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Abstract

We consider the problem of learning object
arrangements in a 3D scene. The key idea
here is to learn how objects relate to hu-
man poses based on their affordances, ease
of use and reachability. In contrast to mod-
eling object-object relationships, modeling
human-object relationships scales linearly in
the number of objects. We design appropri-
ate density functions based on 3D spatial fea-
tures to capture this. We learn the distribu-
tion of human poses in a scene using a variant
of the Dirichlet process mixture model that
allows sharing of the density function param-
eters across the same object types. Then we
can reason about arrangements of the ob-
jects in the room based on these meaning-
ful human poses. In our extensive experi-
ments on 20 different rooms with a total of
47 objects, our algorithm predicted correct
placements with an average error of 1.6 me-
ters from ground truth. In arranging five real
scenes, it received a score of 4.3/5 compared
to 3.7 for the best baseline method.

1. Introduction

“We bear in mind that the object being worked
on is going to be ridden in, sat upon, looked
at, talked into, activated, operated, or in
some other way used by people individually
or en masse.” Dreyfuss (1955).

In fact, in human environments, arrangements of ob-
jects are often governed by their affordances. For ex-
ample, the objects in the 3D scene in Fig. 1 are ar-
ranged in a particular configuration because they are
meant to be used by humans for activities such as
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(a) A living room (b) Human poses

(c) Sampled human poses (d) Close-up

Figure 1: Given a scene (a), there are many possible human
poses in it (b). Because of the human-object relationship,
only a few are meaningful (c). Our goal is to learn object
arrangements by modeling human poses and how objects
relate to human poses through their affordances (d).

watching TV, working on laptop, etc. In another ex-
ample, a keyboard is found below a monitor because it
needs to be reachable by hand when the monitor is in
sight. Learning such affordances for reasoning about
the objects’ arrangements would be useful in several
areas of scene understanding (e.g., Koppula et al.,
2011) or assistive robots (e.g., Jiang et al., 2012a).

In this work, we take an unsupervised learning ap-
proach to this task. Given a collection of 3D scenes
containing objects, we learn how an object relates to a
human pose for an activity by defining a parameterized
density function. While at the first blush, introducing
human poses may seem to complicate the model, it
actually simplifies it by making it more parsimonious.
The reason for this is that the set of relevant human
poses is far smaller than the collection of all objects. If
we learn object to object relationships instead of learn-
ing human pose to object relationships, the complexity
of both model and computation grows quadratically in
the number of objects. Human pose, which is the un-
derlying factor connecting the objects to each other
and the scene, provides a more parsimonious model
for the arrangement of objects in a scene.

In order to model the object arrangements, we use a
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Dirichlet process (DP) mixture model for defining the
joint distribution of human poses and objects. We
treat each human pose as a mixture component that
models the distribution of objects, and we use DP to
determine which human pose the object is generated
from. This model allows different objects to be used
by the same human pose (e.g., using a monitor, key-
board and mouse at the same time), with different
parameters in the density function. However, same
objects will have same parameters across different hu-
man poses. This requires that we formulate our learn-
ing method as maximum likelihood estimation based
on human poses sampled using DP. This variant of
DP mixture model allows the same parameters to be
shared by the instances from the same category across
different mixture components.

In this work, we specifically consider learning object
arrangements with a robotic application in mind—a
personal robot arranging a disorganized house. Jiang
et al. (2012a;b) considered a similar problem. However
ignoring the role of humans often led to unreasonable
placements. Inference in our model naturally follows
how we usually organize a room: from a given room,
we first infer possible workspaces such as sitting on the
chair and standing by the kitchen shelf; then we reason
about how to place the objects for potential activities,
such as placing a laptop on the desk facing the chair.

In our experiments, we collected a large dataset
comprised of different scenes from three categories:
kitchen, living room and office. Each scene was manu-
ally labeled by three to five subjects, who determined
where and how to place the given objects. In total, 19
different types of object are placed. The experimental
results demonstrate that our methods can find rea-
sonable locations and elevations for objects in most
cases. When evaluated by human subjects on real
point-clouds, the average score is 4.3 out of 5, com-
pared to 3.7 from the best baseline.

