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Abstract

Latent variable models for network data ex-
tract a summary of the relational structure
underlying an observed network. The sim-
plest possible models subdivide nodes of the
network into clusters; the probability of a link
between any two nodes then depends only on
their cluster assignment. Currently available
models can be classified by whether clusters
are disjoint or are allowed to overlap. These
models can explain a “flat” clustering struc-
ture. Hierarchical Bayesian models provide
a natural approach to capture more complex
dependencies. We propose a model in which
objects are characterised by a latent feature
vector. Each feature is itself partitioned into
disjoint groups (subclusters), corresponding
to a second layer of hierarchy. In experimen-
tal comparisons, the model achieves signif-
icantly improved predictive performance on
social and biological link prediction tasks.
The results indicate that models with a single
layer hierarchy over-simplify real networks.

1. Introduction

Network data encoding pairwise relations between ob-
jects appears in many fields. For instance, in biology, a
protein network connects interacting partners, while in
a social network, links among people indicate relations.
We focus on the most common type of network data
—sets of observations represented as an unweighted,
undirected graph—in the ensuing discussion. The mo-
tivation behind the analysis of these networks is two
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fold. Firstly, there is a desire to understand the latent
structure of the network; what are the features of the
proteins that account for the observed interactions and
what is the mechanism behind the links or non-links
among groups of people. Second, the prediction of
“missing” links in the network arises as an important
challenge; how likely is it that a pair of proteins in-
teract or that two social network members are friends.
A prominent theme in machine learning is the use of
latent variable methods, which approach this problem
by extracting a simplified summary of the graph and
predicting the presence or absence of links based on
this latent representation. Latent class and latent fea-
ture models are the two most common categories found
in the literature.

Latent class models assume that there are a number
of clusters (classes) and that each object belongs to a
single cluster. Under these models, the link probabil-
ity between two objects depends only on their cluster
assignments. Early work in this category includes the
stochastic block model (SB) proposed in Nowicki and
Snijders (2001). Instead of assuming a fixed number of
clusters, the Infinite Relational Model (IRM) and the
Infinite Hidden Relational Model (Kemp and Tenen-
baum, 2006; Xu et al., 2006) use the Chinese restau-
rant process (Pitman, 2002) to allow a potentially in-
finite number of clusters. The Mixed Membership
Stochastic Block Model (Airoldi et al., 2009) (MMSB)
increases the expressiveness of the latent class mod-
els by allowing mixed membership, associating each
object with a distribution over clusters.

Latent feature models increase the flexibility of the
generative process by letting each object possess a
vector of features and determine the link probabili-
ties based on interactions among the features. In Hoff
et al. (2001) the link probability between two objects
is determined by the similarity of their real-valued fea-
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ture vectors. Miller et al. (2009) uses a vector of bi-
nary features which can be interpreted as allowing ob-
jects to belong to multiple clusters at the same time.
Their model, the Latent Feature Infinite Relational
Model (LFRM), assumes that the number of clusters is
not known a priori and uses the Indian Buffet Process
(IBP) (Griffiths and Ghahramani, 2005) to determine
the number of latent clusters.

The limitation of a single cluster membership makes
the latent class models less flexible than the latent fea-
ture models. As an intuitive example, consider a net-
work of individuals at a collegiate University, in which
a link denotes friendship or acquaintance. Here there
will be multiple types of cluster, for instance colleges,
departments and sports teams. A person might be
a member of more than one cluster and his cluster-
memberships determine his interaction with others.
To capture this structure a single membership model,
such as the IRM, must introduce a cluster for each
possible combination of the types of cluster, which
in our example would be to introduce clusters such
as ‘Gryffindor college, Department of Mathematics,
Football’. This results in an exponential explosion of
clusters, making learning, inference and generalisation
difficult. Latent feature models, e.g. the LFRM, can
instead use the feature vector representation to im-
plicitly account for the possible combination of clus-
ters. Though powerful, these models only account for
a flat clustering of the objects. In the context of the
University social network, the ‘college’ feature might
be divided into many different subclusters, such as
‘Slytherin college’, ’Gryffindor college’ etc. The same
for ‘sport’, with subclusters like ‘basketball’, ‘tennis’,
etc. The LFRM must represent each cluster with a
new feature, which will result in feature vectors of
greater size with a cost in interpretability. Allowing an
explicit representation of the partitioning of each gen-
eral class into subclasses would provide a more struc-
tured representation of the data.

