-
come competitive with n-grams and now routinely out-
perform them (Mikolov et al., 2011). NPLMs model
the distribution for the next word as a smooth function
of learned multi-dimensional real-valued representa-
tions of the context words and the target word. Similar
representations are learned for words that are used in
similar ways, ensuring that the network outputs simi-
lar probability values for them. Word representations
learned by language models are also used for natu-
ral language processing applications such as semantic
role labelling (Collobert & Weston, 2008), sentiment
analysis (Maas & Ng, 2010), named entity recognition
(Turian et al., 2010), and parsing (Socher et al., 2011).

Unfortunately, NPLMs are very slow to train, which
makes them unappealing for large-scale applications.
This is a consequence of having to consider the entire
vocabulary when computing the probability of a single
word or the corresponding gradient. In fact, the time
complexity of this computation scales as the product



A fast and simple algorithm for training neural probabilistic language models

of the vocabulary size and the word feature dimen-
sionality. One way to accelerate this computation is
to reduce the vocabulary size for the NPLM by using it
to predict only the most frequent words and handling
the rest using an n-gram model (Schwenk & Gauvain,
2005).

Alternatively, the vocabulary can be structured into a
tree with words at the leaves, allowing exponentially
faster computation of word probabilities and their gra-
dients (Morin & Bengio, 2005). Unfortunately, the
predictive performance of the resulting model is heav-
ily dependent on the tree used and finding a good tree
is a difficult problem (Mnih & Hinton, 2009).

Perhaps a more elegant approach is to keep the model
the same and to approximate the expensive gradient
computations using importance sampling (Bengio &
Senécal, 2003). Unfortunately, the variance in the im-
portance sampling estimates can make learning unsta-
ble, unless it is carefully controlled (Bengio & Senécal,
2008).

In this paper we propose an efficient algorithm for
training NPLMs based on noise-contrastive estima-
tion (Gutmann & Hyvärinen, 2010), which is much
more stable than importance sampling. Though it also
uses sampling to approximate the gradients needed
for learning, neither the number of samples nor the
proposal distribution require dynamic adaptation for
achieving performance on par with maximum likeli-
hood learning.

2. Neural probabilistic language models

A statistical language model is simply a collection of
conditional distributions for the next word, indexed
by its context.1 In a neural language model the condi-
tional distribution corresponding to context h, Ph(w),
is defined as

Phθ (w) =
exp(sθ(w, h))∑
w′ exp(sθ(w′, h))

, (1)

where sθ(w, h) is the scoring function with parameters
θ which quantifies the compatibility of word w with
context h. The negated scoring function is sometimes
referred to as the energy function (Bengio et al., 2000).

Depending on the form of sθ(w, h), Eq. 1 can de-
scribe both neural and maximum entropy language
models (Berger et al., 1996). The main difference
between these two model classes lies in the features

1Though almost all statistical language models predict
the next word, it is also possible to model the distribution
of the word preceding the context or surrounded by the
context.

they use: neural language models learn their features
jointly with other parameters, while maximum entropy
models use fixed hand-engineered features and only
learn the weights for those features. A neural language
model represents each word in the vocabulary using a
real-valued feature vector and defines the scoring func-
tion in terms of the feature vectors of the context words
and the next word. In some models, different feature
vector tables are used for the context and the next
word vocabularies (Bengio et al., 2000), while in oth-
ers the table is shared (Bengio et al., 2003; Mnih &
Hinton, 2007).

The feature vectors account for the vast majority of pa-
rameters in neural language models, which means that
their memory requirements are linear in the vocabu-
lary size. This compares favourably to the memory re-
quirements of the n-gram models, which are typically
linear in the training set size.

2.1. Log-bilinear model

The training method we propose is directly applicable
to all neural probabilistic and maximum-entropy lan-
guage models. For simplicity, we will perform our ex-
periments using the log-bilinear language (LBL) model
(Mnih & Hinton, 2007), which is the simplest neu-
ral language model. The LBL model performs lin-
ear prediction in the semantic word feature space and
does not have non-linearities. In spite of its simplic-
ity, the LBL model has been shown to outperform
n-grams, though the more complex neural language
models (Mikolov et al., 2010; Mnih et al., 2009) can
outperform it.