2. Related Work

Most previous work in vision and robotics has con-
sidered the problem of scene understanding and its
application to robotics using 2D images. With recent
inexpensive RGB-D sensors, it is possible to obtain
full 3D point-clouds and therefore reason about human
poses in 3D. There are also some previous works that
consider human pose and activity recognition, and we
describe them below.

Scene understanding. A number of works propose
approaches to capture the relations between different
parts of the object (Felzenszwalb et al., 2008) and be-
tween different objects in 2D images (Heitz & Koller,
2008). Some works extract 3D scene geometry from a

single image for object detection (e.g., Saxena et al.,
2005; Hoiem et al., 2006; Heitz et al., 2008; Lee et al.,
2010; Li et al., 2010). The recent availability of RGB-
D sensors provides more precise geometry of indoor
scenes and enables capturing stronger context among
objects (Koppula et al., 2011). The goal of these works
is to find and label existing objects in a scene, while
our goal is to infer arrangement of objects in the scene.
Furthermore, these methods focus on learning object-
object relationships and therefore do not scale well
with large number of objects. By contrast, our work
models the role of human poses as the underlying rea-
son for object arrangements.

Related applications. There is little work in robotic
placing and arrangement of objects. Edsinger & Kemp
(2006) and Schuster et al. (2010) focused on finding
flat clutter-free areas where an object could be placed,
but did not model any form of semantic context for
meaningful placing locations. Fisher et al. (2011) con-
sidered the problem of finding the most visually rele-
vant object to be placed in a given location. Jain et al.
(2009) considered symbolic planning for arranging ob-
jects such as setting a dinner table. Their work does
not address finding desired object locations and is com-
plementary to ours. Jiang et al. (2012b;a) employed
3D stability and geometric features to find stable and
preferred placements. While geometry is an important
hint for context, it alone cannot tell the difference be-
tween a TV facing towards a couch and facing towards
the wall. In order to learn such relations, we need to
consider the role of human poses in meaningful object
arrangements.

Human pose estimation and activity detection.
Estimating and understanding human pose in both
static images and videos has attracted great attention
in the computer vision community (e.g., Lee & Cohen,
2006; Ly et al., 2012). Some other work uses human
poses to facilitate high level understanding, such as hu-
man activity detection (Sung et al., 2012). While these
studies try to abstract human poses when human be-
ings are present, there have been some work making
use of imaginary human poses to detect objects (Grab-
ner et al., 2011) and to infer human workspaces (Gupta
et al., 2011). Our work, inspired by this viewpoint,
uses human poses to detect the affordances of the ob-
ject/scene to gain a deep understanding of the human
environments. We take it further to inferring object
arrangements based on the learned object affordances.

3. Overview

We first generate a set of human poses in the scene
based on certain criteria (such as reachability or usage
with existing objects). We then use these human poses
to estimate placements for new objects. It is the hu-
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man poses that link objects together. For example, a
monitor on the desk could generate a sitting skeleton in
front of it. Then the sitting skeleton could further sug-
gest to place a mouse close to the hand and therefore
at the edge of the desk. Note that objects are related
by this means naturally. The interaction affects the
human poses and object placements simultaneously.
There are two components to this as described below:

Human access and usability cost. One of the ob-
jectives while arranging a room is to make it conve-
nient for humans to use objects. For example, people
usually prefer frequently-used objects to be placed on
a table top, rather than on the floor, to reduce the
access effort. A television is often facing an open area
than the wall to increase its usability. Also, objects re-
lated to the same human activity are often grouped to-
gether, such as dishware and utensils on a dining table.
In order to capture this in our model, we define a po-
tential function over human poses and objects, based
on a collection of features modeling human-object in-
teraction, such as their distance, relative orientation
and activity matching (see Section 4.1).

Sampling of human poses. While there could be
innumerable potential human poses in a scene, only a
few of them are meaningful and relevant. For example,
acrobatic or dancing poses are possible but rarely ap-
pear in a room. Certain human poses are more likely
than others (and also more relevant for object interac-
tions/usage), such as sitting and standing. The poten-
tial poses are also restricted by the layout of the scene,
because of potential collisions, usage interactions with
existing objects in the room, and their kinematic cost.
For instance, in a room such as Fig. 1, a standing pose
facing against the corner is less important because it
does not connect with any object. We address this
by sampling human poses according to the potential
function using a DP (Section 4.2).