Towards this end, we develop a new nonparametric la-
tent feature model. We use a binary feature vector to
indicate the features that an object has. If an object
has a particular feature, then the object belongs to
a particular subcluster of this feature. Equivalently,
we can think of objects having several attributes (fea-
tures) which have discrete values (the subcluster as-
signments). Following our university example, a per-
son might have the ‘college’ attribute and belong to the
‘Gryffindor college’ subcluster, but cannot simultane-
ously be a member of another college. We denote our
model by ILA for Infinite Latent Attribute model. We
use a nonparametric Bayesian approach to simultane-
ously infer the number of features and number of sub-

clusters inside each feature, while at the same time in-
ferring what features are active for each object, which
subcluster it belongs to and how subcluster member-
ship influences the observed interactions.

The paper is arranged as follows. In Section 2 we
describe the generative process for our nonparametric
model. Section 3 explains the relationship of our model
to several recently proposed models. In Section 4 we
derive the algorithm for performing approximate pos-
terior inference, parameter estimation and link pre-
diction. Section 5 gives some observations about the
computational cost of our proposed model relative to
others. Finally, in Section 6 we study our model’s per-
formance on one synthetic and two real datasets.

2. Model Description

Let R be the N × N binary matrix that contains
the links among the objects. In ILA, each object
i = 1, . . . , N , is represented by a binary vector of la-
tent feature values, zi. If there are M features, then
Z is a N ×M binary matrix indicating which features
each object has active, with zim ≡ Z(i,m) = 1 if the
ith object has feature m and zim = 0 otherwise. Let C
be a set of vectors, that is C = {c(1), . . . , c(M)}, that
describe the subcluster assignments within each fea-

ture, such that c(m) is a vector of length N where c
(m)
i

denotes the subcluster the ith object belongs to in the

mth feature (c
(m)
i is set to 0 if object i does not have

feature m). The number of subclusters present in the
mth feature, which is also not known a priori, is de-

noted as K(m), so that c
(m)
i ∈ {0, 1, ...,K(m)}. Finally,

let W be a set of M real-valued weight matrices of size

K(m) × K(m) each, where w
(m)
kk′ ≡ W (m)(k, k′) is the

weight that affects the probability of there being a link
from object i to object j, given that object i belongs
to subcluster k and object j belongs to subcluster k′

of the mth feature.

Given the feature matrix Z, the set of the subcluster
assignments C, and the set of the weight matrices W,
the probability that there is a link from object i to
object j is given by

Pr(rij = 1|zi, zj ,C,W) = σ
(∑

m

zimzjmw
(m)
cmi cmj

+ s
)
,

(1)
where the sum ranges over all M features, s is a bias
term, and σ(x) = (1 + e−x)−1 is the sigmoid (lo-
gistic) function that maps the input arguments from
(−∞,+∞) to (0, 1), ensuring that the result is a valid
probability. Under this model, only features that are
on for both objects influence the probability of a link
between them. For these common features, the ap-
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Figure 1. Diagram of the ILA model. ci and cj are the sub-
cluster assignments for objects i and j respectively, shown
here with M = 3 features. c

(2)
i being zero corresponds to

the absence of feature 2 for object i, so this feature con-
tributes no weight. For the two features which are active
for both i and j, namely features 1 and 3, the subcluster as-
signments dictate which element of the feature’s weight ma-
trix should be chosen for each feature. Finally the weights
are summed and passed through a sigmoid function to give
the probability of a link between i and j.

propriate weight values are summed up, depending on
the subcluster assignments of i and j. The weight val-
ues are continuous variables which can be positive or
negative allowing pairs of subclusters to encourage or
discourage links between them correspondingly. We
assume that given the Z, C and W, the probability of
each link is independent and the likelihood is therefore
as follows

Pr(R|Z,C,W) =
∏

i,j

Pr(rij |zi, zj ,C,W). (2)

In order to allow flexible inference of the latent struc-
ture from data, we set the number of possible features
M and the number of subclusters in each feature K(m)

to infinity by using an IBP prior on Z and CRP priors
on the c’s. The hierarchical generative model is then:

Z|α ∼ IBP(α)

c(m)|γ ∼ CRP(γ)

w
(m)
kk′ |σw ∼ N(0, σ2

w)

rij |Z,C,W ∼ Bernoulli

(
σ

(∑

m

zimzjmw
(m)
cmi cmj

+ s

))
.

