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Abstract

We present algorithms for nonparametric re-
gression in settings where the data are ob-
tained sequentially. While traditional esti-
mators select bandwidths that depend upon
the sample size, for sequential data the ef-
fective sample size is dynamically changing.
We propose a linear time algorithm that ad-
justs the bandwidth for each new data point,
and show that the estimator achieves the op-
timal minimax rate of convergence. We also
propose the use of online expert mixing algo-
rithms to adapt to unknown smoothness of
the regression function. We provide simula-
tions that confirm the theoretical results, and
demonstrate the effectiveness of the methods.

1. Introduction

Bandwidth selection is arguably the most important
aspect of nonparametric regression using smoothing
kernels. It is well understood how the optimal band-
width for regression depends on the sample size. Con-
sidering the one dimensional case, let

Yi = m(Xi) + ǫi, i = 1, . . . , n (1.1)

where the Xis are independent and identically dis-
tributed, m : R → R is the unknown function to
estimate, and ǫi ∼ N(0, σ2). Assuming m′′ is abso-
lutely continuous and

∫
m′′(x)2dx < ∞, the risk of

the Nadaraya-Watson kernel regression estimator with
bandwidth h has the form

R(m̂n,m) = c1h
4 +

c2
nh

+ o(nh−1) + o(h4) (1.2)
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where

R(m̂n,m) = Em

∫
(m̂n(x)−m(x))2dx (1.3)

is defined as the risk of the estimate m̂n on a sample
of size n. Here c1 and c2 are constants that depend
on the kernel and the distribution of X. The opti-
mal bandwidth that minimizes (1.2) thus has order
h∗ = O(n−1/5), which leads to the optimal minimax
rate of convergence O(n−4/5); see Györfi et al. (2002).
More generally, if we assume further smoothness of m
so that the d-th derivative of m exists and is bounded,
then the minimax rate n−2d/(2d+1) is achieved using
local polynomial regression of order d−1 with a band-
width of order h∗ = O(n−1/(2d+1)) (Fan & Gijbels,
1996). Thus, bandwidth selection is of the essence in
nonparametric regression, and a large body of research
has been devoted to this problem in various settings.

These classical results assume that a training data set
of size n is given; the sample size n formally increases
to infinity in the theoretical analysis. In an online set-
ting, however, the data arrive sequentially, and the size
of the data set is always changing. In this case the
bandwidth needs to adapt somehow to the changing
sample size. A simple variation of the classical meth-
ods would carry out a batch regression on the entire
data set seen up to the current time T , with an appro-
priately sized bandwidth. However, this would require
quadratic complexity O(T 2) to compute the estimates
after T points are observed, and is prohibitive for large
sample sizes. This motivates the problem studied in
this paper—to develop computationally efficient esti-
mators in the online setting that preserve the statis-
tical efficiency of the classical batch estimators. We
propose an algorithm for sequential regression that re-
quires linear computational cost, and prove that the al-
gorithm achieves the optimal minimax rate of conver-
gence. The essential idea is to avoid recomputation by
shrinking the bandwidth for each new observed data
point. Our analysis assumes that the data are iid, and
the algorithm assumes they are obtained sequentially.
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Although online local polynomial smoothing has not
been previously studied, significant previous work has
been devoted to related problems. Steland (2010)
investigates a cross-validation scheme for sequential
data and establishes theoretical results. However, this
does not consider the cost of recomputing the en-
tire model for each new bandwidth; performing leave-
one-out cross-validation adds extra computation and
would be impractical for many online settings. Kivi-
nen et al. (2004) develop variants of stochastic gradi-
ent descent for online learning in a reproducing ker-
nel Hilbert space. The algorithms require linear com-
putation cost at each step, and their RKHS analysis
does not consider selection of tuning parameters for
the kernel, or adaptation to the unknown smoothness
of the regression function. A great deal of work has
been carried out for the problem of adaptation in the
classical batch setting. Fan & Gijbels (1995) consider
using Residual Squares Criteria (RCS) for perform-
ing data-driven bandwidth selection; Ruppert et al.
(1995) propose a plug-in bandwidth selection scheme
for local linear kernel estimators. These are effective
methods for adaptive estimation; however, they do not
take into account the computational cost for online
updating. The mixing expert framework has been a
popular strategy for online prediction, and there is a
rich literature on this topic (Cesa-Bianchi & Lugosi,
2006). Results by Bunea & Nobel (2008) give oracle
inequalities for regression in terms of generalized sim-
plex combinations of a set of fixed estimators in the
online setting. However, this analysis does not allow
the experts to change over time, as we require with dy-
namically changing bandwidths. Further related work
is discussed below.