Certain objects have similar purposes and are com-
monly placed together, such as a PC setup of moni-
tor/keyboard/mouse, a dishware set, or a TV and a
remote control. This is because the human poses and
object classes are linked via an activity. For exam-
ple, standing pose and dishware/utensils are related
through cooking activity. In our model, we use human
activities to match relevant human poses and objects
so that such objects would share similar human pose
and activity and hence be placed together.

4. Algorithm

In this section, we first define a potential function to
quantify the relationships between human poses and
object placements, and then present a DP-based al-
gorithm infer poses and placements together. During

training, we are given the objects in the scene, and
our goal is to learn the distribution of human poses
and the parameters of the potential function.

Formally, given a new scene, denoted by E, which
may contain some already placed objects G =
{G1, G2, . . . , Gn}, our task is to arrange more objects
in the scene, O = {O1, . . . , Om}. Each object Gi or Oj
is specified by its type, location and orientation. We
also define the set of all possible human poses as H.
A human pose is specified by its joint locations and
activity (see Section 4.4 for more details).

4.1. Potential Function

To describe the human-object relationship, we define
the potential function between a human pose H and
an object O (or G) as

Ψ(O,H; Θ) = ΨdistΨrelΨoriΨhΨOAΨPA. (1)

It consists of several terms, as described below:

Distance preference. Some objects are preferred to be
at a certain distance from humans, such as a TV or
a laptop. This preference, encoded as Ψdist(O,H), in-
cludes how far the object should be, from what joint of
the human skeleton, and how strong this bias is. The
Euclidean distance between O and a designated joint
of H follows log-normal distribution.

Relative angular preference. There is a preference for
objects to be located at a certain angle with respect
to human poses. For example, people will sit in front
of a laptop, but prefer the mouse to be on their right
(or left). We use a von Mises distribution for Ψrel.

Orientation preference. There is a preference for ob-
jects to be oriented at a certain angle with respect to
the human pose (e.g., a monitor should also be facing
towards the skeleton when located in front of the skele-
ton). Similarly to relative angular preference, Ψori is
also a von Mises distribution over the difference be-
tween orientations of O and H.

Height preference. Ψh is a Gaussian distribution of the
object’s relative height to a human pose.

Object-activity and pose-activity preference. Different
objects can be related to different sets of activities, and
so can human poses. We use two terms to represent the
relationship between object and activity (ΨOA) and
between human pose and activity (ΨPA). We represent
them as probability tables.

The potential function relates an object O to a hu-
man pose H using the object-specific parameters Θ.
These parameters consist of parameters from each of
the terms above, such as the shape and log-scale pa-
rameter of the log-normal distribution in Ψdist and the
mean and concentration parameter of the von Mises
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Figure 2: The DP mixture model for generating placements
Oi for each object. α is the concentration hyper-parameter
of DP. π is the resulting distribution from stick-breaking
process, and ci is the label for the placement Oi, denoting
which human pose is selected for Oi. Hk are the samples
of human poses from P0. Θ, which is not in DP, is the
object-specific parameter of the potential function.

distribution in Ψrel and Ψori. These parameters Θ are
shared by objects from the same category. We now
present how to sample H and learn Θ using DP.

4.2. Dirichlet Process Mixture Model

In this section, we describe our formulation of the ob-
ject arrangements as a DP mixture model. The infer-
ence in our model is similar to the standard DP (see
Teh (2010) and Neal (2000) for an overview). How-
ever our learning method differs from it, as described
in Section 4.3.

Our particular problem can be viewed as a generative
process (shown in Fig. 2), we treat each human pose
as a mixture component that models the distribution
of objects, and we use DP to determine which human
pose the object is generated from. More formally, we
first draw the prior distribution P (H) fromDP (P0, α),
where P0 is the base distribution and α is the concen-
tration parameter. Then a human pose H is drawn
from P (H). Finally, the object’s placement (i.e., loca-
tion and orientation) is selected following Ψ(O,H; Θ).