In this paper we will use a slightly extended version of
the LBL model that uses separate feature vector tables
for the context words and the target words. Thus a
context word w will be represented with feature vector
rw, while a target word w will be represented with fea-
ture vector qw. Given a context h, the model computes
the predicted representation for the target word by
linearly combining the feature vectors for the context
words using position-dependent context weight matri-
ces Ci:

q̂ =

n−1∑
i=1

Cirwi . (2)

The score for the match between the context and the
next word is computed by taking the dot product be-
tween the predicted representation and the represen-
tation of the candidate target word w:

sθ(w, h) = q̂>qw + bw. (3)



A fast and simple algorithm for training neural probabilistic language models

Here bw is the base rate parameter used to model the
popularity of w. The probability of w in context h
is then obtained by plugging the above score function
into Eq. 1.

2.2. Maximum likelihood learning

Maximum likelihood training of neural language mod-
els is tractable but expensive because computing the
gradient of log-likelihood takes time linear in the
vocabulary size. The contribution of a single con-
text/word observation to the gradient of the log-
likelihood is given by

∂

∂θ
logPhθ (w) =

∂

∂θ
sθ(w, h)−

∑
w′

Phθ (w′)
∂

∂θ
sθ(w

′, h)

(4)

=
∂

∂θ
sθ(w, h)− EPhθ

[
∂

∂θ
sθ(w, h)

]
.

The expectation w.r.t. Phθ (w′) is expensive to evaluate
because it requires computing sθ(w, h) for all words
in the vocabulary. Since vocabularies typically con-
tain tens of thousands of words, maximum likelihood
learning tends to be very slow.

2.3. Importance sampling

Bengio and Senécal (2003) have proposed a method
for speeding up training of neural language models
based on approximating the expectation in Eq. 4 us-
ing importance sampling. The idea is to generate k
samples x1, ..., xk from an easy-to-sample-from distri-
bution Qh(w) and estimate the gradient with

∂

∂θ
logPhθ (w) ≈ ∂

∂θ
sθ(w, h)− 1

V

k∑
j=1

v(xj)
∂

∂θ
sθ(xj , h),

(5)

where v(x) = exp(sθ(x,h))
Qh(w=x)

and V =
∑k
j=1 v(xj). The

normalization by V is necessary here because the im-
portance weights v are computed using the unnormal-
ized model distribution exp(sθ(x, h)). Typically the
proposal distribution is an n-gram model fit to the
training set, possibly with a context size different from
the neural model’s.

Though this approach is conceptually simple, it is non-
trivial to use in practice because the high variance of
the importance sampling estimates can make learn-
ing unstable. The variance tends to grow as learn-
ing progresses, because the model distribution moves
away from the proposal distribution.2 One way to

2Bengio and Senécal (2008) argue that this happens be-

control the variance is to keep increasing the number
of samples during training so that the effective sam-
ple size stays above some predetermined value (Ben-
gio & Senécal, 2003). Alternatively, the n-gram pro-
posal distribution can be adapted to track the model
distribution throughout training (Bengio & Senécal,
2008). The first approach is simpler but less effi-
cient because the increasing number of samples makes
learning slower. The second approach leads to greater
speedups but is considerably more difficult to imple-
ment and requires additional memory for storing the
adaptive proposal distribution.

3. Noise-contrastive estimation

We propose using noise-contrastive estimation (NCE)
as a more stable alternative to importance sampling for
efficient training of neural language models and other
models defined by Eq. 1. NCE has recently been in-
troduced by Gutmann and Hyvärinen (2010) for train-
ing unnormalized probabilistic models. Though it has
been developed for estimating probability densities, we
are interested in applying it to discrete distributions
and so will assume discrete distributions and use prob-
ability mass functions instead of density functions.

The basic idea of NCE is to reduce the problem of
density estimation to that of binary classification, dis-
criminating between samples from the data distribu-
tion and samples from a known noise distribution. In
the language modelling setting, the data distribution
Phd (w) will be the distribution of words that occur af-
ter a particular context h. Though it is possible to use
context-dependent noise distributions, for simplicity
we will use a context-independent (unigram) Pn(w).
We are interested in fitting the context-dependent
model Phθ (w) to Phd (w).