In the following section we present the algorithm for
sequential local polynomial regression. In Section 3
we outline a theoretical analysis of the risk achieved
by this algorithm for both sequential density estima-
tion (Theorem 3.2) and regression (Theorem 3.3). In
Section 4 we briefly discuss the problem of adapting to
unknown smoothness, using the expert mixing frame-
work and also the extension to additive models. In
Section 5 we present experimental results showing that
our algorithm is comparable to the batch algorithm
but much more computationally efficient, and adapts
to unknown smoothness of the true function.

2. Sequential Local Polynomial

Smoothing

Our efficient sequential estimator is based on local
polynomial regression with a sequence of shrinking
bandwidths. Among the various nonparametric re-

gression methods, local polynomial regression enjoys
strong minimax properties, and gracefully deals with
the problem of boundary bias (Fan et al., 1993). Let
{(X1, Y1), (X2, Y2), . . . } be an observation sequence
according to the model given in equation (1.1). We
assume that the pairs (Xi, Yi) are independent and
identically distributed random variables. Throughout
we assume for simplicity that the domain of m(x) is
x ∈ [0, 1]. An extension to higher dimensional x is
straightforward. We discuss an extension to additive
models for the high dimensional case in Section 4.2.

2.1. Sequential kernel regression

We first present the simplest version of the method.
Recall that the kernel regression (Nadaraya-Watson)
estimator in the batch setting is

m̂n(x0) =

∑n
i=1 Kh(Xi, x0)Yi∑n
i=1 Kh(Xi, x0)

(2.1)

where h is the bandwidth. Under standard assump-
tions that the regression function is in a second-order
Sobolev space, the bandwidth is chosen as h = c·n−1/5,
and the estimator achieves the minimax rate of conver-
gence R(m̂n,m) = O(n−4/5). Now, suppose the data
arrive sequentially. Our sequential estimator takes the
form

m̃n(x0) =

∑n
t=1 Kht

(Xt, x0)Yt∑n
t=1 Kht

(Xt, x0)
(2.2)

where the bandwidth ht = c · t−1/5 is used only for
the tth point. The algorithm incrementally computes
the numerator and denominator, shrinking the band-
width for each new term added. A corollary of our
main technical result is that this estimator achieves
the same rate of convergence as the Nadaraya-Watson
estimator.

This result is surprising since the first examples in the
sequence, (X1, Y1), (X2, Y2), . . . , are assigned band-
widths ht = c · t−1/5 that are too large, introducing
a bias in the estimate. However, our analysis shows
that this bias is asymptotically “washed out.” To gain
some intuition for how this happens, note that we can
write the estimate as

m̃n(x0) =
1
n

∑n
t=1 Kht

(Xt, x0)Yt

1
n

∑n
t=1 Kht

(Xt, x0)
. (2.3)

Define f : R → [0, 1] to be the marginal proba-
bility density function of X. As we show below,
the denominator is a consistent density estimate of
f(x0), and moreover it attains the optimal rate of
convergence. The early contributions to the series
Kh1

(X1, x0)Y1 + Kh2
(X1, x0)Y2 + · · · are then effec-

tively weighted by 1/nf̂(x0), which removes the bias
they introduce as n increases.
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2.2. Sequential local polynomial smoothing

In the classical batch estimation case, the order-d lo-
cal polynomial regression at a prediction point x0 is
computed by minimizing the locally weighted squared
error

n∑

t=1

K

(
Xt − x0

hn

)(
Yt−

d∑

j=0

βj(x0)(Xt−x0)
j
)2

(2.4)

where K(·) is the kernel. Denote by β̂(x0) the (d+1)-
vector that minimizes this objective. The regres-
sion estimate is then given by the intercept m̂(x0) =

β̂0(x0). Let Xn be the n× (d+ 1) design matrix

Xn =




1 (X1 − x0) · · · (X1 − x0)
d

...
...

