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Abstract

Locally Linear embedding (LLE) is a popu-
lar dimension reduction method. In this pa-
per, we systematically improve the two main
steps of LLE: (A) learning the graph weights
W, and (B) learning the embedding Y. We
propose a sparse nonnegative W learning al-
gorithm. We propose a weighted formulation
for learning Y and show the results are iden-
tical to normalized cuts spectral clustering.
We further propose to iterate the two steps
in LLE repeatedly to improve the results.
Extensive experiment results show that it-
erative LLE algorithm significantly improves
both classification and clustering results.

1. Introduction

Recently, there have been many algorithms pro-
posed for nonlinear dimension reduction, which
include Isomap (Tenenbaum et al., 2000), lo-
cally linear embedding (LLE) (Roweis & Saul,
2000), kernel-LLE (Ham et al., 2004), Hessian
LLE (Donoho & Grimes, 2003), local tangent align-
ment (Zhang & Zha, 2004), Laplacian embedding
(Hall, 1971; Belkin & Niyogi, 2001), and many varia-
tions. Above dimension reduction algorithms usually
cover two main steps: (A) for each data point, learn
the local geometry information W. This W can
be viewed as similarity between data points or the
edge weights of a graph whose nodes are the data
points. We call this W-learning, or learning the graph
weights. (B) Using the learned W to embed the
high-dimensional data points into a lower-dimensional
space Y. We call this Y-learning, or learn the
embedding. The performance of those algorithms are
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determined both by learning the local information
and also by constructing the mapping relations.

In past decades, many clustering algorithms have
been proposed such as K-means, spectral cluster-
ing and its variants (Ng et al., 2001), normalized
cut (Shi & Malik, 1997), ratio cut (Chan et al., 1994),
etc. Among them, the use of manifold information in
graph cuts has shown the state-of-the-art clustering
performance.

One key observation is that both LLE and spectral
clustering utilize the data manifold information. This
motivates us to investigate deeper relations between
the LLE Y-learning and spectral clustering in terms
of Laplacian embedding (because the embedding is
precisely the relaxed cluster indicators for the spec-
tral clustering). Indeed, we discover that a properly
modified formulation of Y-learning provides a solution
which is identical to the normalized Laplacian embed-
ding (see §2.3). We incorporate this improvement into
our final iterative LLE algorithm.

Another observation is that the data geometry infor-
mation encoded in W also plays a central role in the
performance of these algorithms. We investigate the
W-learning process and propose a nonnegative, ker-
nelized, sparse W-learning algorithm (see §4).

Furthermore, we propose to iteratively repeat the two
mains steps (W-learning and Y-learning) to improve
the results progressively. Here we use the learned em-
bedding Y to augment the input data to learn a bet-
ter W, which leads to a better Y in turn. This is
repeated until the process converges (details are given
in §3). This iterative procedure incorporates both the
improved Y learning and the improved W learning
into a coherent iterative LLE algorithm.

The experiment results for clustering and semi-
supervised learning tasks on 9 datasets show clear per-
formance improvements.
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2. LLE and New Formations

2.1. Brief overview of LLE

LLE (Roweis & Saul, 2000) is a nonlinear dimension
reduction approach. Suppose data X = [x1,x2, · ·
·,xn] ∈ <p×n, consists of n data points xi, each with
dimensionality p. LLE expects each data point and
its neighbors to lie on or close to a locally linear
manifold, which governs how the weight coefficients
W are constructed from Eq.(1). It then reconstruct
each data point (low k-dimensional embedding vectors
{yi}) from its neighbors via the same neighborhood re-
lations by minimizing a quadratic cost function Eq.(2),

min
W

∑

i

||xi −
∑

j∈Ni

Wijxj ||
2
, (1)

min
Y

∑

i

‖yi −
∑

j

Wijyj‖
2
, (2)

where weight Wij summarizes the contribution of the
jth data point to the construction of ith data point. Ni

is the kNN neighborhood of xi. The shift invariance of
Y = [y1,y2, · · ·,yn] ∈ <k×n is enforced by restricting∑
j

Wij = 1.