The ILA model is illustrated in Figure 1.

The IBP parameter, α, affects the number of repre-
sented features, whereas the CRP parameter, γ, con-
trols the number of subclusters inside each feature. To
improve the flexibility of our model, we put Gamma
priors on α and γ, and a Gaussian prior on the bias
term s as follows

α ∼ G(1, 1), γ ∼ G(1, 1), s ∼ N (µs, σ
2
s),

where µs and σs are the mean and standard deviation
hyperparameters for the bias (we use µs = −1, σs = 4
unless otherwise stated).

3. Related work

Here we examine three models that are closely related
to ILA. The IRM model of Kemp and Tenenbaum
(2006) and the LFRM of Miller et al. (2009) both use
nonparametric Bayesian approaches to account for po-
tentially infinite number of clusters in the data. In the
IRM, the link probability between two objects depends
only on the clusters they are assigned to:

Pr(rij = 1|ci, cj , η) = ηcicj , (3)

where the link probabilities for each pair of clusters,
{ηkk′ : k, k′ = 1, ...,K} are given independent Beta
priors, and the cluster assignments, c are given a CRP
prior. The ILA and LFRM on the other hand, put a
logistic-normal prior on the between feature and sub-
cluster link probabilities. More specifically, the LFRM
defines the link probability as

Pr(rij = 1|Z,W) = σ

(∑

kl

zikzjlwkl + s

)
, (4)

where W is a K ×K real valued weight matrix (with
K being the number of features), given an element-
wise Gaussian prior, and Z is an N × K matrix of
binary feature vectors drawn from an IBP. Compar-
ing Equations 4 and 1 for the ILA, we see how the
two models differ. The LFRM defines a weight value
for each possible pair of features, while ILA defines a
weight matrix for each feature, whose elements corre-
spond to every pair of subclusters in that feature. The
link probability in LFRM depends on all the possible
pairs of features that are on for both objects, while in
the ILA model, the link probability is contributed to
only by features that are simultaneously on for both
objects. While subclusters within a feature can inter-
act in ILA, subclusters from different features do not
interact.

Unlike the IRM, the ILA model does not partition the
objects into a set of non-overlapping clusters; although
it specifies non-overlapping subclusters for each fea-
ture, it also allows each object to have multiple fea-
tures, thus accounting for multiple membership. ILA
more expressive than LFRM because it associates each
feature with a set of subclusters.

Interestingly, both the IRM and LFRM can be thought
of as special cases of our model. If only one column of
Z is switched on in ILA (i.e. there is only one feature
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which is on for every object) then this is equivalent to
the IRM. In this case the ILA likelihood becomes

Pr(rij = 1|Z = 1,C,W) = σ
(
w

(1)

c1i c
1
j

+ s
)
. (5)

Contrasting this to Equation 3 the ILA has a logistic-
normal prior on the between subcluster link probabil-
ities rather than a Beta prior, but this is a relatively
minor difference.

If the LFRM is constrained to have a weight matrix
W with only diagonal non-zero elements, then its link
probability becomes

Pr(rij = 1|Z,W) = σ

(∑

k

zikzjkwkk + s

)
.

This is then equivalent to ILA in the case when there
is only one subcluster in each feature, since the ILA
link probability is then

Pr(rij = 1|zi, zj ,C = 1,W) = σ
(∑

m

zimzjmw
(m)
11 +s

)
.

The ILA model can also be seen as a extension of
the Multiplicative Attribute Graph (MAG) model pro-
posed in Kim and Leskovec (2011), where the link
probability is

Pr(rij = 1|C, η) =
∏

m

η
(m)
cmi cmj

,

where η is a set of M two by two matrices of probabili-
ties with elementwise independent Beta priors, and the
c’s are equivalent to our subcluster assignment vari-
ables but constrained to takes values in {1, 2}. We ex-
tend this model in three ways: 1) we learn the number
of subclusters in each feature, rather than fixing it to
two, 2) we learn the number of features M , and 3) we
incorporate additional sparsity, in that an object need
not have a particular feature active at all. We parame-
terise our model in terms of real valued weights which
contribute to the log odds of a link being on, rather
than with probabilities that are multiplied together,
but this entails no loss of flexibility. In fact this may
be advantageous to ILA since the MAG suffers from
each new feature decreasing all link probabilities.

