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Abstract

A standard assumption in machine learning
is the exchangeability of data, which is equiv-
alent to assuming that the examples are gen-
erated from the same probability distribution
independently. This paper is devoted to test-
ing the assumption of exchangeability on-line:
the examples arrive one by one, and after re-
ceiving each example we would like to have a
valid measure of the degree to which the as-
sumption of exchangeability has been falsified.
Such measures are provided by exchangeabil-
ity martingales. We extend known techniques
for constructing exchangeability martingales
and show that our new method is competi-
tive with the martingales introduced before.
Finally we investigate the performance of our
testing method on two benchmark datasets,
USPS and Statlog Satellite data; for the for-
mer, the known techniques give satisfactory
results, but for the latter our new more flexi-
ble method becomes necessary.

1. Introduction

Many machine learning algorithms have been devel-
oped to deal with real-life high dimensional data. In
order to state and prove properties of such algorithms
it is standard to assume that the data satisfy the ex-
changeability assumption (although some algorithms
make different assumptions or, in the case of prediction
with expert advice, do not make any statistical assump-
tions at all). These properties can be violated if the
assumption is not satisfied, which makes it important
to test the data for satisfying it.
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Note that the popular assumption that the data is
i.i.d. (independent and identically distributed) has the
same meaning for testing as the exchangeability as-
sumption. A joint distribution of an infinite sequence
of examples is exchangeable if it is invariant w.r. to any
permutation of examples. Hence if the data is i.i.d., its
distribution is exchangeable. On the other hand, by de
Finetti’s theorem (see, e.g., Schervish, 1995, p. 28) any
exchangeable distribution on the data (a potentially
infinite sequence of examples) is a mixture of distribu-
tions under which the data is i.i.d. Therefore, testing
for exchangeability is equivalent to testing for being
iid.

Traditional statistical approaches to testing are inap-
propriate for high dimensional data (see, e.g., Vapnik,
1998, pp. 6-7). To address this challenge a previous
study (Vovk et al., 2003) suggested a way of on-line
testing by employing the theory of conformal prediction
and calculating exchangeability martingales. Basically
testing proceeds in two steps. The first step is im-
plemented by a conformal predictor that outputs a
sequence of p-values. The sequence is generated in the
on-line mode: examples are presented one by one and
for each new example a p-value is calculated from this
and all the previous examples. For the second step the
authors introduced exchangeability martingales that
are functions of the p-values and track the deviation
from the assumption. Once the martingale grows up
to a large value (20 and 100 are convenient rules of
thumb) the exchangeability assumption can be rejected
for the data.

This paper proposes a new way of constructing mar-
tingales in the second step of testing. To construct an
exchangeability martingale based on the sequence of
p-values we need a betting function, which determines
the contribution of a p-value to the value of the martin-
gale. In contrast to the previous studies that use a fixed
betting function the new martingale tunes its betting
function to the sequence to detect any deviation from
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the assumption. We show that this martingale, which
we call a plug-in martingale, is competitive with all the
martingales covered by the previous studies; namely,
asymptotically the former grows faster than the latter.

1.1. Related work

The first procedure of testing exchangeability on-line
is described in Vovk et al. (2003). The core testing
mechanism is an exchangeability martingale. Exchange-
ability martingales are constructed using a sequence of
p-values. The algorithm for generating p-values assigns
small p-values to unusual examples. It implies the idea
of designing martingales that would have a large value
if too many small p-values were generated, and suggests
corresponding power martingales. Other martingales
(simple mixture and sleepy jumper) implement more
complicated strategies, but follow the same idea of
scoring on small p-values.

Ho (2005) applies power martingales to the problem
of change detection in time-varying data streams. The
author shows that small p-values inflate the martingale
values and suggests to use the martingale difference as
another test for the problem.

1.2. This paper

To the best of our knowledge, no study has aimed
to find any other ways of translating p-values into a
martingale value. In this paper we propose a new
more flexible method of constructing exchangeability
martingales for a given sequence of p-values.