Following Gutmann and Hyvärinen (2012), we assume
that noise samples are k times more frequent than data
samples, so that datapoints come from the mixture
1
k+1P

h
d (w)+ k

k+1Pn(w). Then the posterior probability
that sample w came from the data distribution is

Ph(D = 1|w) =
Phd (w)

Phd (w) + kPn(w)
. (6)

Since we would like to fit Phθ to Phd , we use Phθ in
place of Phd in Eq. 6, making the posterior probability
a function of the model parameters θ:

Ph(D = 1|w, θ) =
Phθ (w)

Phθ (w) + kPn(w)
. (7)

cause neural language models and n-gram models learn
very different distributions.



A fast and simple algorithm for training neural probabilistic language models

This quantity can be too expensive to compute, how-
ever, because of the normalization required for eval-
uating Phθ (w) (Eq. 1). NCE sidesteps this issue by
avoiding explicit normalization and treating normal-
ization constants as parameters. Thus the model is
parameterized in terms of an unnormalized distribu-
tion Ph0θ0 and a learned parameter ch corresponding to
the logarithm of the normalizing constant:

Phθ (w) = Ph0θ0 (w) exp(ch). (8)

Here θ0 are the parameters of the unnormalized dis-
tribution and θ = {θ0, ch}.

To fit the context-dependent model to the data (for
the moment ignoring the fact that it shares parameters
with models for other contexts), we simply maximize
the expectation of logPh(D|w, θ) under the mixture of
the data and noise samples. This leads to the objective
function

Jh(θ) =EPhd

[
log

Phθ (w)

Phθ (w) + kPn(w)

]
+ (9)

kEPn

[
log

kPn(w)

Phθ (w) + kPn(w)

]
with the gradient

∂

∂θ
Jh(θ) =EPhd

[
kPn(w)

Phθ (w) + kPn(w)

∂

∂θ
logPhθ (w)

]
−

(10)

kEPn

[
Phθ (w)

Phθ (w) + kPn(w)

∂

∂θ
logPhθ (w)

]
.

Note that the gradient can also be expressed as

∂

∂θ
Jh(θ) =

∑
w

kPn(w)

Phθ (w) + kPn(w)
× (11)

(Phd (w)− Phθ (w))
∂

∂θ
logPhθ (w),

and that as k →∞,

∂

∂θ
Jh(θ)→

∑
w

(Phd (w)− Phθ (w))
∂

∂θ
logPhθ (w), (12)

which is the maximum likelihood gradient. Thus as
the ratio of noise samples to observations increases,
the NCE gradient approaches the maximum likelihood
gradient.

In practice, given a word w observed in context h, we
compute its contribution to the gradient by generating
k noise samples x1, ..., xk and using the formula

∂

∂θ
Jh,w(θ) =

kPn(w)

Phθ (w) + kPn(w)

∂

∂θ
logPhθ (w)− (13)

k∑
i=1

[
Phθ (xi)

Phθ (xi) + kPn(xi)

∂

∂θ
logPhθ (xi)

]
.

Note that the weights
Phθ (xi)

Phθ (xi)+kPn(xi)
are always be-

tween 0 and 1, which makes NCE-based learning very
stable (Gutmann & Hyvärinen, 2010). In contrast, the
weights produced by importance sampling can be ar-
bitrarily large.

Since the distributions for different contexts share pa-
rameters, we cannot learn these distributions indepen-
dently of each other by optimizing one Jh(θ) at a time.
Instead, we define a global NCE objective by combin-
ing the per-context NCE objectives using the empirical
context probabilities P (h) as weights:

J(θ) =
∑
h

P (h)Jh(θ). (14)

Note that this is the traditional approach for combin-
ing the per-context ML objectives for training neural
language models.

3.1. Dealing with normalizing constants

Our initial implementation of NCE training learned a
(log-)normalizing constant (c in Eq. 8) for each con-
text in the training set, storing them in a hash table
indexed by the context.3 Though this approach works
well for small datasets, it requires estimating one pa-
rameter per context, making it difficult to scale to huge
numbers of observed contexts encountered by models
with large context sizes. Surprisingly, we discovered
that fixing the normalizing constants to 1,4 instead of
learning them, did not affect the performance of the
resulting models. We believe this is because the model
has so many free parameters that meeting the approxi-
mate per-context normalization constraint encouraged
by the objective function is easy.