In this work, to estimate the distribution of O gener-
ated by DP, we adopt the method of Gibbs sampling
with auxiliary parameters in Neal (2000). In testing,
this method iteratively samples the assignments c, hu-
man poses H and placements O. Suppose there are K
distinct ci for i = 1, . . . , n+m, where n+m is the to-
tal number of objects in the scene. In other words, we
have K human poses. We first augment the number of
human poses to K + z by sampling z auxiliary human
poses from the base distribution P0. Then, for every
object in either O or G, we sample ci as,

ci = c|c−i, Oi,H ∝

{
n−i,c

n+m−1+αΨ(Oi, Hc; Θi) n−i,c ≥ 0,
α/z

n+m−1+αΨ(Oi, Hc; Θi) otherwise

where c−i denotes other assignments in c except ci,
and n−i,c represents the number of assignments in c−i
that take the value c. This equation shows that the dis-
tribution of ci will be selected according to the poten-

tial score and the ‘popularity’ of a human pose (n−i,c).
It also depends on the concentration parameter α that
controls the probability of selecting a new pose.

After the assignments are selected, H and O are se-
lected based on their posterior:

Hk|{Oi|ci = k} ∝
∏
i:ci=k

Ψ(Oi, Hk; Θi)P0(Hk),(2)

Oi|ci,Θ, Hci ∝ Ψ(Oi, Hci ; Θi). (3)

By this means, we obtain a collection of sampled ob-
jects, {O1, . . . ,Os}. Since they are drawn from the
distribution of O, we approximate the distribution by
counting the samples near it, i.e., Oi ∝ 1

s

∑s
j=1 I{O

j
i ∈

Ω(Oi)}, where I is the indicator function and Ω rep-
resents a small neighborhood around this placement.

4.3. Learning Object-Specific Parameters

During training, we are given scenes with placed ob-
jects G and our goal is to learn object-specific parame-
ters Θ that maximize the potential over all the scenes
with latent human poses. Since Θ is invariant to the
scene and human pose, we do not sample them in DP,
but rather learn them using maximum likelihood esti-
mation (MLE).

In detail, we use a DP to sample poses H1, . . . ,Hs as
our observations. The optimal Θ is then given by,

Θ∗ = arg max
Θ

∑
scenes

s∑
j=1

n∑
i=1

log Ψ(Gi, H
j
ci ; Θ) (4)

We can optimize ΘO independently based on the place-
ments from the category O only. Furthermore, be-
cause our potential function is the product of several
components in Eq. (1), we can also optimize the pa-
rameters in different terms separately. In detail, as
Ψdist and Ψh are Gaussian distributions, the posterior
mean and variance have closed form, and as Ψrel and
Ψori are von Mises distribution, their mean µ and con-
centration κ can be estimated numerically. We iterate
between computing Θ∗ using Eq. (4) and sampling H
until convergence.

4.4. Human Pose and Object Placement
Generation

This section describes the set of human poses and ob-
ject placements, which is used by DP to sample from.

We extract human skeletons from the Kinect RGB-D
dataset (Sung et al., 2012), which contains activities
performed by four subjects. We then cluster the poses
using k-means algorithm giving us six types of skele-
tons (see Fig. 3). We sample the variants of these
skeletons and check for collisions. In addition to the
location, every sampled human poses is also assigned
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Figure 3: Six types of human poses extracted from Kinect
3D data. From left: reaching, standing, leaning forward,
sitting upright, sitting reclined and sitting forward.

with an activity, used in ΨOA and ΨPA in Eq. (1).1

We consider all the surface points of the environment
as potential placing locations, and consider eight orien-
tations evenly sampled from 0 to 2π. For each sample,
we perform a stability check (if the point has a large
enough region to support objects) and collision check
(if the bounding boxes of objects overlap).

5. Baseline Methods

For comparison in Section 6, we designed a number of
baseline algorithms, including a discriminative classi-
fier and a method based on a finite number of mixtures.

Open-area preference. Following Schuster et al.
(2010), we find a clutter-free area based on distances
from already existing objects, and place objects in ori-
entations closest to those in the training set.

Height preference. We compute the average height
of each object type’s placements. This helps in cases
such as food or monitors that would be placed on a
table (with the height of around 0.5m), while shoes
and floor-lights are usually placed on the ground.

Room - object context. This method considers the
object’s relative location in a room. We first normal-
ize the room’s size in the training data, and use the
average relative location to place the object in testing.