2.2. LLE Improvements in two directions

In this paper, we propose improved formulations in
both main steps in LLE. (A) In the W-learning step
of Eq.(1), we propose new improved formulations to
learnW. We first makeW nonnegative in this section.
We will further propose a kernelized sparse learning in
§4. (B) In the Y-learning step of Eq.(2), we propose
slightly modified formulation and prove that the solu-
tion to Eq.(2) is identical to Normalized Cut or Lapla-
cian embedding. Our iterative LLE algorithm is based
on these improved formations in both LLE steps.

To make a connection to graph embedding, we (1) re-
strict W to be nonnegative, i.e., we add constraint
W ≥ 0 to Eq.(1) (as done in (Wang & Zhang, 2006));
(2) we symmetrize W to obtain Z = 1

2 (W +WT ) as
the graph edge weight/similarity matrix; (3) we im-
pose D-orthogonal constraint on Y, i.e., YDYT = I,
where D = diag(Ze) is a diagonal matrix containing
node degrees.

With these three changes, the LLE equations of
Eqs.(1,2) become

min
W

∑

i

||xi −
∑

j∈Ni

Wijxj ||
2
, s.t. W ≥ 0, (3)

min
Y

∑

i

di||yi −
∑

j

(D−1Z)ijyj ||
2
s.t. YDYT = I, (4)

where di = Dii.

We note several important changes here. In Eq.(4),
D−1 is inserted for two important reasons: (1) Note
that

∑
j(D

−1Z)ijyj is the average values of yi’s neigh-
bors. Thus Eq.(4) enforces the smoothness of function
{yi}. (2) It also enforces the shift invariance of ob-
tainedY, because

∑
j(D

−1Z)ij = 1. This implies that
if {y∗

i } is an optimal solution, so is {y∗
i −c} where c is

a constant vector. Note that we add di as the weight
of each point yi, for reasons immediately clear below.

2.3. LLE Y-learning is identical to Normalized
Cut Spectral Clustering

Now we show that LLE Y-learning formulation of
Eq.(4) is identical to normalized cut.

In fact, this is a general result, not restricted to LLE. It
holds for any symmetric nonnegative graph similarity
function Z. More precisely we have theorem (1),

Theorem 1. For any symmetric nonnegative graph
similarity function Z of the formulation of Eq.(4), the
optimal solution of Y is identical to the optimal so-
lution H of normalized cut spectral clustering, given
graph weight matrix Z.

In the following, we first briefly introduce normalized
cut and present the proof of Theorem 1.

Normalized Cut.

Normalized cut (Shi & Malik, 1997) is an effective
graph partitioning (clustering) technique to identify
clusters inherent in the data, given the pairwise simi-
larity matrix Z. It is well-known now multi-way nor-
malized cut can be solved by the following problem,

min
G

Tr(GT (I− Z̃)G) s.t. GTG = Ik, (5)

where Z̃ = D− 1

2ZD− 1

2 . and G = [g1,g2, · · ·,gk] are
relaxed cluster indicators. The optimal solution for G
is the smallest k eigenvectors from (I− Z̃), i.e.,

(I− Z̃)gk = µkgk. (6)

The cluster indicator H = [h1,h2, · · ·,hk] is

hk = D− 1

2 gk, H = D− 1

2G. (7)

Relation to Laplacian Embedding.

It is easy to see that HT = V ≡ [v1, · · · ,vn] is identi-
cal to the solution of

min
V

∑

ij

Wij‖vi − vj‖
2

s.t. VDVT = Ik. (8)

This Laplacian embedding with degree normalization
VDVT = Ik is effective for clustering problems be-
cause the embedding coordinates are the continuous



An Iterative Locally Linear Embedding Algorithm

relaxation of the cluster indicators of the multi-way
normalized cut spectral clustering. Similarly, Lapla-
cian embedding using coordinates with standard nor-
malization VVT = Ik is precisely the continuous re-
laxation of the cluster indicators of multi-way ratio
cut spectral clustering (Chan et al., 1994); The widely
used linear embedding, Principal component analysis
(PCA) is precisely the continuous relaxation of the
cluster indicators of the multi-way K-means cluster-
ing (Zha et al., 2001; Ding & He, 2004).