3.2. Potential speedup

We will now compare the gradient computation costs
for NCE and ML learning. Suppose c is the context
size, d is the word feature vector dimensionality, and
V is the vocabulary size of the model. Then com-
puting the predicted representation using Eq. 2 takes
about cd2 operations for both NCE and ML. For ML,
computing the distribution of the next word from the
predicted representation takes about V d operations.
For NCE, evaluating the probability of k noise samples
under the model takes about kd operations. Since the
gradient computation in each model has the same com-
plexity as computing the probabilities, the speedup for

3We did not use the learned normalizing constants when
computing the validation and test set perplexities. Rather
we normalized the probabilities explicitly.

4This amounts to setting the normalizing parameters c
to 0.



A fast and simple algorithm for training neural probabilistic language models

Table 1. Results for the LBL model with 100D feature vec-
tors and a 2-word context on the Penn Treebank corpus.

Training Number of Test Training

algorithm samples PPL time (h)

ML 163.5 21
NCE 1 192.5 1.5
NCE 5 172.6 1.5
NCE 25 163.1 1.5
NCE 100 159.1 1.5

Table 2. The effect of the noise distribution and the num-
ber of noise samples on the test set perplexity.

Number of PPL using PPL using

samples unigram noise uniform noise

1 192.5 291.0
5 172.6 233.7

25 163.1 195.1
100 159.1 173.2

each parameter update due to using NCE is about

Speedup =
cd2 + V d

cd2 + kd
=
cd+ V

cd+ k
. (15)

For a model with a 2-word context, 100D feature vec-
tors, and a vocabulary size of 10K, an NCE update
using 25 noise samples should be about 45 times faster
than an ML update.

Since the time complexity of computing the predicted
representation is quadratic in the feature vector di-
mensionality, it can dominate the cost of the parameter
update, making learning slow even for a small number
of noise samples. We can avoid this by making context
weight matrices Ci diagonal, reducing the complexity
of computing the predicted representation to cd, and
making the speedup factor c+V

c+k . For the model above
this would amount to a factor of 370. The use of di-
agonal context matrices was introduced by Mnih &
Hinton (2009) to speed up their hierarchical LBL-like
model.

Since the cost of a parameter update for importance-
sampling-based learning is the same as for NCE with
the same number of noise samples, the algorithm that
needs fewer samples to perform well will be faster.

4. Penn Treebank results

We investigated the properties of the proposed algo-
rithm empirically on the Penn Treebank corpus. As is
common practice, we trained on sections 0-20 (930K

words) and used sections 21-22 (74k words) as the val-
idation set and sections 23-24 (82k words) as the test
set. The standard vocabulary of 10K most frequent
words was used with the remaining words replaced by
a special token. We chose to use this dataset to keep
the training time for exact maximum likelihood learn-
ing reasonable.

The learning rates were adapted at the end of each
epoch based on the change in the validation set per-
plexity since the end of the previous epoch. The rates
were halved when the perplexity increased and were
left unchanged otherwise. Parameters were updated
based on mini-batches of 1000 context/word pairs
each. Except when stated otherwise, NCE training
generated 25 noise samples from the empirical unigram
distribution per context/word observation. Noise sam-
ples were generated anew for each update. We did
not use a weight penalty as the validation-score-based
learning rate reduction appeared to be sufficient to
avoid overfitting. All models used a two-word context
and different 100D feature vector tables for context
and target words.

Our first experiment compared ML learning to NCE
learning for various numbers of noise samples. The re-
sulting test perplexities and training times are shown
in Table 1. It is clear that increasing the number
of noise samples produces better-performing models,
with 25 samples being sufficient to match the ML-
trained model. In terms of training time, NCE was
14 times faster than ML. The number of noise sam-
ples did not have a significant effect on the running
time because computing the predicted representation
was considerably more expensive than computing the
probability of (at most) 100 samples. The main rea-
son the speedup factor was less than 45 (the value pre-
dicted in Section 3.2) is because NCE took about twice
as many epochs as ML to converge. Our NCE imple-
mentation is also less optimized than the ML imple-
mentation which takes greater advantage of the BLAS
matrix routines.