...
...

1 (Xn − x0) · · · (Xn − x0)
d


 .

Furthermore, let yn = (Y1, Y2, . . . , Yn)
T , and let

Wn = diag{Khn
(Xt, x0)}1≤t≤n be an n × n diago-

nal matrix of weights, where Kh(Xt, x) =
1
hK(Xt−x

h ).
Then the solution that minimizes (2.4) is given as

β̂(x0) = (XT
n WnXn)

−1XT
n Wnyn, (2.5)

and m̂(x0) = β̂0(x0) is an estimate of the regression
function at x0 (Fan et al., 1993).

If we were to adapt hn+1 to the increased sample size
n+1 at the next time step, we would have to recompute
the entire XTWX matrix. To save computation, we
allow a variable bandwidth in W . In other words,
we select a new bandwidth hn+1 that only applies to
(Xn+1, Yn+1).

Specifically, we propose the following sequential local
polynomial regression algorithm. Let

W̃n = diag{Kht
(Xt, x0)}1≤t≤n

where ht = c · t−1/(2d+1) is the bandwidth that would
be asymptotically optimal with respect to a sample of
size t, with c a constant. Our proposed online estimate
after n samples are observed is then

m̃n(x0) = eT1 (X
T
n W̃nXn)

−1XT
n W̃nyn. (2.6)

where e1 = (1, 0, . . . , 0). Denote by Sn the (d + 1) ×
(d+ 1) matrix XTW̃nX, with (i, j) entry

Sn(i, j) =
n∑

t=1

Kht
(Xt, x0)(Xt − x0)

i+j . (2.7)

To update the model after having observed
(Xn+1, Yn+1), note that

Sn+1 = Sn +Khn+1
(Xn+1, x0)xn+1x

T
n+1 (2.8)

where xn+1 is the (d + 1) vector (1, (Xn+1 −
x0), (Xn+1−x0)

2, . . . , (Xn+1−x0)
d). Now, using (2.8)

and the Woodbury formula for the inverse of a rank-
one matrix update,

(A+ vvT )−1 = A−1 −A−1v(1 + vTA−1v)−1vTA−1,
(2.9)

we have that updating S−1
n+1 given S−1

n has complexity
O(d2). Similarly, updating

XT
n+1W̃ n+1yn+1

=XT
nW̃ nyn +Khn+1

(Xn+1, x0)xn+1Yn+1

(2.10)

has O(d) cost. Therefore, the complexity of updating
the estimate from a sample of size n to one of size n+1
at each point x0 in a grid G of size |G| is O(|G|d2),
independent of n. However, the update cost in the
batch setting is O(|G|(nd2+d3)) because changing the
bandwidth forces re-evaluating equation (2.5).

3. Risk Analysis

In this section, we give a risk analysis of sequential
density estimation and regression. Assuming the re-
gression function m lies in Cd, the class of functions
with d continuous derivatives, our goal is to show that
the asymptotic risk of the online algorithm given in the
previous section achieves the statistical rate of conver-
gence of n−2d/(2d+1). This is the minimax optimal rate
for this function class.

We begin by analyzing the risk of sequential kernel
density estimation and kernel regression (d = 2), be-
cause the analysis is simpler and more transparent for
these special cases than for the general case. We then
generalize the results to order d− 1 sequential polyno-
mial regression in Cd.

We assume that the true density function f and the
true regression function m have d ≥ 2 continuous
derivatives. The kernel K is assumed to satisfy the
following properties:

∫
K(u) du = 1,

∫
K(u)u du =

0, σ2
K ≡

∫
K(u)u2du < ∞. We restrict the se-

quence of bandwidths {ht | t = 1, 2, 3, . . . } to satisfy
limt→∞ ht = 0 and limn→∞

1
n2

∑n
t=1

1
ht

= 0.

3.1. Sequential Kernel Density Estimation

Our sequential kernel density estimator f̃ is given by

f̃n(x) = 1
n

∑n
t=1

1
ht
K
(

x−Xt

ht

)
. This is computed in-

crementally according to the update rule

f̃n+1(x) =
n

n+ 1
f̃n(x)+

1

(n+ 1)hn+1
K

(
x−Xn+1

hn+1

)
.