Theorem 1 can be equivalently expressed for Laplacian
embedding.

2.4. Proof of Theorem 1

To prove the theorem 1, we need Lemma 1.

Lemma 1. The optimal solution to Eq.(4) is,

Y∗ = FTD− 1

2 , (9)

where F = [f1, f2, ..., fk] ∈ <n×k is the smallest k eigen-

vectors of (I− Z̃)2, Z̃ = D− 1

2ZD− 1

2 , i.e.,

(I− Z̃)2fk = λkfk. (10)

Proof of Lemma 1.

Proof. Note Y = [y1,y2, · · ·,yn] ∈ <k×n. Let

ỹi = yi −
∑

j

(D−1Z)ijyj , (11)

and then Ỹ = [ỹ1, ỹ2, · · ·, ỹn] ∈ <k×n. It is easy to see

Ỹ = Y −YZD−1. Now Eq.(4) can be written as

n∑

i=1

di||ỹi||
2 =

n∑

i=1

k∑

j=1

diỸ
2
ji =

k∑

j=1

n∑

i=1

ỸjiDii(Ỹ
T )ij

= Tr(ỸDỸT ) = Tr (Y −YZD−1)D(Y −YZD−1)T

= Tr Y(I− ZD−1)D
1

2D
1

2 [Y(I− ZD−1)]T

= Tr YD
1

2 (I− Z̃)(I− Z̃)D
1

2YT
.

Thus Eq.(4) becomes

min
Y

Tr(YD
1

2 (I− Z̃)2D
1

2YT ) s.t. YDYT = I. (12)

To optimize Eq.(12) is equivalent to optimize,

min
F

TrFT (I− Z̃)2F, s.t. FTF = I, (13)

where F = D
1

2YT . It is easy to see the optimal so-
lution F = [f1, f2, · · ·, fk] for Eq.(13) is the smallest
k eigenvectors from (I − Z̃)2, i.e., Eq.(9). Thus the

optimal solution Y∗ = (D− 1

2F)T = FTD− 1

2 .

Proof of Theorem 1.

Proof. Because (I − Z̃) is semi-definite positive, the
eigenvectors gk of Eq.(6) can be uniquely mapped to
eigenvectors gk of

(I− Z̃)2gk = µ2
kgk. (14)

Comparing Eq.(6) of normalized cut against Eq.(10) of
LLE, one can see fi = gi, µ

2
i = λi,F = G. Compared

Eq.(7) of normalized cut against Eq.(9) of LLE, one
can see H = YT . This completes the proof.

3. An Iterative LLE Learning Algorithm (ILLE)

We now use the above results, coupled with two new
schemes(A,B) to derive a new learning algorithm.

3.1. Motivation of iterative LLE

(A)Iterative process of LLE

In LLE, starting from X, we learn W, and then learn
Y as the low-dimensional embedding of data X. In
this paper, we propose to use Y as the new data and
iterate this process to further improve the embedding.
The key observation is that the class structure of the
data is more clear in Y than in X (this is the original
embedding purpose of LLE). Thus we use Y as the
new data and repeat this process to learn an improved
Y.

(B) Kernel generalization

From experiments on several datasets, the results of
using linear formulation on X for learning W in Eq.(1)
are generally not as good as other state-of-art meth-
ods. Here we use the kernel trick to generalize this
to arbitrary nonlinear similarity function. We re-write
Eq.(1) as

min
W

∑

i

||φ(xi)−
∑

j∈Ni

Wijφ(xi)||
2
, (15)

where φ(xi) is a mapping to a higher dimensional
space. The important thing here is that the exact
form of the mapping function is not needed; only the
inner product Kij = 〈φ(xi), φ(xj)〉 is needed.