There are several models that have been proposed
for discovering hierarchical structure in relational data
(Girvan and Newman, 2002; Roy et al., 2007). In these
models, each object is still a member of one out of
many non-overlapping clusters. Our model is distinct
in allowing each object to be a member of many sub-
clusters as long as these subclusters are in different
features.

4. Inference

In the following, we present a method for inferring
the latent variables of the model: the infinite bi-
nary feature matrix Z, the subcluster assignments,
c(m) for each feature m, and the weight matrices,
W(m). Simultaneously we recover the number of fea-
tures and the number of subclusters inside each fea-
ture. As with many other Bayesian models, exact
inference is intractable so we employ Markov Chain
Monte Carlo (MCMC), and follow an iterative proce-
dure that achieves posterior inference over the latent
variables. The sampler iterates as follows:

Sampling the feature matrix, Z. We Gibbs sam-
ple each element of Z in succession. For each object
i, the sampler makes the following decisions: which
of the current M available features should be turned
on/off, and how many new features should be turned
on. However, when turning on a feature the sampler
must also sample a new subcluster assignment and,
in case of adding a new subcluster, the related new
weights.

We use exchangeability of the rows of Z and assume
that the ith object is the last to be added to Z after
N − 1 rows have already been added. For all the M
features currently present in Z, the conditional poste-
rior probability of an entry zim, m = 1, . . . ,M follows
a Bernoulli distribution:

Pr(zim = 1|Z−im,C−im,W,R) ∝
n−im
N

Pr(R|zim = 1,Z−im,C−im,W), (6)

where Z−im is the Z matrix excluding the Z(i,m) ele-
ment, n−im is the number of times feature m is present
in Z−im and C−im excludes the subcluster assignment

c
(m)
i . To compute the probability in Equation 6, we

need to sum over c
(m)
i , the space of the possible sub-

clusters that the ith object may be assigned to if zim
is to be turned on. This also includes integration over
a possible new subcluster. However, the prior over
the parameters W(m) related to a new subcluster is
not conjugate because of the logistic link function, and
thus the likelihood term cannot be computed exactly.
To overcome this problem, we use the auxiliary vari-
able approach proposed in Neal (2000) (Algorithm 8),
both to facilitate the integration required in Equation
6, and to decide which subcluster to assign the ith ob-
ject to in the mth feature if zim is turned on.

We must also sample the number of new features

unique to the ith row, M
(i)
new. Instead of consider-

ing these features separately, we calculate the condi-

tional posterior over M
(i)
new, using the fact that under
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the IBP the prior distribution over Mnew for the last
row is Poisson(α/N). Combining the Poisson prior
with the likelihood, we obtain the conditional poste-

rior over M
(i)
new. However, to obtain the required likeli-

hood term we need values for C(m) and W(m) for the
proposed new features. Clearly c

(m)
i = 1 for any new

features, since a feature active for only one object can
only have one subcluster. Integrating over the weights
is not straightforward because the prior over W(m) is
not conjugate to the logistic likelihood. We therefore
employ a Metropolis Hastings step, proposing values

for w
(m)
11 from the prior so that the acceptance ratio

becomes simply the likelihood ratio for including the
new features and associated C(m) and W(m) values in
the model versus not including them.

Sampling the subcluster assignments, C. We
may choose to resample each C(m) in succession as a
second step, again using Algorithm 8 of Neal (2000).
In practice we found this unnecessary since C is sam-
pled in the process of sampling Z.

Sampling the weights, W. Given Z and C, the
sampler successively resamples each of the weights

{w(m)
kk′ : k, k′ = 1, . . . ,K(m),m = 1, . . . ,M}. Since we

do not have conjugacy (due to the logistic link func-
tion), we cannot sample directly from the posterior

over w
(m)
kk′ . To overcome this problem we used both

Metropolis Hastings and slice sampling (Neal, 2003)
but found the later resulted in faster mixing.