Thus, updating f̃n has cost O(|G|), where |G| is the
size of the grid of x values at which the estimates are
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made.

Lemma 3.1. The risk of the sequential density esti-

mate f̃n at time t = n is

R(f, f̃n) =
1

4

∫
f ′′(x)2 dx


σ2

K

1

n

n∑

t=1

h2
t




2

(3.1)

+

(∑n
t=1

1
ht

n2

)∫
K2(u) du

+o

(
(
∑n

t=1 h
2
t )

2

n2

)
+ o

(∑n
t=1

1
ht

n2

)
. (3.2)

The proof of Lemma 3.1 is given in Section A.1. We
note in passing that a similar algorithm for sequential
density estimation appears, without theoretical analy-
sis, in Kristan et al. (2010).

Theorem 3.1. Let ht = c t−1/5 for some constant c.
Then the risk of sequential kernel density estimator f̃n
satisfies R(f, f̃n) = O(n−4/5).

Proof. Let c1 = 1
4 (σ

2
K)2

∫
f ′′(x)2dx, and c2 =∫

K2(u) du. Then Lemma 3.1 states that

R(f, f̃n) =
1

n2


c1




n∑

t=1

h2
t




2

+ c2

n∑

t=1

1

ht


 . (3.3)

Let ht = c t−k for 0 < k < 1
2 . Then with this choice of

bandwidth sequence

R(f, f̃n) =
1

n2


c1




n∑

t=1

t−2k




2

+ c2

n∑

t=1

tk


 (3.4)

≤ 1

n2

[
c1

(∫ n

0

t−2kdt

)2

+ c2n
k+1

]
(3.5)

= c1
1

(1− 2k)2
n−4k + c2n

k−1. (3.6)

Minimizing over k, we find that k∗ = 1
5 , and optimal

risk is of order R∗ = O(n−4/5).

The above analysis assumes that the density f has a
continuous second derivative. The result can be ex-
tended to the case where f is in Cd, using a higher
order kernel satisfying σj

K =
∫
ujK(u) du = 0 for all

j < d.

Theorem 3.2. If the density function f lies in Cd,

then the optimal risk of the sequential kernel density

estimator f̃n satisfies R∗ = O(n−2d/2d+1) when the

bandwidth sequence is taken to be h∗
t = c t−1/2d+1.

Proof sketch. By a Taylor expansion and calculations
similar to those in the proof of Lemma 3.1, we have

Ef̃n(x) =
1

n

n∑

t=1

∫
K(u)f(x− htu)du (3.7)

=
1

n

n∑

t=1

[
f(x) +

h2
t

2
f ′′(x)σ2

K + · · ·+ hd
t

d!
fd(x)σd

K

]

+ o(hd
t ).

Assuming a higher order kernel, we have σj
K = 0 for

j < d, so the leading order of the bias is

Bias(f̃n(x)) =
1

d!
fd(x)σd

K

(∑n
t=1 h

d
i

n

)
+ o

(∑n
t=1 h

d
i

n

)
.

The variance satisfies Var(f̃n(x)) = f(x)
∫
K2(u)du ·(

1
n2

∑n
t=1

1
ht

)
+o
(

1
n2

∑n
t=1

1
ht

)
as shown in the proof

of Lemma 3.1. Thus, using the bias-variance decom-
position the risk takes the form

c1


 1

n

n∑

t=1

hd
t




2

+ c2
1

n2

n∑

t=1

1

ht
. (3.8)

Assuming that ht = c t−k for k > 0 and optimizing
over k yields k∗ = 1

2d+1 , bandwidth sequence h∗
t =

c t−1/2d+1, and optimal risk R∗ = O(n−2d/2d+1).

3.2. Sequential Local Polynomial Regression

Similar results hold for the sequential local polynomial
regression estimator. In particular, for d = 2 we use

m̃n(x) =
1

nf̃n(x)

n∑

t=1

Kht
(x,Xt)Yt (3.9)

where f̃n(x) = 1
n

∑n
t=1 Kht

(x,Xt). The following re-
sult is proved in Section A.1.