Object context. While our goal is to show that we
can learn object arrangements only using how they
relate to human poses, we also note that object - ob-
ject context could be a piece of complementary con-
text. As an example, a keyboard is placed in front of
the monitor and utensil is often on the side of dish-
ware. We learn object - object context Ψobj(O,G) as
follows. We model the relative location/orientation to
place the object as a Gaussian distribution, with pa-
rameters extracted from training data. To select the
reference object, we compute the variance of the rela-
tive placement for every category and choose the one
with the smallest variance.

Discriminative Classifier (‘class’). Selecting a
good placement for an object can also be treated as
a binary classification problem. We build a logistic re-

1In this work, we consider five activities: reading, work-
ing, talking, writing and resting.

gression classifier for every category with a total of 97
features based on the values used above: the relative
distance/orientation to other objects, height, relative
XY location and size of its bounding boxes, etc.

Finite Mixture Model. We also compare our algo-
rithm with a finite mixture model, where the number
of human poses is fixed. Suppose we have K human
poses in a scene, denoted byH = {H1, . . . ,HK}. Simi-
lar to the infinite mixture model, given the assignment
ci ∈ {1, . . . ,K}, Oi is distributed according to Eq. (3).
After marginalizing out ci, we get

O|H,Θ ∝
∏m
i=1

∑K
c=1 Φ(Oi, Hc; Θ)P (c|H), (5)

where P (c|H) is the probability of choosing Hc among
K poses. The inference problem, finding O that max-
imizes the potential is solved using an expectation-
maximization (EM) algorithm. However, the M-step
requires joint optimization over H and O, which we
solve by iteration. In the training, we learn Θ using
MLE (similar to Eq. (4)), i.e.,

max
Θ

∑
scenes

n∑
i=1

log

K∑
ci=1

Φ(Gi, Hci ; Θ)P (ci|H)

This is also estimated using EM with an iterative M-
step between Θ and H.

Compared to our DP approach, a finite mixture model
has two major drawbacks: (1) K is pre-defined, which
limits the number of human poses varying across
rooms with different size and layout; (2) It does not
encode the prior of H, which is often informative. For
instance, the probability of a human pose sitting on a
chair is higher than standing up.

Combining Object Context and Human Con-
text. We additionally present another algorithm in
which we combine the distribution of objects gen-
erated through human poses O ∝ Ψhuman(O,H; Θ)
with a distribution generated through object - ob-
ject context O ∝ Ψobj(O,G) using a mixture model:
O ∝ ωΨhuman(·) + (1− ω)Ψobj(·). We give a compar-
ison of methods of using object context only, human
context only and their combination in our experiments.

6. Experiments

In this section, we extensively evaluate our algorithms
from three perspectives: (1) robustness across a va-
riety of different scenes and objects; (2) comparison
between our method and several baselines, including
an approach that models object-wise relationships; (3)
different placing scenarios such as placing new objects
and placing in an empty room.

Dataset. We created a dataset consisting of 20 scenes
in three categories: six living rooms, seven kitchens
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Figure 4: Our dataset contains 20 scenes (7 kitchens, 6 living rooms and 7 offices) and 47 objects from 19 categories that
are commonly seen in these scenes.

and seven offices. We downloaded the 3D model for
each scene from Google 3D Warehouse.2 All the scenes
are commonly seen in the real world and have a large
variety in space, layout, furniture, etc. We also gath-
ered a collection of daily objects, such as dishware,
books, fruit, lamps, computers, etc, for a total of 19
different types (listed in Table 1). Every room is as-
signed a set of 10 to 30 objects, and we asked three
to five subjects (not associated with the project) to
manually label the placements of every object in the
scene. A snapshot of our dataset is shown in Fig. 4.

Results. The first experiment was performed on the
20 rooms, with 5-fold cross validation. In each fold,
labels of 16 rooms were used for training and the other
four rooms for testing, so that the test rooms had never
been seen by the algorithm. We created two placing
scenarios for test: placing new objects and placing in
an empty room. In the first case, for every test room
we took out the objects of the type being placed and
left other types as given. In the second case, the test
rooms had no object in it at all.

We wanted to answer following questions:

Is the learned density function meaningful? We visu-
alize some learned density function in Fig. 5, where
we put a skeleton facing right and centered at a room
of 10m×10m. It shows a 2D distribution of placing
different objects relative to the human pose. We can
see that TV prefers some distance to the human posi-
tion, and it has a narrow range of relative orientation,
unlike the remote and decoration. The mouse, laptop
and dishware all prefer a smaller distance, but have
different preferred relative orientations.