Hyperparameters. We use slice sampling for both
the IBP hyperparameter, α, the CRP concentration
parameter, γ and the bias, s.

IRM implementation. Our implementation of the
IRM model of Kemp and Tenenbaum (2006) uses stan-
dard single site Gibbs sampling along with the re-
stricted Gibbs sampling split merge method of Jain
and Neal (2000). In the IRM we are able to integrate
out the parameters η analytically due to conjugacy, so
we need only sample the cluster assignments and the
CRP concentration parameter, for which we use slice
sampling.

LFRM implementation. For the LFRM of Miller
et al. (2009), we Gibbs sample the IBP matrix Z and
slice sample each element of the weight matrix W se-
quentially, followed by the IBP concentration param-
eter.

4.1. Sequential initialisation

The Gibbs updates described above are the simplest
moves we could make in a MCMC inference proce-
dure for the ILA model. However, these updates are
quite incremental, since only a single variable is up-
dated at a time. Due to the extremely large number
of possible configuration states,

∏M
m=1(K(m)+1)N , the

sampler can suffer from local modes and have some-
what slow mixing. Non-incremental moves, like split-
ting and merging features in the Z matrix or subclus-
ter assignments in C can produce major changes in
the configuration state in a single iteration and can
help the sampler explore more efficiently. Split-merge
sampling in the IBP has been previously described in
Meeds et al. (2006). However, we found that a sequen-
tial initialization of the sampler improved the perfor-
mance, guiding the sampler closer to neighborhoods of
higher probability.

To sequentially initialise all parameters the objects are
first randomly permuted and then added to the model
as follows. Initially two objects are added to the model
with no features active. Then a few (typically three)
iterations of the MCMC sampler are run. Then the
next object is added, with no features turned on, and
another three iterations of the sampler are run. This
procedure is iterated until all objects have been added.
The sampler will naturally grow the number of features
and subclusters within each feature as more data is
added. The advantage of this method is that the ini-
tialisation is appropriate for the model, the sampler is
very fast initially due to the small number of objects,
and the search space is small initially so it is easier for
the Markov chain to find a relatively high probability
region of parameter space. We also used sequential ini-
tialisation for our implementation of LFRM, but not
for IRM where we find split-merge sampling is able to
better overcome local optima.

4.2. Prediction

A principled way to evaluated a generative model is by
its ability to predict missing data values given some
observations. In our model, we collect T samples
{{Z(1),C(1),W(1)}, . . . , {Z(T ),C(T ),W(T )}} and esti-
mate the predictive distribution of a missing link as
the average of the predictive distributions for each of
the collected samples. Assuming that we want to pre-
dict the missing link rij between objects i and j, the
approximate predictive distribution will be as follows

Pr(rij = 1|Rtrain) ≈ 1

T

T∑

t=1

Pr(rij = 1|Z(t),C(t),W(t)).
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5. Computational complexity

In general, the computational cost of latent feature
models scales quadratically in the number of objects.
In the LFRM, computing the likelihood has a com-
plexity of O(M2N2), where M and N is the number of
represented features1 and the number of objects cor-
respondingly. For ILA, the link probability between
two objects given by Equation 1, results in computa-
tional cost O(MN2) when calculating the likelihood
across all pairs. The computational cost of the IRM
scales linearly in the number of links in the network,
L =

∑
ij rij , because the likelihood, with the link

probabilities η integrated out, can be written as

Pr(R|c) =
∏

a,b

Beta(n(a, b) + β, n̄(a, b) + β)

Beta(β, β)
,

where n(a, b) is the number of pairs of objects (i, j)
where i ∈ a and j ∈ b and R(i, j) = 1, n̄(a, b) is the
number of such pairs where R(i, j) = 0, and Beta(·, ·)
is the Beta function. The computational cost of com-
puting the likelihood in the IRM is therefore O(K2L).

In Morup et al. (2011), it is observed that if a noisy-
or likelihood model is used in the LFRM rather than
the logistic Gaussian model, then the likelihood can
be calculated in O(K2L) as for the IRM. This allows
excellent scalability on typical sparse real world net-
works where the number of links is much smaller than
the number of non-links. This scalable variant is ap-
plicable to our model, but comes with the significant
restriction of only being able to have positive weights
between clusters (homophily). As a result we leave
this development to future work.