Lemma 3.2. The risk of the estimator m̃n(x) in (3.9)
satisfies

R(m̃n,m) (3.10)

=
1

4


σ2

K

1

n

n∑

t=1

h2
t




2 ∫ (
m′′(x) + 2m′(x)

f ′(x)

f(x)

)2

dx

+σ2

∫
K2(x) dx

∫
dx

f(x)


 1

n2

n∑

t=1

1

ht




+o


 1

n

n∑

t=1

h2
t




2

+ o


 1

n2

n∑

t=1

1

ht


 .
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The analogue of Theorem 3.2 for density estimation
can also be obtained in the regression setting. In-
stead of choosing a special kernel to cancel out the
lower order terms in the Taylor’s series, we leverage
the minimax optimality of local polynomial regression
as introduced in Section 2.

Theorem 3.3. Suppose that the regression function

m has d continuous derivatives. Let ht = c t−1/2d+1.

Then at t = n, the order d − 1 sequential local poly-

nomial regression attains the optimal minimax risk

R∗ = O(n−2d/2d+1).

The proof of Theorem 3.3 is given in Section A.3.

4. Extensions

In this section we extend the above analysis in two
ways. First, we show how the expert mixing frame-
work can be used to adapt to the smoothness expo-
nent. Second, we show how the procedure can be ex-
tended to additive models.

4.1. Adapting to unknown smoothness

The theoretical performance of the sequential estima-
tors presented above hinges on selecting the correct
order d of the local polynomial, and in practice it de-
pends on the constant c in the bandwidth as well. Tra-
ditional statistical model selection methods, e.g. AIC
and cross validation, are not practical in an online sce-
nario.

In order to maintain a reasonable computational cost,
we combine estimators that use different parame-
ters (order d and constant c) through an exponential
weighting strategy. Leveraging our analysis in Sec-
tion 3, it can be shown that the procedure adapts to
the unknown smoothness at the optimal rate, while
maintaining a linear computational cost.

In more detail, our mixing online regression estimates
procedure forms an exponential weighting of a set of
sequential local polynomial regression estimates with
different orders d and bandwidth constants c.

Let C = {ci}1≤i≤C , and D = {dj}1≤j≤D. Define M =
CD to be the size of the family of sequential regression
estimates M = {m̃(i,j),t} where 1 ≤ i ≤ C and 1 ≤
j ≤ D. At time t, the bandwidth of the regression
m̃(i,j),t is given by h(i,j),t = ci · t−1/2dj+1, and the
corresponding estimator is computed as in equation
(2.6); specifically,

m̃(i,j),t(x0) = eT1 (X
T
t W̃(i,j),tXt)

−1XT
t W̃(i,j),tyt

(4.1)

where

W̃(i,j),t = diag{K
cis

−1/2dj+1(Xs, x0)}1≤s≤t.

The double index (i, j) is used to illustrate the con-
struction of the expert set; in the following, for simplic-
ity, we use a single index k to index the M sequential
estimators.

Let ℓk,t =
∑t

s=1(Ys − m̃k,s−1(Xs))
2 be the cu-

mulative loss of estimator k at time t. At each
time s, the prediction of Ys is made with the es-
timator m̃k,s−1 constructed using the previous data
{(X1, Y1), (X2, Y2), . . . , (Xs−1, Ys−1)}. Let wk,0 =
M−1, and for t ≥ 1 let

wk,t =
exp(−ηℓk,t)∑M

k′=1 exp(−ηℓk′,t)
(4.2)

where η is a positive learning rate, to be chosen later.
The combined estimator m̃∗ at time t is the convex
combination given by

m̃∗,t(x0) =
M∑

k=1

wk,tm̃k,t(x0). (4.3)

Note that the weight at time t can be updated in linear
time O(M) using

wk,t =
wk,t−1 exp

{
−η(Yt − m̃k,t−1(Xt))

2
}

∑K
k′=1 wk′,t−1 exp

{
−η(Yt − m̃k′,t−1(Xt))2

} .

(4.4)

A large literature is devoted to the study of regret-
based bounds for online learning, which hold for any
realization of data (Cesa-Bianchi & Lugosi, 2006).
However, we are primarily interested in analyzing the
statistical risk of our estimators. In particular, it is of
interest to obtain an oracle inequality of the form

E‖m̃∗,n −m‖2 ≤ min
k=1,...,M

E‖m̃k,n −m‖2+δ(n) (4.5)

where δ(n) is the additive penalty paid for adapta-
tion. Having already established the minimax rate of
the oracle m̃⋆,n = argmink=1,...,M E‖m̃k,n −m‖2, this
will enable us to show that the weighted combination
adapts to achieve a (near) minimax rate.