To explore the effect of the noise distribution on the
performance of the algorithm, we tried generating
noise samples from the unigram as well as the uniform
distribution. For each noise distribution we trained
models using 1, 5, 25, and 100 noise samples per dat-
apoint. As shown in Table 2, the unigram noise dis-
tribution leads to much better test set perplexity in
all cases. However, the perplexity gap shrinks as the
number of noise samples increases, from almost 100
for a single noise sample down to under 15 for 100
noise samples. In spite of poor test set performance,
a uniform noise distribution did not lead to learning



A fast and simple algorithm for training neural probabilistic language models

instability even when a single noise sample was used.

In addition to the ML and NCE algorithms, we also
implemented the importance sampling training algo-
rithm from (Bengio & Senécal, 2003) to use as a base-
line, but found it very unstable. It diverged in virtually
all of our experiments, even with adaptive sample size
and the target effective sample size set to hundreds.
The only run that did not diverge involved learning a
unigram model using the target unigram as the pro-
posal distribution, which is the ideal situation for im-
portance sampling. The cause of failure in all cases was
the appearance of extremely large importance weights
once the model distribution became sufficiently differ-
ent from the unigram proposal distribution5, which is
a known problem with importance sampling. Since
IS-based methods seem to require well over a hundred
samples per gradient computation (Bengio & Senécal,
2008), even when an adaptive proposal distribution
is used, we expect IS-based training to be consider-
ably slower than NCE, which, as we have shown, can
achieve ML-level performance with only 25 noise sam-
ples.

5. Sentence Completion Challenge

To demonstrate the scalability and effectiveness of
our approach we used it to train several large neu-
ral language models for the Microsoft Research Sen-
tence Completion Challenge (Zweig & Burges, 2011).
The challenge was designed as a benchmark for seman-
tic models and consists of SAT-style sentence comple-
tion problems. Given 1,040 sentences, each of which is
missing a word, the task is to select the correct word
out of the five candidates provided for each sentence.
Candidate words have been chosen from relatively in-
frequent words using a maximum entropy model to
ensure that the resulting complete sentences were not
too improbable. Human judges then picked the best
four candidates for each sentence so that all comple-
tions were grammatically correct but the correct an-
swer was unambiguous. Though humans can achieve
over 90% accuracy on the task, statistical models fare
much worse with the best result of 49% produced
by a whole-sentence LSA model, and n-gram models
achieving only about 39% accuracy (Zweig & Burges,
2011).

Neural language models are a natural choice for this
task because they can take advantage of larger con-
texts than traditional n-gram models, which we expect

5Though using a unigram proposal distribution might
appear naive, Bengio and Senécal (2003) reported that
higher-order n-gram proposal distributions worked much
worse than the unigram.

to be important for sentence completion. We used a
slightly modified LBL architecture for our models for
this task. In the interests of scalability, we used diag-
onal context weight matrices which reduced the time
complexity of gradient computations from quadratic
to linear in the dimensionality of word feature vectors
and allowed us to use more feature dimensions. Since
the task was sentence completion, we made the mod-
els aware of sentence boundaries by using a special
“out-of-sentence” token for words in context positions
outside of the sentence containing the word being pre-
dicted. For example, this token would be used as the
context word when predicting the first word in a sen-
tence using a model with a single-word context.

We score a candidate sentence with a language model
by using it to compute the probability of each word in
the sentence and taking the product of those probabil-
ities as the sentence score. We then pick the candidate
word that produces the highest-scoring sentence as our
answer. Note that this way of using a model with a c-
word context takes into account c words on both sides
of the candidate word because the probabilities of the
c words following the candidate word depend on it.

The models were trained on the standard training set
for the challenge containing 522 works from Project
Gutenberg. After removing the Project Gutenberg
headers and footers from the files, we split them into
sentences and then tokenized the sentences into words.
We used the Punkt sentence tokenizer and the Penn
Treebank word tokenizer from NLTK (Bird et al.,
2009). We then converted all words to lowercase and
replaced the ones that occurred fewer than 5 times
with an “unknown word” token, resulting in a vocab-
ulary size of just under 80,000. The sentences to be
completed were preprocessed in the same manner. The
resulting dataset was then randomly split at the sen-
tence level into a test and validation sets of 10K words
(500 sentences) each and a 47M-word training set.

We used the training procedure described in Section 4,
with the exception of using a small weight penalty to
avoid overfitting. Each model took between one and
two days to train on a single core of a modern CPU. As
a baseline for comparison, we also trained several n-
gram models (with modified Kneser-Ney smoothing)
using the SRILM toolkit (Stolcke, 2002), obtaining
results similar to those reported by Zweig & Burges
(2011).