Using matrix notation, the LLE of Eq.(1) can be writ-
ten as min

W
||X−XWT ||2, and Eq.(15) can be written

as

||φ(X)− φ(X)WT ||2 = Tr(K −WK −KWT +WKWT ).
(16)

This is useful, because once we compute Y from
Eq.(4), we can build a kernel from Y and substitute it
into Eq.(16) to learn a new W (and thus Z ).
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3.2. Proposed algorithm

By incorporating the above schemes of (A,B), we out-
line our iterative LLE learning algorithm as follows.

(1)Given kernel Kt, solve for Wt with Eq.(16) or
Eq.(18)1.

(2)Given pairwise similarity Wt, solve for Yt using
Lemma 1.

(3)Given embedding Yt, compute a new kernel Kt+1

either as the final result of our algorithm (both em-
bedding Yt and kernel Kt+1) or as input to step (1).
Details of Kt+1 construction is given in §3.3.

Initially K1 is obtained from data X, we repeat above
3 steps for serval iterations to obtain a better kernel.
See Algorithm 1 for more details. Note in step(1), we
have two alternatives to compute Wt. Thus we have
two versions of iterative LLE - one based on simply
iterating LLE process, and the other based on learning
a sparse kernel using algorithm of Eq.(21) in §4.

Discussion Here we did not give the global conver-
gence proof of this iterative LLE algorithm. The algo-
rithm is very intuitive and natural. It is motivated by
a simple observation: class structure is more clear in
embedding Y than in original data X.

3.3. Construction of the new kernel

In step (3) of our algorithm, once the low-dimensional
embedding Yt is obtained, we have the following
choices.

(a) Construct a new kernel from Yt. There are many
way to construct kernel. One possible approach is to
construct the kernel KY by simply using the Gaussian
Kernel, i.e., KY = e−γ||yi−yj ||

2

, where γ is the scale
parameter. Another way is to construct new kernel
KY as the linear kernel in low-dimensional space, i.e.,
KY = YYT .

(b) Construct the kernel Kt+1 either as the final result
of our algorithm or as input to step (1). There are
many choices, (b1)Kt+1 = Kt

Y; (b2) Kernel Kt+1 is a
combination of Kt

Y and the previous kernel Kt. There
are two way to achieve this, additively Kt+1 = Kt +
Kt

Y, or multiplicatively Kt+1 = Kt�Kt
Y, where we use

� to denote the element-wise matrix multiplication,
e.g., if C = A�B, then Cij = Aij ×Bij .

In choice (b1), we simply ignore the previous kernel
and set the new kernel Kt+1 = Kt

Y. Note both additive
and multiplicative operations in choices (b2) ensure
the new kernelKt+1 is also semi-definite positive(s.d.p)

1 S of Eq.(18) can be viewed as pairwise similarity

if the original kernel Kt is s.d.p.

Discussion In our experiments, we tried different
choices. We find the results obtained from (b2) are
generally better than (b1), and the multiplicative com-
bination usually achieves better results than additive
combination. Thus in our experiment we use (b2) with
multiplicative combination to construct the new kernel
in step 3.

Algorithm 1 Iterative LLE algorithm(ILLE)

Input: Original Kernel K1 obtained from data X, maxi-
mal iteration T
Output: Pairwise similarity W , embedding Y
Algorithm:

1: for t = 1 to T do
2: Compute Wt of Eq.(16) or Eq.(18) with current ker-

nel Kt

3: Compute Zt = 1

2
(W +Wt).

4: Compute embedding Yt using Lemma 1.
5: Compute a new kernel Kt+1 given embedding Yt.
6: end for
7: Output: Pairwise similarity W = Kt+1, embedding

Y = Yt.

4. Improved W-Learning Formulation

Here we propose an improvement to the W-learning
step of LLE. So far for LLE of Eq.(1) and the new
kernel version of Eq.(16), we maintain the original LLE
convention that W preserves the kNN structure, i.e.
Wij 6= 0 for only j ∈ Ni (kNN of object i).

This constraint is too strong for constructing the data
similarity matrix W. Thus, in our approach, we relax
this to let Wij be nonzero even if j 6∈ Ni. In other
words, we bypass kNN entirely.