Do sampled human poses and object placements re-
flect meaningful distributions? Fig. 6 shows sampled
human poses and object placements for some scenes.

2http://sketchup.google.com/3dwarehouse/

(a) TV (b) remote (c) decoration

(d) mouse (e) laptop (f) dishware

Figure 5: Given a pose in a room with 10m× 10m, at
the coordinate of (500, 500) facing right, distributions of
different objects according to the learned density function.

When placing a monitor in the first scene, the existing
objects caused human poses to be sampled at the cor-
ner side of the desk, and further caused the monitor
to be sampled near the same side. Note that the most
likely location is aligned with the keyboard. In the sec-
ond scene, most skeletons are sitting on the couch or
standing in front of it, resulting a dense distribution
near the TV stand. The third scene has two major
areas—near the chairs and near the sofa.

Table 1 gives quantitative evaluation of our algorithms
based on two metrics: location difference, measuring
the Euclidean distance between the predicted and the
labeled locations, and also height difference.

In the task of placing new objects, using object context
(‘obj’) beat other baseline methods, especially for the
laptop, monitor, keyboard and mouse types. This was
because of the strong spatial relationships among these
objects. However, our method based on human con-
text (‘DP’) still outperformed the object context. By
considering human poses, it improved the placement
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Figure 6: Given a scene (first row), our algorithm samples
human poses (second row) and object placements (third
row), for placing a monitor, TV and book respectively.
(Red color means higher frequency, blue zero.)

of objects that have weaker connection to others, such
as book, TV, decoration and shoes.

The task of arranging objects in an empty room is
quite challenging since there is no object context for
the first few placements. Not surprisingly, we found
that the object-context method performed poorly,
even worse than the simple height-preference rule. The
performance of our methods was also affected. How-
ever, the sampled human poses could still pick up hints
from the furniture in the scene, using room geome-
try (with no semantic labels). Our experiments also
showed that the finite mixture model using human con-
text performed better than other baselines, but not as
well as the ones using DPs.

In both tasks, our human-context algorithm success-
fully predicted object placements within 1.6 meters on
average. The average error in height was only 0.1 me-
ters. By combining human- and object-context, the
error was further reduced—indicating that they pro-
vide some complementary context.

Results on real scenes. To demonstrate that our
algorithm is also robust in real scenes, we tested on
point clouds taken from five real offices/apartments
from the dataset published in Jiang et al. (2012a).
Similar to Jiang et. al., we evaluated the final arrange-
ments by asking two human subjects (one male and
one female, not associated with the project) to label
the placements for each object as semantically correct
or not, and also score the overall object arrangement
on a scale from 0 to 5.

Table 2 shows the results on the five real scenes.
The office2 scene has only one big table in the room,
therefore the number of semantically correct place-
ments (‘Co’) is 100% for every method. The open-
area method performed well in this scene because it
placed objects spread around the table, unlike some

baselines, which piled up objects. However, our and
Jiang et al.’s approach both arranged objects more
meaningfully, i.e., books were stacked together, while
a keyboard, laptop and mouse were placed close to
each other. The Apt2 scene has many different lay-
ers for placing and thus some baselines could not iden-
tify semantically correct placing areas for objects. The
DP, however, performed much better by, for example,
placing shoes at the bottom level of a shelf, while food
and books are on the middle level or on a table. Jiang
et al.’s approach sometimes put the laptop on a shelf
making it difficult for human to access.

Results on robotic placements. Finally, given the
predicted arrangement of a scene, we used our PO-
LAR and Kodiak PR2 robots to place the objects in
simulation. The experimental details and results are
provided in Jiang & Saxena (2012).