Since we selected hyperparameters based on the
(Gutenberg) validation set perplexity, we report the
scores on the entire collection of 1,040 sentences, which
means that our results are directly comparable to those
of Zweig & Burges (2011). As can be seen from Ta-



A fast and simple algorithm for training neural probabilistic language models

Table 3. Accuracy on the complete MSR Sentence Com-
pletion Challenge dataset. n × 2 indicates a bidirectional
context. The LSA result is from (Zweig & Burges, 2011).

Model Context Latent Percent Test

type size dim correct PPL

3-gram 2 36.0 130.8
4-gram 3 39.1 122.1
5-gram 4 38.7 121.5
6-gram 5 38.4 121.7
LSA sentence 300 49
LBL 2 100 41.5 145.5
LBL 3 100 45.1 135.6
LBL 5 100 49.3 129.8
LBL 10 100 50.0 124.0
LBL 5 200 50.8 123.6
LBL 10 200 52.8 117.7
LBL 10 300 54.7 116.4
LBL 10×2 100 44.5 38.6
LBL 10×2 200 49.8 33.6

ble 3, more word features and larger context leads to
better performance in LBL models in terms of both ac-
curacy and perplexity. The LBL models perform con-
siderably better on sentence completion than n-gram
models, in spite of having higher test perplexity. Even
the LBL model with a two-word context performs bet-
ter than any n-gram model. The LBL model with a
five-word context, matches the best published result
on the dataset. Note that the LSA model that pro-
duced that result considered all words in a sentence,
while an LBL model with a c-word contexts considers
only the 2c words that surround the candidate word.
The model with a 10-word context and 300D feature
vectors outperforms the LSA model by a large mar-
gin and sets a new accuracy record for the dataset at
54.7%.

Language models typically use the words preceding
the word of interest as the context. However, since
we are interested in filling in a word in the middle of
the sentence, it makes sense to use both the preceding
and the following words as the context for the lan-
guage model, making the context bidirectional. We
trained several LBL models with bidirectional con-
text to see whether such models are superior to their
unidirectional-context counterparts for sentence com-
pletion. Scoring a sentence with a bidirectional model
is both simpler and faster: we simply compute the
probability of the candidate word under the model us-
ing the context surrounding the word. Thus a model
is applied only once per sentence, instead of c+1 times
required by the unidirectional models.

As Table 3 shows, the LBL models with bidirectional

contexts achieve much lower test perplexity than their
unidirectional counterparts, which is not surprising be-
cause they also condition on words that follow the
word being predicted. What is surprising, however,
is that bidirectional contexts appear to be consider-
ably less effective for sentence completion than unidi-
rectional contexts. Though the c-word context model
and c× 2-word context model look at the same words
when using the scoring procedures we described above,
the unidirectional model seems to make better use of
the available information.

6. Discussion

We have introduced a simple and efficient method for
training statistical language models based on noise-
contrastive estimation. Our results show that the
learning algorithm is very stable and can produce mod-
els that perform as well as the ones trained using maxi-
mum likelihood in less than one-tenth of the time. In a
large-scale test of the approach, we trained several neu-
ral language models on a collection of Project Guten-
berg texts, achieving state-of-the-art performance on
the Microsoft Research Sentence Completion Chal-
lenge dataset.

Though we have shown that the unigram noise distri-
bution is sufficient for training neural language models
efficiently, context-dependent noise distributions are
worth investigating because they might lead to even
faster training by reducing the number of noise sam-
ples needed.

Recently, Pihlaja et al. (2010) introduced a family of
estimation methods for unnormalized models that in-
cludes NCE and importance sampling as special cases.
Other members of this family might be of interest for
training language models, though our preliminary re-
sults suggest that none of them outperform NCE.

Finally, we believe that NCE can be applied to many
models other than neural or maximum-entropy lan-
guage models. Probabilistic classifiers with many
classes are a prime candidate.

Acknowledgments

We thank Vinayak Rao and Lloyd Elliot for their help-
ful comments. We thank the Gatsby Charitable Foun-
dation for generous funding.