We now present a new approach to learn the pairwise
similarity matrix S ∈ <n×n, where Sij represents the
i-th data’s contribution to reconstruct data point xj .
We hope the newly learned S has much clear structure.
We use the symbol S to emphasize that W is learned
using the new approach. Our objective function for
learning S is,

min
S≥0
‖X−XS‖2 + αTr(STS) + β||S||1,1, (17)

where α and β are regularization parameters,
||S||1,1 =

∑
ij |Sij |. The first term ‖X − XS‖2 =∑

i

||xi−
∑
j

Sjixj ||
2 is used to minimize the reconstruc-

tion error from the original data. The second term
penalizes the complexity of S. The third term of L1

norm is to promote the sparsity of the solution.

Using mapping φ: X → φ(X) to map data X to a
higher dimensional space in kernel machine. Eq.(17)
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becomes

min
S≥0

‖φ(X)− φ(X)S‖2 + αTr(STS) + β||S||1,1, (18)

which is equivalent to,

min
S≥0

Tr(K − 2KS+ STKS) + αTr(STS) + β||S||1,1. (19)

Eq.(19) is identical to Eq.(17) when K = XTX.

Eq.(19) is a convex optimization problem and S has a
unique global solution. Furthermore, Eq.(19) can be
written as

min
S≥0

Tr[K + (βE− 2K)S+ ST (K + αI)S], (20)

where E is a matrix of all ones. Because K is s.d.p., by
adding αI with α > 0, (K + αI) is a well-conditioned
matrix. It can be solved efficiently (see below). Usu-
ally L1 norm term is difficult to handle. Here, however,
it does not add any difficulty when handled together
with the nonnegativity constraint. The L1 term can
be ignored entirely: ||S||1,1 = Tr(ES).

4.1. Computational algorithm for Eq.(18)

Here we present an efficient algorithm to solve Eq.(18)
and prove its convergence rigorously.

The algorithm starts with an initial guess of S = E(E
is a matrix of all ones), iteratively updates S according
to

Sij ← Sij

Kij

(KS+ αS)ij +
β

2

. (21)

This algorithm converges very fast. The computa-
tional algorithm for Eq.(18) is very simple and can
be efficiently implemented.

4.2. Convergence of Updating rule of Eq.(21)

We have Theorem(2) to prove the convergence of the
algorithm when K is non-negative.

Theorem 2. Updating S using the rule of Eq.(21), the
objective function of Eq.(18) monotonically decreases.

The proof of this theorem is lengthy and is similar
to that in (Ding et al., 2010; Kong et al., 2011). We
therefore skip the proof in this paper.

4.3. Correctness of Updating Rule of Eq.(21)

We prove that the converged solution satisfies the
Karush-Kuhn-Tucker condition of the constrained op-
timization theory. We have Theorem 3 to prove it.

Theorem 3. At convergence, the converged solution
S of the updating rule of Eq.(21) satisfies the KKT
condition of the optimization theory.

Table 1. Dataset descriptions.

Dataset #Size #Dimension #Class

AT&T 400 644 40
Mnist 150 784 10
Umist 360 644 20
Binalpha 1014 320 36
Yale 1984 2016 31
Caltec 600 432 20
MSRC 210 432 7
Newsgroup 499 500 5
Reuters 900 1000 10

Proof. The KKT condition for S with constraints

Sij ≥ 0 is ∂J(S)
∂Sij

Sij = 0, ∀ i, j.

The derivative of J(S)(Eq.18) is ∂J(S)
∂Sij

=

(−2K + 2KS+ 2αS+ βE)ij . Thus the KKT condi-
tion for S is

(−2K + 2KS+ 2αS+ βE)
ij
Sij = 0 ∀ i, j. (22)

On the other hand, once S converges, according to the
updating rule of Eq.(21), the converged solution S satisfies

Sij = Sij

Kij

(KS+ αS+ β

2
E)

ij

, (23)

which can be written as [−Kij +(KS+ αS+ β

2
E)

ij
]Sij =

0. This is identical to Eq.(22). Thus the converged solution
satisfies the KKT condition.

5. Experiments

We perform the proposed algorithms on nie datasets.
We do both semi-supervised learning and clustering
on these datasets. We evaluate the proposed itera-
tive LLE learning algorithm(§3) and sparse similarity
learning algorithm(§4), and then show the embedding
results from our approach.