7. Conclusion

In this work, we applied human context to the task of
arranging objects in a 3D scene. The key idea was that
human poses and object placements relate strongly to
each other in terms of object affordances, access effort
and activity relevance. We designed potential func-
tions based on spatial features to capture these rela-
tions. In an unsupervised learning setting where we
are given a collection of 3D scenes containing objects,
we learned the distribution of human poses as well
as object placements using a variant of Dirichlet pro-
cess. Our extensive experiments on 20 different rooms
with 19 types of object showed that the arrangements
are improved by considering human context. We also
tested this on a personal robot in arranging and plac-
ing items.
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Learning Object Arrangements in 3D Scenes using Human Context

Table 1: Results of arranging new objects (top) and arranging empty rooms (bottom). The last column also shows the
standard error.
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AVG
Arranging new objects

lo
ca

ti
o
n

(m
)

open 3.09 3.58 2.70 2.22 2.08 3.30 3.45 3.11 2.34 3.64 4.27 4.12 3.55 2.93 2.55 2.86 1.71 3.04 3.42 3.05±.12
height 2.15 1.72 1.63 0.79 0.76 1.47 1.36 1.93 1.59 1.84 2.35 3.77 1.49 3.31 1.48 2.05 1.31 1.63 1.76 1.81±.17
room 2.05 2.42 1.39 1.08 0.91 1.76 1.55 2.52 2.43 1.73 2.43 3.80 1.79 2.68 2.07 2.20 1.29 2.22 1.70 2.00±.14
obj. 1.74 1.83 1.19 0.56 0.61 1.02 0.58 2.01 1.75 1.74 3.22 3.61 1.48 2.83 1.88 1.29 1.97 1.99 1.22 1.71±.23
class. 3.22 2.46 3.06 2.06 2.31 3.01 2.73 3.26 2.42 4.29 4.70 5.18 2.85 2.76 2.62 1.91 2.12 3.23 3.22 3.02±.18
FMM 1.84 1.65 0.91 0.80 0.69 1.19 0.93 2.01 1.64 1.86 2.38 3.01 1.41 2.90 1.51 1.60 1.44 1.32 1.15 1.59±.17
DP 1.73 1.67 1.06 0.77 0.76 1.05 0.71 2.06 1.35 1.88 2.08 2.78 1.23 2.71 1.22 1.23 1.40 0.94 1.47 1.48±.18
DP+obj 1.63 1.71 1.03 0.71 0.74 1.00 0.72 1.86 1.15 2.09 1.90 2.53 1.13 2.50 1.17 1.13 1.73 1.38 1.19 1.44±.18

h
ei

g
h
t

(m
)

open 0.56 0.65 0.51 0.38 0.38 0.66 0.70 0.21 0.76 0.84 0.50 0.55 0.62 0.00 0.88 0.58 0.00 0.35 0.69 0.52±.06
height 0.17 0.14 0.11 0.04 0.04 0.12 0.11 0.25 0.22 0.22 0.14 0.18 0.10 0.00 0.17 0.10 0.00 0.09 0.10 0.12±.02
room 0.52 0.86 0.34 0.18 0.18 0.41 0.35 0.94 0.81 1.19 0.55 0.52 0.43 0.00 1.13 0.84 0.00 0.44 0.36 0.53±.08
obj. 0.13 0.19 0.09 0.02 0.03 0.03 0.03 0.27 0.16 0.16 0.24 0.39 0.11 0.07 0.22 0.17 0.00 0.15 0.03 0.13±.02
class. 0.46 0.27 0.49 0.38 0.38 0.53 0.68 0.34 0.42 0.84 0.48 0.48 0.58 0.46 0.36 0.26 0.29 0.34 0.60 0.46±.03
FMM 0.12 0.08 0.08 0.05 0.03 0.07 0.03 0.29 0.15 0.20 0.14 0.17 0.12 0.42 0.19 0.54 0.19 0.09 0.05 0.16±.03
DP 0.17 0.08 0.07 0.05 0.05 0.12 0.08 0.22 0.17 0.22 0.10 0.22 0.09 0.01 0.16 0.10 0.01 0.12 0.10 0.11±.01
DP+obj 0.14 0.08 0.04 0.03 0.02 0.04 0.03 0.24 0.15 0.18 0.14 0.19 0.04 0.02 0.15 0.05 0.01 0.08 0.03 0.09±.01