The rest of the paper is organised as follows. Section
2 gives the definition of exchangeability martingales.
Section 3 presents the construction of plug-in exchange-
ability martingales, explains the rationale behind them,
and compares them to the power martingales, which
have been used previously. Section 4 shows experimen-
tal results of testing two real-life datasets for exchange-
ability; for one of these datasets power martingales
work satisfactorily and for the other one the greater
flexibility of plug-in martingales becomes essential. Sec-
tion 5 summarises the paper.

2. Exchangeability martingales

This section outlines necessary definitions and results
of the previous studies.

2.1. Exchangeability

Consider a sequence of random variables (Zl, Za,...)
that all take values in the same example space. Then
the joint probability distribution P(Z1,...,Zy) of a

finite number of the random variables is exchangeable
if it is invariant under any permutation of the random
variables. The joint distribution of infinite number of
random variables (Zl, Zs,...) is exchangeable if the
marginal distribution P(Z1, ..., Zy) is exchangeable
for every N.

2.2. Martingales for testing

As in Vovk et al. (2003), the main tool for testing ex-
changeability on-line is a martingale. The value of the
martingale reflects the strength of evidence against the
exchangeability assumption. An exchangeability mar-
tingale is a sequence of non-negative random variables
Sy, S1, - .. that keep the conditional expectation:

Sn >0
Sn - E(Sn+1 | Slw . .,Sn),

where E refers to the expected value with respect to
any exchangeable distribution on examples. We also
assume Sy = 1. Note that we will obtain an equivalent
definition if we replace “any exchangeable distribution
on examples” by “any distribution under which the
examples are i.i.d.” (remember the discussion of de
Finetti’s theorem in Section 1).

To understand the idea behind martingale testing we
can imagine a game where a player starts from the
capital of 1, places bets on the outcomes of a sequence
of events, and never risks bankruptcy. Then a martin-
gale corresponds to a strategy of the player, and its
value reflects the acquired capital. According to Ville’s
inequality (see Ville, 1939, p. 100),

P{Eln LS, > c} <1/0, VC>1,

it is unlikely for any S,, to have a large value. For the
problem of testing exchangeability, if the final value of a
martingale is large then the exchangeability assumption
for the data can be rejected with the corresponding
probability.

2.3. On-line calculation of p-values

Let (21, 22, ...) denote a sequence of examples. Each
example z; is the vector representing a set of attributes
x; and a label y;: z; = (x;,y;). In this paper we use
conformal predictors to generate a sequence of p-values
that corresponds to the given examples. The general
idea of conformal prediction is to test how well a new
example fits to the previously observed examples. For
this purpose a “nonconformity measure” is defined.
This is a function that estimates the strangeness of one
example with respect to others:

o = A(zi, {z1,.. .,zn}),
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Algorithm 1 Generating p-values on-line

Input: (z1,z29,...) data for testing
Output: (p1,p2,...) sequence of p-values
fori=1,2,...do

observe a new example z;

for j=1to i do

a; = A(zj, {z1,.-+, zl}>
end for
p; = #{j:aj>ai}+‘0i#{j:aj=ai}
end for '

where in general {...} stands for a multiset (the same
element may be repeated more than once) rather than
a set. Typically, each example is assigned a “noncon-
formity score” «; based on some prediction method. In
this paper we deal with the classification problem and
the 1-Nearest Neighbor (1-NN) algorithm is used as the
underling method to compute the nonconformity scores.
The algorithm is simple but it works well enough in
many cases (see, e.g., Hastie et al., 2001, pp. 422-427).
A natural way to define the nonconformity score of an
example is by comparing its distance to the examples
with the same label to its distance to the examples
with a different label:

;= Ny, =y, A(25, 25) (1)
i — . ’
MU £y, Ay d(z;, ;)

where d(x;,2;) is the Euclidean distance. According
to the chosen nonconformity measure, «; is high if the
example is close to another example with a different
label and far from any examples with the same label.