Dataset These data sets come from a wide range of
domains, including three face datasets AT&T, umist
and yale (Georghiades et al., 2001), two digit datasets
mnist (Lecun et al., 1998) and binalpha 1, two im-
age scene datasets Caltec101(Caltec) (Dueck & Frey,
2007) and MSRC (Lee & Grauman, 2009), and two
text datasets Newsgroup2, Reuters3. Table 1 summa-
rizes the characteristics of them.

1http://www.kyb.tuebingen.mpg.de/ssl-book/ bench-
marks.html

2http://people.csail.mit.edu/jrennie/20Newsgroups/
3http://www.daviddlewis.com/resources/testcollections/

reuters21578/
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Table 2. Accuracy(ACC), normalized mutual information (NMI), and purity(PUR) comparisons of different clustering
algorithms: Normalized Cut, Symmetric NMF and Spectral Clustering. K0: results obtained on the original/input kernel.
LLE1: results on learned Y after 1 LLE iteration. LLE4: results on learned Y after 4 LLE iterations. All results shown
are percentage.

Dataset Metric
Normalized Cut Symmetric NMF Spectral Clustering
K0 LLE1 LLE4 K0 LLE1 LLE4 K0 LLE1 LLE4

AT&T
ACC 44.77 50.24 66.50 48.09 49.12 50.04 41.09 53.18 58.31
NMI 70.14 74.23 83.82 62.28 65.87 70.51 59.40 68.50 74.67
PUR 49.30 54.87 71.49 48.33 50.32 54.78 48.00 49.24 52.41

Mnist
ACC 64.37 64.87 65.61 73.29 76.43 81.84 73.29 74.21 75.14
NMI 65.77 66.84 67.25 69.83 72.03 74.92 73.03 73.38 74.93
PUR 66.55 67.12 68.37 74.16 76.87 81.88 74.69 74.89 75.61

Umist
ACC 48.44 48.85 49.11 49.46 49.87 50.24 43.13 44.87 45.76
NMI 64.62 64.98 65.15 64.56 65.34 66.95 63.26 63.78 63.89
PUR 52.06 52.92 53.71 52.43 53.14 54.98 48.85 49.23 50.72

Binalpha
ACC 40.52 42.23 45.91 40.65 42.78 44.67 39.18 42.45 44.26
NMI 56.25 57.65 60.35 54.49 55.61 59.54 53.57 56.72 58.51
PUR 43.58 45.54 49.57 43.60 45.71 48.73 41.82 45.23 48.07

Yale
ACC 9.02 12.21 15.49 10.72 11.34 14.78 10.83 10.98 12.89
NMI 11.24 13.43 20.12 13.98 16.84 20.45 12.72 13.45 16.58
PUR 9.93 15.53 16.57 11.71 13.23 15.69 11.72 12.37 13.76

Caltec
ACC 36.31 42.43 49.51 43.98 47.83 52.50 43.67 45.74 47.98
NMI 42.63 45.45 54.86 48.25 52.01 56.43 48.02 50.23 51.84
PUR 39.02 42.58 53.18 46.21 50.38 55.71 46.41 49.65 51.32

MSRC
ACC 53.23 60.89 66.65 57.86 62.34 66.77 65.85 66.78 68.42
NMI 44.08 50.23 55.81 46.81 49.87 56.16 54.78 55.23 56.36
PUR 55.89 61.43 69.95 60.12 64.23 69.62 67.38 68.84 69.64

Newsgroup
ACC 27.58 32.23 40.36 26.62 34.78 51.63 42.22 44.38 46.51
NMI 12.92 18.24 19.41 17.65 27.86 30.22 18.01 20.32 23.19
PUR 28.43 32.54 41.95 29.12 42.45 59.20 41.72 44.81 48.90