6. Results

We present results on a toy synthetic data set and
on two real world datasets: the NIPS coauthorship
network and a novel gene interaction network.

6.1. Synthetic data

We first explored the ability of our model to recover the
underlying structure of a network using synthetic data.
We considered one simple synthetic dataset (Figure
2a) hand-constructed to have an unambiguous most
parsimonious solution under each model. Under ILA
this is the feature matrix shown in Figure 2(b) with
two features. The first feature has three homophilic
subclusters (i.e. individuals tend to have links if they

1M is potentially unbounded, but in practice the model
will use some finite number of features to model any finite
dataset.
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(d)

Figure 2. Synthetic data example. (a) Observed synthetic
30 × 30 link matrix. White corresponds to zero, black
to one. (b) ILA solution. Rows correspond to individu-
als, columns correspond to features. Different colors cor-
respond to different subclusters. Black denotes that this
feature is inactive. (c) LFRM solution. White corresponds
to zero, black to one (active feature). (d) IRM solution.
Different colours denote the different cluster assignments.

are in the same cluster), whereas the second feature
has two heterophilic subclusters (i.e. individuals tend
to link if they are in different clusters). We ran ILA
for 200 MCMC iterations following sequential initiali-
sation. The sample with the lowest energy (highest log
probability under the posterior) corresponds exactly
to the expected “true” structure, as shown in Figure
2b. The MAP sample found using LFRM is shown
in Figure 2c. Again this is a passable explanation of
the data but it is considerably more convoluted than
the simple, interpretable but rich solution found using
ILA. Note that running 2000 iterations (following se-
quential initialisation) of LFRM no better solution was
found. In contrast the IRM finds the flat clustering of
six clusters shown in Figure 2d, which is an acceptable
solution but does not capture the rich structure that
ILA is able to.

6.2. NIPS coauthorship network

We compare the performance of the IRM, LFRM and
ILA on the NIPS coauthorship dataset (Globerson
et al., 2007), where a link corresponds to two individ-
uals being coauthors of a paper at one of the first 17
NIPS conferences (see Figure 3(a)). Following Miller
et al. (2009) we use only the 234 most connected au-
thors. We run 10 repeats, each time holding out a
different 20% of the data (links and non-links) and
using a different random initialisation. We run two
versions of ILA: the first with a fixed number of fea-
tures M = 6, and the second which learns M , denoted
M = ∞. Note that even with M = 6 ILA is still ex-
tremely flexible since it can learn the number of sub-
clusters in each feature. We run 500 iterations for ILA
and 1000 iterations for IRM and LFRM, and calculate
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Figure 3. Predictions for the three models on the NIPS 1-17 coauthorship dataset. In (a), white denotes that two people
wrote a paper together, while in (b)-(d), the lighter the entry, the more confident the model is that the corresponding
authors would collaborate. In (e), we present the subclusters recovered by ILA in the 7 corresponding features. Different
colors denote the different subcluster assignments.

Table 1. NIPS coauthorship network results. All values are averages over the test pairs. The best results are highlighted
in bold where statistically significant.

IRM LFRM ILA (M = 6) ILA (M =∞)
Train error (0-1 loss) 0.0427± 0.0009 0.0197± 0.0052 0.0086± 0.0005 0.0058± 0.0005
Test error (0-1 loss) 0.0440± 0.0014 0.0228± 0.0041 0.0141± 0.0012 0.0106± 0.0007
Test log likelihood −0.0859± 0.0043 −0.0547± 0.0079 −0.0322± 0.0058 −0.0318± 0.0094
AUC 0.9565± 0.0037 0.9631± 0.0150 0.9908± 0.0048 0.9910± 0.0056

evaluation metrics averaged over the last 300 samples.
The results are shown in Table 1. We confirm the find-
ing in Miller et al. (2009) that LFRM outperforms the
IRM on this dataset. However, across all three eval-
uation metrics both ILA versions significantly outper-
form LFRM (for example, the t-test between the test
log likelihoods for LFRM and ILA (M = 6) shows
the means to be significantly different with a p-value
of 10−7). The fully infinite version of ILA performs
slightly, but still statistically significantly, better than
when we constrain M = 6 for training error and test
error. For test log likelihood ILA (M = ∞) still ap-
pears to perform slightly better than ILA (M = 6) but
the difference is not statistically significant based on
a t-test. Under the ILA posterior M is concentrated
around 7 or 8 features, with typically 2 to 4 subclusters
per feature.