References

Bengio, Yoshua and Senécal, Jean-Sébastien. Quick
training of probabilistic neural nets by importance



A fast and simple algorithm for training neural probabilistic language models

sampling. In AISTATS’03, 2003.

Bengio, Yoshua and Senécal, Jean-Sébastien. Adap-
tive importance sampling to accelerate training of a
neural probabilistic language model. IEEE Trans-
actions on Neural Networks, 19(4):713–722, 2008.

Bengio, Yoshua, Ducharme, Réjean, and Vincent, Pas-
cal. A neural probabilistic language model. In NIPS,
pp. 932–938, 2000.

Bengio, Yoshua, Ducharme, Rejean, Vincent, Pascal,
and Jauvin, Christian. A neural probabilistic lan-
guage model. Journal of Machine Learning Re-
search, 3:1137–1155, 2003.

Berger, A.L., Pietra, V.J.D., and Pietra, S.A.D. A
maximum entropy approach to natural language
processing. Computational linguistics, 22(1):39–71,
1996.

Bird, S., Klein, E., and Loper, E. Natural language
processing with Python. O’Reilly Media, 2009.

Collobert, R. and Weston, J. A unified architecture
for natural language processing: Deep neural net-
works with multitask learning. In Proceedings of the
25th International Conference on Machine Learn-
ing, 2008.

Gutmann, M. and Hyvärinen, A. Noise-contrastive es-
timation: A new estimation principle for unnormal-
ized statistical models. In Proc. Int. Conf. on Ar-
tificial Intelligence and Statistics (AISTATS2010),
2010.

Gutmann, M.U. and Hyvärinen, A. Noise-contrastive
estimation of unnormalized statistical models, with
applications to natural image statistics. Journal of
Machine Learning Research, 13:307–361, 2012.

Maas, A.L. and Ng, A.Y. A probabilistic model for
semantic word vectors. In NIPS 2010 Workshop on
Deep Learning and Unsupervised Feature Learning,
2010.

Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J.,
and Khudanpur, S. Recurrent neural network based
language model. In Eleventh Annual Conference of
the International Speech Communication Associa-
tion, 2010.

Mikolov, T., Deoras, A., Kombrink, S., Burget, L.,
and Černockỳ, J. Empirical evaluation and combi-
nation of advanced language modeling techniques.
In Proceedings of Interspeech, pp. 605–608, 2011.

Mnih, A. and Hinton, G. Three new graphical models
for statistical language modelling. Proceedings of the
24th International Conference on Machine Learn-
ing, pp. 641–648, 2007.

Mnih, A., Yuecheng, Z., and Hinton, G. Improving a
statistical language model through non-linear pre-
diction. Neurocomputing, 72(7-9):1414–1418, 2009.

Mnih, Andriy and Hinton, Geoffrey. A scalable hier-
archical distributed language model. In Advances in
Neural Information Processing Systems, volume 21,
2009.

Morin, Frederic and Bengio, Yoshua. Hierarchical
probabilistic neural network language model. In
AISTATS’05, pp. 246–252, 2005.

Pihlaja, M., Gutmann, M., and Hyvärinen, A. A
family of computationally efficient and simple es-
timators for unnormalized statistical models. In
Proc. Conf. on Uncertainty in Artificial Intelligence
(UAI2010)., 2010.

Schwenk, Holger and Gauvain, Jean-Luc. Training
neural network language models on very large cor-
pora. In Proceedings of Human Language Technology
Conference and Conference on Empirical Methods
in Natural Language Processing, pp. 201–208, 2005.

Socher, R., Lin, C.C., Ng, A.Y., and Manning, C.D.
Parsing natural scenes and natural language with
recursive neural networks. In International Confer-
ence on Machine Learning (ICML), 2011.

Stolcke, A. SRILM – an extensible language modeling
toolkit. In Proceedings of the International Confer-
ence on Spoken Language Processing, volume 2, pp.
901–904, 2002.

Turian, J., Ratinov, L., and Bengio, Y. Word repre-
sentations: A simple and general method for semi-
supervised learning. In Proceedings of the 48th An-
nual Meeting of the Association for Computational
Linguistics, pp. 384–394, 2010.

Zweig, G. and Burges, C.J.C. The Microsoft Research
Sentence Completion Challenge. Technical Report
MSR-TR-2011-129, Microsoft Research, 2011.