Theorem 4.1. Let m ∈ Cd⋆

. Assume that

1. m̃k,n ∈ [−A,A], for some constant A, for all

k, n;

2. mink Eexp |m̃k,n − Yn| ≤ L, for some 0 < L < ∞.
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Suppose that the optimal order d⋆ is contained in the

set of candidate degrees D. Then, for sufficiently large

n,

E‖m̃∗,n −m‖2 ≤ min
k=1,...,K

E‖m̃k,n −m‖2 + lnM

nη
(4.6)

where η is chosen to be a small constant depending

on A. In particular, we have that R(m, m̃∗,n) =

O
(
n−2d⋆/2d⋆+1

)
.

This result is proved by adapting analysis by Yang
(2004) (Theorem 5, see also Catoni (2004)).

4.2. Additive models

It is also possible to derive a sequential extension to
the backfitting algorithm for additive models (Hastie
& Tibshirani, 1990). Assuming now thatX is p dimen-
sional, an additive regression model takes the form

Yi = m0+

p∑

j=1

mj(X
j
i )+ǫi, i = 1, . . . , n j = 1, . . . , p

where m0 is an overall mean or intercept, the nonpara-
metric regression functions mj are one-dimensional,
and ǫi is mean zero noise. The backfitting algorithm is
a type of coordinate descent or Gauss-Seidel procedure
that iteratively computes the residuals for a variable
j, and then smoothes those residuals to get a nonpara-
metric estimate of the component function.

In our sequential setting, a complication comes from
the fact that the residuals must be updated sequen-
tially as well—for computational efficiency we cannot
afford to compute the residuals over all of the previous
data. Since the residuals for all of the p variables de-
pend on one another, we update them iteratively using
our sequential regression estimator until convergence.
We then cycle through the variables to sequentially
update each component function in terms of the con-
verged residuals.

This algorithm is made explicit below, where
update(mj , X, resid, t) updates the jth model mj with
the (X, resid) pair, using the appropriate bandwidth
at time t. This can be viewed as an incremental version
of the smoothing step in the classical backfitting algo-
rithm and can be efficiently computed using (2.8) and
(2.10) in the case of local-polynomial smoothing, us-
ing (2.3) in the case of kernel regression. We note that
the numerical convergence of even the classical back-
fitting is difficult to analyze. Example simulations of
our sequential backfitting algorithm are given in Sec-
tion ??, where it compares favorably to the classical
batch backfitting algorithm.

Input: (X1, Y1), . . . , (Xn, Yn), . . . sequentially
Output: m̂1, · · · , m̂n ∈ R

p

Initialize mean m0 = 0;
Initialize mj = array(0, |Xj |), j = 1, · · · , p;
foreach timestep t do

m0 = t−1
t m0 +

Yt

t ;
Initialize resid = array(0, p);
while resid not converged: do

foreach j = 1, · · · , p do

foreach k 6= j do

m′
k = update(mk, X

k
t , resid[k], t);

m′
k = m′

k −mean(m′
k) ;

end

resid[j] = Yt −m0 −
∑

k 6=j m
′
k(X

k
t );

end

end

for j in 1, · · · , p do

mj = update(mj , X
j
t , resid[j], t);

mj = mj −mean(mj) ;

end

Output: m̂t = [m1 · · ·mp];

end

Algorithm 1: Sequential Backfitting

5. Experiments

To illustrate the performance of a single online esti-
mator (descirbed in §2), we compare it with the batch
algorithm using the same bandwidth h = cn−1/5. We
consider the following 4 regression functions of differ-
ent smoothness on [0, 1] used by Yang (2001): f1(x) =
exp(−x), f2(x) = 1+2x2+exp(−5(x− 0.5)2), f3(x) =
1 + 2x2 + exp(−200(x − 0.5)), f4(x) = exp(−200(x −
0.2)2)/

√
0.005π + exp(−200(x− 0.8)2)/

√
0.005π. The

sample size is 150 and σ2 = 0.5.