Using the calculated nonconformity scores of all ob-
served examples, the p-value p,, that corresponds to
an example z,, is calculated as

_ #Hira; > ant+0,#{i: 0 =an}

n

Pn

where 6,, is a random number from [0, 1] and the symbol
# means the cardinality of a set. Algorithm 1 sum-
marises the process of on-line calculation of p-values
(it is clear that it can also be applied to a finite dataset
(21, ..., 2n) producing a finite sequence (p1,...,p,) of
p-values).

The following is a standard result in the theory of
conformal prediction (see, e.g., Vovk et al. 2003, Theo-
rem 1).

Theorem 1. If examples (21, 22, ...) (resp. (21,22, ...,
zn)) satisfy the exchangeability assumption, Algorithm

1 produces p-values (py,pa,...) (resp. (p1,p2,--.,Pn))
that are independent and uniformly distributed in [0, 1].

The property that the examples generated by an ex-
changeable distribution provide uniformly and indepen-
dently distributed p-values allows us to test exchange-
ability by calculating martingales as functions of the
p-values.

3. Martingales based on p-values

This section focuses on the second part of testing: given
the sequence of p-values a martingale is calculated as
a function of the p-values.

For each i € {1,2,...}, let f; : [0,1]" — [0,00). Let
(p1,p2,--.) be the sequence of p-values generated by
Algorithm 1. We consider martingales .S,, of the form

i=1
where we denote f;(p) = fi(p1,...,pi—1,p) and call the

function f;(p) a betting function.

To be sure that (2) is indeed a martingale we need the
following constraint on the betting functions f;:

1
/ﬁ@®=L
0

Then we can check:

i=1,2,...

E(SnJrl ‘ S(], e ,

/Ilﬁn ) frs ()
H fz pz / fn+1 dp Hfz Pl = Sy.

Using representation (2) we can update the martin-
gale on-line: having calculated a p-value p; for a new
example in Algorithm 1 the current martingale value
becomes S; = S;—1 - fi(p;). To define the martingales
completely we need to describe the betting functions

fi-
3.1. Previous results: power and simple
mixture martingales

Previous studies (Vovk et al., 2003) have proposed to
use a fixed betting function

Vi: filp) =ep

where ¢ € [0,1]. Several martingales were constructed
using the function. The power martingale for some €,
denoted as M, is defined as

pra 1.



Plug-in martingales

7

6

5

4

3

power martingale betting function ep*™*
2

1

0

0 01 0.2 03 04 05 06 07 08 0.9 1
p-values, p

Figure 1. The betting functions that are used to construct
the power and simple mixture martingales.

The simple mixture martingale, denoted as M,,, is the
mixture of power martingales over different ¢ € [0, 1]:

1
Mn:/ M de.
0

Such a martingale will grow only if there are many
small p-values in the sequence. This follows from the
shape of the betting functions: see Figure 1. If the
generated p-values concentrate in any other part of
the unit interval, we cannot expect the martingale to
grow. So it might be difficult to reject the assumption
of exchangeability for such sequences.

3.2. New plug-in approach
3.2.1. PLUG-IN MARTINGALE

Let us use an estimated probability density function as
the betting function f;(p). At each step the probability
density function is estimated using the accumulated
p-values:

pi(p) = p(p1,---,Pi-1,D), (3)

where p(p1,...,pi—1,p) is the estimate of the proba-
bility density function using the p-values p1,...,p;_1
output by Algorithm 1.

Substituting these betting functions into (2) we get a
new martingale that we call a plug-in martingale. The
martingale avoids betting if the p-values are distributed
uniformly, but if there is any peak it will be used for
betting.

Estimating a probability density function. In
our experiments we have used the statistical environ-
ment and language R. The density function in its

Stats package implements kernel density estimation
with different parameters. But since p-values always lie
in the unit interval, the standard methods of kernel den-
sity estimation lead to poor results for the points that
are near the boundary. To get better results for the
boundary points the sequence of p-values is reflected to
the left from zero and to the right from one. Then the
kernel density estimate is calculated using the extended
sample U?zl{—pi,pi, 2 — pi}. The estimated density
function is set to zero outside the unit interval and
then normalised to integrate to one. For the results
presented in this paper the parameters used are the
Gaussian kernel and Silverman’s “rule of thumb” for
bandwidth selection. Other settings have been tried
as well, but the results are comparable and lead to the
same conclusions.