In Figure 3 the link predictions for each of the three
models are presented. Figures 3(b)-(d) visualize the
belief of each model that there should be a link be-
tween each pair of authors. The link matrices were
constructed after running the three models on the
NIPS 1-17 dataset for 500 iterations, using the same
random seed and averaging over the last 160 samples.
To facilitate interpretability, we ordered the authors
by the clusters found by the IRM. It can be clearly
seen that both the LFRM and ILA models outperform
the IRM model by appearing more confident and re-
producing the corresponding network more faithfully.

Considering Figures 3(c)-(d), LFRM and ILA appear
comparable, with ILA being slightly more confident.
Quantitatively however, ILA gives a test log likeli-
hood of −0.0295 as opposed to −0.0386 for the LFRM
model. We also report the AUC metric, the area under
the ROC (Receiver Operating Characteristic) curve,
for the held-out data.

6.3. Gene interaction network

Finally we present results on a subset of the interac-
tion data presented in Jonikas et al. (2009)2. This is
an example of a new class of high throughput gene
interaction assays, in this case using the yeast S. cere-
visiae. A range of “deletion” strains are created, each
of which has a single gene deleted. Some phenotypic
response is measured during the growth of each strain,
in this case unfolded protein response (UPR), a mea-
sure of how badly the cell is doing at correctly folding
its membrane proteins. “Double mutants” with two
distinct genes deleted are then screened. Based on the
single deletion strains, the expected UPR response for
these double mutants can be predicted (see Jonikas
et al. (2009) for details) assuming no interaction be-
tween the two deleted genes. If the observed UPR
response is significantly different from this predicted
value then the genes must interact in some way, so
we consider this as an edge in the network. We use

2See http://weissmanlab.ucsf.edu/upremap/
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Table 2. Gene interaction network results. All values are averages over the test pairs. The best results are highlighted in
bold where statistically significant.

IRM LFRM ILA (M = 6) ILA (M =∞)
Train error (0-1 loss) 0.3562± 0.0008 0.2603± 0.0098 0.2044± 0.0066 0.0248± 0.0010
Test error (0-1 loss) 0.3608± 0.0031 0.2661± 0.0086 0.2284± 0.0077 0.0735± 0.0047
Test log likelihood −0.4669± 0.0097 −0.4223± 0.0147 −0.3596± 0.0156 −0.2654± 0.0447
AUC 0.8654± 0.0057 0.8471± 0.0132 0.9401± 0.0046 0.9924± 0.0037

the 156 genes with the least missing data. We run 10
repeats with a different 10% of the observed data held-
out each time, and perform 500 MCMC iterations for
ILA and 1000 for the IRM and LFRM. Again we find
the ILA model significantly outperforms LFRM, which
in turn outperforms the simple IRM (see Table 2). In
this case the infinite version M = ∞ has consider-
ably better predictive performance than with M = 6,
suggesting there is considerably more structure in this
data so that allowing more features is beneficial. In
fact ILA typically finds around M = 30 features with
3 to 5 subclusters per feature. We find significantly
more features are associated with particular proper-
ties of the genes as defined by Gene Ontology classes3

than would be expected by chance (p < 10−3 calcu-
lated by permutation testing), for example the three
subclusters of one particular feature have very differ-
ent proportions of ligand binding genes (10/41, 21/27
and 2/20 respectively).

7. Conclusion

Our experimental results on two very different datasets
suggest that the network models proposed to date
fail to capture the complex nature of real world net-
works. We have introduced a hierarchical nonparamet-
ric Bayesian model, ILA, which is able to naturally rep-
resent this complexity, with corresponding gains in em-
pirical performance. In principle ILA could be made
even more flexible by allowing multiple membership
of subclusters within a feature, corresponding to a hi-
erarchical IBP. We leave investigating whether this is
beneficial to future work.
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