Arranging empty rooms

lo
ca

ti
o
n

(m
)

open 2.47 2.09 1.69 1.67 1.23 2.07 2.22 2.19 2.03 2.20 2.75 4.24 2.72 3.51 1.78 2.10 2.04 1.68 2.57 2.28±.20
height 2.12 1.78 1.60 0.83 0.94 1.52 1.41 1.96 1.69 1.78 2.30 3.73 1.58 3.54 1.51 2.01 1.31 1.63 1.66 1.84±.16
room 2.04 2.56 1.35 1.16 1.14 1.64 1.71 2.56 2.38 1.61 2.30 3.82 1.82 2.68 2.00 2.01 1.29 2.35 1.64 2.00±.14
obj. 2.62 2.26 2.02 1.49 1.50 2.34 2.21 2.73 2.12 1.75 4.28 3.46 2.44 3.27 1.71 1.49 1.87 2.71 2.07 2.33±.17
class. 2.60 3.24 2.79 1.94 2.23 2.85 2.25 2.65 2.77 3.47 4.24 4.74 1.99 3.13 2.72 2.06 2.73 3.05 3.29 2.88±.23
FMM 2.14 1.66 1.22 1.17 1.01 1.42 1.52 2.14 1.72 1.85 3.08 3.09 1.70 2.02 1.57 1.73 1.09 1.40 1.52 1.74±.11
DP 1.78 1.57 1.34 1.16 0.91 1.53 0.96 1.96 1.50 1.58 2.59 2.86 1.27 2.76 1.66 1.27 1.89 1.39 1.43 1.65±.20
DP+obj 1.65 1.74 1.12 0.59 0.72 1.15 0.82 2.06 1.19 2.21 3.17 3.40 1.24 3.15 1.32 1.47 1.38 1.61 1.03 1.63±.19

h
ei

g
h
t

(m
)

open 0.47 0.55 0.42 0.37 0.33 0.43 0.58 0.32 0.65 0.73 0.44 0.53 0.49 0.00 0.59 0.52 0.04 0.18 0.62 0.43±.04
height 0.17 0.14 0.11 0.04 0.04 0.13 0.11 0.25 0.22 0.23 0.14 0.18 0.10 0.00 0.17 0.10 0.00 0.09 0.10 0.12±.01
room 0.49 0.81 0.28 0.17 0.15 0.33 0.28 0.88 0.79 1.09 0.55 0.52 0.40 0.00 1.05 0.77 0.00 0.43 0.28 0.49±.07
obj. 0.47 0.56 0.47 0.31 0.33 0.57 0.60 0.24 0.64 0.71 0.42 0.41 0.55 0.04 0.68 0.47 0.00 0.31 0.61 0.44±.04
LR 0.48 0.70 0.50 0.38 0.38 0.64 0.43 0.39 0.68 0.79 0.44 0.60 0.32 0.01 0.59 0.46 0.29 0.25 0.56 0.47±.04
FMM 0.19 0.14 0.11 0.10 0.07 0.14 0.14 0.20 0.23 0.20 0.13 0.16 0.22 0.44 0.32 0.56 0.19 0.12 0.15 0.20±.03
DP 0.15 0.11 0.08 0.09 0.07 0.15 0.06 0.22 0.22 0.22 0.13 0.23 0.03 0.03 0.22 0.09 0.02 0.08 0.06 0.12±.01
DP+obj 0.14 0.12 0.05 0.04 0.07 0.10 0.05 0.19 0.19 0.22 0.14 0.24 0.06 0.06 0.19 0.12 0.00 0.10 0.07 0.11±.01

Table 2: Results on arranging five real point-cloud scenes (3 offices & 2 apartments). The number of objects for placing
are 4, 18, 18, 21 and 18 in each scene respectively. Co: % of semantically correct placements, Sc: average score (0-5).

office1 office2 office3 apt1 apt2 Average
Co Sc Co Sc Co Sc Co Sc Co Sc Co Sc

open 100 2.5 100 3.5 30 1.5 63 2.5 45 3.0 68 2.6
height 80 3.0 100 2.0 60 2.5 50 2.5 75 3.5 73 2.7
room 100 4.0 100 2.5 0 0.5 20 0.5 35 1.5 51 1.8
obj. 100 4.5 100 3.0 45 1.0 20 1.8 75 3.3 68 2.7
class. 100 3.5 100 2.0 20 0.5 30 2.0 33 2.0 57 2.0
Jiang12 100 4.5 100 4.2 87 3.5 65 3.2 75 3.0 85 3.7
FMM 100 3.5 100 2.0 83 3.8 63 3.5 63 3.0 82 3.2
DP 100 5.0 100 4.3 91 4.0 74 3.5 88 4.3 90 4.2
DP+obj 100 4.8 100 4.5 92 4.5 89 4.1 81 3.5 92 4.3
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