The values S, of the plug-in martingale can be updated
recursively. Suppose computing the nonconformity
scores (ai,...,a,) from (z1,...,2,) takes time g(n)
and evaluating (3) takes time h(n). Then updating
Sn—1 to S, takes time O(g(n) +n + h(n)): indeed, it
is easy to see that calculating the rank of a,, in the
multiset {aq,...,a,} takes time O(n).

The performance of the plug-in martingale on real-life
datasets will be presented in Section 4. The rest of
the current section proves that the plug-in martingale
provides asymptotically a better growth rate than any
martingale with a fixed betting function. To prove
this asymptotical property of the plug-in martingale
we need the following assumptions.

3.2.2. ASSUMPTIONS

Consider an infinite sequence of p-values (p1,pa,...).
(This is simply a deterministic sequence.) For its finite
prefix (p1,...,pn) define the corresponding empirical
probability measure P,,: for a Borel set A in R,

_#i=1,...,n:p; € A}

P.(A) -

We say that the sequence (p1,p2,...) is stable if there
exists a probability measure P on R such that:

1. p, Yeak p.
n—oo
2. there exists a positive continuous density function
p(p) for P: for any Borel set A in R, P(A) =

J 4 p(p)dp.

Intuitively, the stability means that asymptotically
the sequence of p-values can be described well by a
probability distribution.
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Cousider a sequence (f1(p), f2(p),...) of betting func-
tions. (This is simply a deterministic sequence of func-
tions f; : [0,1] — [0, 00), although we are particularly
interested in the functions f;(p) = p;(p), as defined
in (3).) We say that this sequence is consistent for
(pl,pg, .. ) if

uniformly in p
— = log (p

(p)).

Intuitively, consistency is an assumption about the
algorithm that we use to estimate the function p(p); in
the limit we want a good approximation.

log (fn (p))

n—oo

3.2.3. GROWTH RATE OF PLUG-IN MARTINGALE

The following result says that, under our assumptions,
the logarithmic growth rate of the plug-in martingale is
better than that of any martingale with a fixed betting
function (remember that by a betting function we mean
any function mapping [0, 1] to [0, 0)).

Theorem 2. If a sequence (p1,pa,...) € [0,1]°° is sta-
ble and a sequence of betting functions (f1(p), f2(p), .- .)
is consistent for it then, for any positive continuous
betting function f,

lim inf <711 > log(filpi) — Tlleg(f(pi))) >0
i=1 i=1

n—oo

First we explain the meaning of Theorem 2 and then
prove it. According to representation (2) after n steps
the martingale grows to

n

1 7o) (4)

i=1

Note that if for any p-value p € [0, 1] we have f;(p) =0
then the martingale can become zero and will never
change after that. Therefore, it is reasonable to consider
positive f;(p). Then we can rewrite product (4) as sum
of logarithms, which gives us the logarithmic growth
of the martingale:

zn:log<fz‘(m)>-

We assume that the sequence of p-values is stable and
the sequence of estimated probability density functions
that is used to construct the plug-in martingale is
consistent. Then the limit inequality from Theorem 2
states that the logarithmic growth rate of the plug-in
martingale is asymptotically at least as high as that
of any martingale with a fixed betting function (which
have been suggested in previous studies).

To prove Theorem 2 we will use the following lemma.

Lemma 1. For any probability density functions p and
1 1
f (so that [y p(p)dp =1 and [; f(p)dp=1),

1

/01 log(p(p))P(P)dp > /0 log (f(p))p(p)dp.

Proof of Lemma 1. Tt is well known (Kullback, 1959,
p. 14) that the Kullback—Leibler divergence is always
non-negative:

/01 log<?ig)p(p)dp > 0.

This is equivalent to the inequality asserted by
Lemma 1. O

Proof of Theorem 2. Suppose that, contrary to the
statement of Theorem 2, there exists § > 0 such that

1< 1<
liminf { = log(fi(p:)) — — > log(f (i 5.
im in (n 2 og(fi(p:)) — ~ 2 og(f(p ))) <
(5)
Then choose an ¢ satisfying 0 < & < §/4.