Reuters
ACC 19.22 23.87 30.59 24.02 35.98 41.35 33.48 34.49 35.83
NMI 15.69 18.42 22.22 11.30 26.83 32.74 24.26 25.80 27.78
PUR 19.97 23.34 33.39 24.98 31.90 45.92 37.91 37.98 38.43

Average
ACC 38.16 41.98 47.75 41.63 45.61 50.42 43.64 46.34 48.34
NMI 42.59 45.50 49.89 43.24 48.03 52.00 45.23 47.49 49.75
PUR 40.53 43.99 50.91 43.41 47.58 54.06 46.50 48.03 49.87

We show both the iterative LLE (algorithm 1 in §3)
and the sparse similarity learning algorithm (§4) re-
sults. Given original kernel K0, S is obtained from 1-
time running of sparse similarity learning algorithm in
§4. Then we obtain the final embedding resultsY after
repeating out iterative LLE algorithm for 4 times. For
step 1 of algorithm 1(§3), we use kernel constructed
from Eq.(18) for the subsequent iterations. For step
3 of algorithm 1(§3), given current embedding Yt, we
obtain the new kernel Kt+1 using choice (b2) with mul-
tiplicative combination in every iteration.

5.1. Clustering Results

We use clustering algorithms to evaluate the learned
Y in LLE. We compare three standard clustering algo-
rithms: (1) normalized cut, which in the context of our
iterative LLE, is simply K-means clustering on learned
embeddingY; (2) spectral clustering (Ng et al., 2001),
which is K-means clustering on embedding Y normal-
ized onto unit sphere. (3) symmetric NMF, which runs

on the learned W in iterative LLE. All of results are
the averages of 10 K-means clustering with random
starts.

We use accuracy, normalized mutual information
(NMI) and purity as the measurement of the cluster-
ing qualities and the results are shown in Table 2. We
show the clustering results obtained from using (1)
the original/input kernel (K0), (2) LLE1: results on
learned Y after 1 LLE iteration. (3) LLE4: results on
learned Y after 4 LLE iterations.

For image datasets, we use gaussian kernel K0
ij =

e−γ||xi−xj ||
2

. For text datasets, we use linear kernel.
We tune the graph construction parameter γ to obtain
the best results from kernel K0. From Table 2, we ob-
serve that LLE1 and LLE4 consistently achieve better
clustering results, as compared to the results obtained
from original kernel K0.
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(c) embedding result from LLE4

Figure 1. 2D visualizations of embedding results using (1) initial/input kernel K0; (2) LLE1: results on learned Y after 1
LLE iteration; (3) LLE4: results on learned Y after 4 LLE iterations; using 4 digits “0”,“3”,“6”,“9” on MNIST dataset

Table 3. Accuracy comparisons of semi-supervised learning on 9 datasets. Learning algorithms used: Harmonic function,
Green’s function and Local and global consistency(LG-consistency). K0: results obtained on the original/input kernel.
LLE1: results on learned W after 1 LLE iteration. LLE4: results on learned W after 4 LLE iterations. Results shown
are based on 10% or 20% labeled data.

Dataset Percent-labeled
Harmonic function Green’s function LG-consistency
K0 LLE1 LLE4 K0 LLE1 LLE4 K0 LLE1 LLE4

AT&T 10% 65.63 70.23 73.14 69.67 70.12 71.11 70.48 71.45 72.12
20% 74.93 78.87 83.37 78.01 79.03 79.73 78.43 80.23 82.94

Mnist
10% 68.83 68.89 69.91 63.35 63.90 64.21 65.72 67.89 69.19
20% 81.16 82.09 82.83 72.67 73.42 74.16 75.51 79.38 81.33

Umist
10% 48.64 50.45 51.19 47.91 48.03 48.42 48.87 49.35 50.68
20% 63.78 67.89 70.43 60.75 61.23 61.54 63.28 68.78 70.48

Binalpha
10% 47.71 49.89 52.61 46.79 47.09 49.24 46.76 48.93 50.35
20% 53.51 59.23 61.78 52.70 53.28 54.34 52.59 59.37 61.21