We choose the bandwidth constant c from C =
{0.05, 0.07, 0.1, 0.3, 0.5, 0.7, 1, 1.5}. In addition, we add
a comparison to a batch estimator that does leave one
out cross validation at each time step to choose the
bandwidth constant from C. The first 50 samples are
used to initialize the batch estimators.

Figure 1 (first row) shows the average loss as a func-
tion of the sample size for the best sequential estimator
(with optimal constant), the best batch estimator, and
the batch cross-validation estimator for the functions.
In each case, the best sequential estimator has very
similar loss to the best batch estimator, which sup-
ports our theory showing that the sequential estima-
tor achieves the same statistical rate of convergence as
the classical batch algorithm. Note that in each case
the average loss converges to around the noise level
σ2 = .5. The middle row compares the fits of the se-
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Figure 1. First row: average loss as a function of sample size n, for each of the four functions. The best sequential
estimator is shown in red, the best batch estimator in green, and the cross-validation estimator in blue. Second row: fits
for each method at n = 150. Bottom row, the mean and standard errors for the sequential estimators at n = 150.

quential, batch, and batch with cross validation, and
indicates that the fits are comparable, and very close
to the true function. The third row shows the stan-
dard errors for the sequential estimators running the
simulations 100 times for each function.

Here we study the estimator’s risk under unknown
smoothness. We use the following parameterized set of
functions: mα(x) = 2|0.5(x − 0.5)|α, x ∈ [0, 1] and let
α = {1, 1.5, 2, 2.5}. At the point x0 = 0.5, the smooth-
ness of the function mα is Hölder α continuous. We
consider four “experts” of online kernel estimators us-
ing the parameter set α for their bandwidths: m̃α takes
the variable bandwidth ht = 0.4× t−1/(2α+1). We use
the Gaussian kernel Kh(u) = (2π)−1/2e−u2/(2h2) for
the estimator, and set the noise to be σ2 = 0.01. Al-
though we have not included the analysis due to lack
of space, it can be shown that our sequential estima-
tor with shrinking bandwidths c · t−1/(2α+1) achieves

the minimax rate n−2/(2α+1) for this Hölder family of
regression functions. The task here is to adapt to the
unknown exponent α.

Figure 2 shows the risk at the critical point x0 = 0.5
of the four experts under the four functions, having
different degrees of smoothness. We run simulations
for each of the functions 1000 times, and show a plot
of the average risk as a function of sample size. For
each true function mα, the expert with the correct
α obtains the lowest risk for any sample size. This
suppports the analysis in §4, showing the best expert
has the highest weight when the experts are mixed to-
gether. As a result, the mixing expert framework of
online estimators adapts to the unknown smoothness
of the true function. While the sequential algorithm
makes a tradeoff between performance and computa-
tional efficiency, its performance is quite comparable
to that of the optimal batch estimator.
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Figure 2. Risk (at critical point) vs. sample size for the four experts m̃α′ under four functions mα for (a) m1, (b) m1.5, (c)
m2 and (d) m2.5. Experts m̃1, m̃1.5, m̃2, m̃2.5 are shown in red, green, blue and purple respectively. The risk is smallest
for the expert with optimal order, showing that the algorithm adapts to the smoothness of the regression function.

6. Summary and Conclusions

We proposed and analyzed an efficient sequential al-
gorithm for local polynomial smoothing in nonpara-
metric regression. The first contribution of this work
is the online algorithm that shrinks the bandwidth for
each new point that arrives. The second is the anal-
ysis showing that order d sequential local polynomial
smoothing achieves the optimal minimax rate of con-
vergence n−2d/2d+1. Finally, we show that exponential
weight mixing of a family of such sequential estimators
adapts to unknown smoothness at the optimal rate,
and extended the algorithm to sequential backfitting
for nonparametric additive models. Our experimen-
tal results confirm the theoretical analysis, and show
that little loss in statistical efficiency is sacrificed by
the computationally efficient online procedure. While
we have shown adaptation to global smoothness, an
interesting direction for future work is to consider se-
quential estimators that adapt to spatially inhomoge-
neous function classes. One promising direction is to
adapt the variable bandwidth estimator of Lepski et al.
(1997) to online regression for Besov spaces.
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