Substituting the definition of p(p) into Lemma 1 we
obtain

/ og(s(p))ap > / og(10)dP. (0

From the stability of (p1,pe,...) it follows that there
exists a number N1 = Ny (g) such that, for all n > Ny,

/O 1 log(f(p) )dP,, - /0 1 log(f(p))dP‘ <e

and

/01 log(p(p))dPn - /01 1og(p(p))dP‘ <e.

Then inequality (6) implies that, for all n > Ny,

/01 log(p(p))dPn > /01 log(f(p))dPn — 2e.

By the definition of the probability measure P,,, the
last inequality is the same thing as

rlzilog(p(pi)) > iilog(f(pi)) -2. (7)

By the consistency of (f1 (p), fa(p), - - ) there exists a
number Ny = N»(g) such that, for all ¢ > Ny and all
p€[0,1],

)log(fi(p)) - log(p(p))‘ <e. (8)
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Let us define the number
M = max|log(fi(p) — log(p(p)) | (9)
From (8) and (9) we have

M, i< N,

g, 1> No. (10)

llog (f:(p)) — log(p(p))| < {

Denote N3 = max(Ny, N2). Then, using (10) and (7),
we obtain, for all n > N3,

%ilog(fi(m)) > %ibg(f(]%)) g MTJLVs.
=1 i=1

M N3
£

Denoting N4 = max(Ns,
inequality as

% img(fi(pi)) > % En: IOg(f(pi)> —4e,
i=1 1=1

for all n > N4. Finally, recalling that ¢ < % we have,
for all n > Ny,

iz log (fi(pi)) ~ ;Z log(f(p:)) = 0.

This contradicts (5) and therefore completes the proof
of Theorem 2. O

), we can rewrite the last

4. Empirical results

In this section we investigate the performance of our
plug-in martingale and compare it with that of the
simple mixture martingale. Two real-life datasets have
been tested for exchangeability: the USPS dataset and
the Statlog Satellite dataset.

4.1. USPS dataset

Data The US Postal Service (USPS) dataset consists
of 7291 training examples and 2007 test examples of
handwritten digits, from 0 to 9. The data were collected
from real-life zip codes. Each example is described by
the 256 attributes representing the pixels for displaying
a digit on the 16 x 16 gray-scaled image and its label.
It is well known that the examples in this dataset are
not perfectly exchangeable (Vovk et al., 2003), and
any reasonable test should reject exchangeability there.
In our experiments we merge the training and test
sets and perform testing for the full dataset of 9298
examples.

Figure 2 shows the typical performance of the martin-
gales when the exchangeability assumption is satisfied

1

—A— simple mixture
—=— plug-in

0.6

02 02

1

oo,

1.4

1.8

10gso M
-18 - -1 -06 -0. X
T T T T T T T T T T T T T T T T T

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
index of example

Figure 2. The growth of the martingales for the USPS
dataset randomly shuffled before on-line testing. The ex-
changeability assumption is satisfied: the final martingale
values are about 0.01.

for sure: all examples have been randomly shuffled
before the testing.

Figure 4 shows the performance of the martingales
when the examples arrive in the original order: first
7291 of the training set and then 2007 of the test set.
The p-values are generated on-line by Algorithm 1
and the two martingales are calculated from the same
sequence of p-values. The final value for the simple
mixture martingale is 2.0 x 10'°, and the final value
for the plug-in martingale is 3.9 x 108.

Figure 6 shows the betting functions that correspond
to the plug-in martingale and the “best” power mar-
tingale. For the plug-in martingale, the function is
the estimated probability density function calculated
using the whole sequence of p-values. The betting func-
tion for the family of power martingale corresponds to
the parameter €* that provides the largest final value
among all power martingales. It gives a clue why we
could not see advantages of the new approach for this
dataset: both martingales grew up to approximately
the same level. There is not much difference between
the best betting functions for the old and new meth-
ods, and the new method suffers because of its greater
flexibility.