Yale
10% 30.31 35.43 38.54 29.13 31.99 32.94 34.67 37.65 43.23
20% 45.48 52.45 54.18 32.09 33.45 36.55 38.98 48.90 57.49

Caltec
10% 44.46 48.76 54.38 44.79 45.08 45.24 44.52 48.75 53.64
20% 49.87 53.25 63.67 49.03 50.23 52.34 49.93 53.74 63.62

MSRC
10% 57.46 60.35 66.50 59.47 60.01 60.24 60.12 63.45 65.82
20% 62.26 65.43 70.95 61.42 62.23 63.54 63.33 68.79 72.15

Newsgroup
10% 65.16 67.34 69.85 53.35 54.23 55.47 56.39 57.78 58.37
20% 72.27 73.25 74.35 59.72 60.91 61.14 58.84 60.19 61.32

Reuters
10% 64.25 65.78 66.23 53.29 55.79 57.81 53.27 58.98 61.44
20% 73.61 73.98 74.56 62.35 63.45 68.74 61.09 67.90 72.17

Average
10% 54.72 57.46 60.26 51.97 52.92 53.85 53.42 56.03 58.32
20% 64.10 67.38 70.68 58.75 59.69 61.34 60.22 65.25 69.19

5.2. Semi-supervised learning results

We use K0, LLE1 and LLE4 results (learned
W) as the input to run three semi-supervised
methods: harmonic function(Zhu et al., 2003), lo-
cal and global consistency(Zhou et al., 2004), green’s
function(Ding et al., 2007). We compare the classifi-
cation accuracy of above three methods by using origi-
nal kernel(K0) and the results obtained from LLE1 and
LLE4 on 9 data sets. For all the methods and datasets,
we randomly select 10%, 20% of labeled data for each
class, and use the rest as unlabeled data. We do 10 fold
and 5 fold cross validation, respectively. Finally, we re-
port the average of the semi-supervised classification
accuracy in Table 3. In all cases, we obtain higher clas-
sification accuracy by applying iterative LLE learning

algorithm (shown as LLE4 and LLE1).

5.3. Demonstration of embedding results

We demonstrate the advantages of iterative LLE learn-
ing algorithm (§3) and sparse similarity learning algo-
rithm (§4) using two-dimensional visualization. We
randomly select four digits from MNIST dataset (“0”,
“3”, “6”, “9”). Given Gaussian Kernel as the input,
the iterative LLE algorithm (§3) and sparse similar-
ity learning algorithm (§4) are run. The other pa-
rameters are set as mentioned before. The embed-
ding results obtained from original Gaussian Kernel
K0, 4-time running of iterative LLE learning algorithm
(LLE4) and 1-time running of W-learning algorithm
(LLE1) are shown in Figs.(1(a),1(c),1(b)). In original



An Iterative Locally Linear Embedding Algorithm

results from Gaussian Kernel, all images from different
groups collapse together. For the results obtained from
LLE4 and LLE1, the images from different groups are
balanced and distributed more evenly. This indicates
much better embedding results.

Insights from experiment results. Overall, from
initial/input kernel K0 to LLE1, LLE4, both cluster-
ing and semi-supervised learning results consistently
improved. Comparing results obtained between LLE1
and initial/input kernel K0, the performance boost is
from the learned W using the algorithm of §4. Com-
paring results obtained between LLE1 and LLE4, the
performance boost is from the iterative learning of
LLE. From the statistics shown in Tables 2, 3, we ob-
serve that the boost from LLE1 to LLE4 is usually
higher than that from K0 to LLE1, indicating that the
iterative aspect contributes more.

6. Conclusion

In summary, the main contribution of our paper is
in three-fold. (1) We show that an improved Y-
learning formulation of LLE is identical to normal-
ized cut spectral clustering. (2) We present an im-
proved W-learning algorithm that learns a nonnega-
tive, sparse pairwise similarity from an input kernel
function. (3) An iterative procedure of the above two
steps is proposed to progressively refine/improve the
solution. Experiments show that the iterative LLE in-
corporating (1,2,3) leads to better clustering and semi-
supervised learning results.
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