4.2. Statlog Satellite dataset

Data The Statlog Satellite dataset (Frank & Asun-
cion, 2010) consists of 6435 satellite images (divided
into 4435 training examples and 2000 test examples).
The examples are 3 x 3 pixel sub-areas of the satellite
picture, where each pixel is described by four spectral
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Figure 3. The growth of the martingales for the Statlog
Satellite dataset randomly shuffled before on-line testing.
The exchangeability assumption is satisfied: the final mar-
tingale values are about 0.01.

values in different spectral bands. Each example is
represented by 36 attributes and a label indicating
the classification of the central pixel. Labels are num-
bers from 1 to 7, excluding 6. The testing results are
described below.

Figure 3 shows the performance of the martingales
for randomly shuffled examples of the dataset. As
expected, the martingales do not reject the exchange-
ability assumption there.

Figure 5 presents the performance of the martingales
when the examples arrive in the original order. The
final value for the simple mixture martingale is 5.6 x 102
and the final value for the plug-in martingale is 1.8 x
10'7. Again, the corresponding betting functions for the
plug-in martingale and the “best” power martingale are
presented in Figure 7. For this dataset the generated
p-values have a tricky distribution. The family of
power betting functions ep®~! cannot provide a good
approximation. The power martingales lose on p-values
close to the second peak of the p-values distribution.
But the plug-in martingale is more flexible and ends
up with a much higher final value.

It can be argued that both methods, old and new, work
for the Statlog Satellite dataset in the sense of rejecting
the exchangeability assumption at any of the commonly
used thresholds (such as 20 or 100). However, the
situation would have been different had the dataset
consisted of only the first 1000 examples: the final value
of the simple mixture martingale would have been 0.013
whereas the final value of the plug-in martingale would
have been 3.74 x 10'°.

[T —A— simple mixture
| —= plug-in

5 6 7 8 9 10
T

logio M
4
T

-1 0 1 2 3
T

-2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
index of example

Figure 4. The growth of the martingales for the USPS
dataset. For the examples in the original order the ex-
changeability assumption is rejected: the final martingale
values are greater than 3.8 x 103,

5. Discussion and conclusions

In this paper we have introduced a new way of con-
structing martingales for testing exchangeability on-
line. We have shown that for stable sequences of
p-values the new more adaptive martingale provides
asymptotically the best result compared with any other
martingale with a fixed betting function. The experi-
ments of testing two real-life datasets have been pre-
sented. Using the same sequence of p-values the plug-in
martingale extracts approximately the same amount or
more information about the data-generating distribu-
tion as compared to the previously introduced power
martingales.

Remark. The previous studies were based on the nat-
ural idea that lack of exchangeability leads to new
examples looking strange as compared to the old ones
and therefore to small p-values (for example, if the data-
generating mechanism changes its regime and starts
producing a different kind of examples). This is, how-
ever, a situation where lack of exchangeability makes
the p-values cluster around 1: we observe examples
that are ideal shapes of several kinds distorted by ran-
dom noise, and the amount of noise decreases with
time. Predicting the kind of a new example using the
nonconformity measure (1) will then tend to produce
large p-values.

Our goal has been to find an exchangeability martin-
gale that does not need any assumptions about the
p-values generated by the method of conformal predic-
tion. Our proposed martingale adapts to the unknown
distribution of the p-values by estimating a good bet-
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Figure 5. The growth of the martingales for the Statlog
Satellite dataset. For the examples in the original order the
exchangeability assumption is rejected: the final value of
the simple mixture martingale is 5.6 x 10%, and the final
value of the plug-in martingale is 1.8 x 10'7.

ting function from the past data. This is an example of
the plug-in approach. It is generally believed that the
Bayesian approach is more efficient than the plug-in
approach (see, e.g., Bernardo & Smith, 2000, p. 483).
In our present context, the Bayesian approach would
involve choosing a prior distribution on the betting
functions and integrating the exchangeability martin-
gales corresponding to these betting functions over the
prior distribution. It is not clear yet whether this can
be done efficiently and, if yes, whether this can improve
the performance of exchangeability martingales.
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lite dataset for examples in the original order.
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