Online Bandit Learning against an Adaptive Adversary:
from Regret to Policy Regret

Raman Arora

ARORAQTTIC.EDU

Toyota Technological Institute at Chicago, Chicago, IL 60637, USA

Ofer Dekel

OFERD@QMICROSOFT.COM

Microsoft Research, 1 Microsoft Way, Redmond, WA 98052, USA

Ambuj Tewari

AMBUJQCS.UTEXAS.EDU

Department of Computer Science, University of Texas, Austin, Texas 78712, USA

Abstract

Online learning algorithms are designed to
learn even when their input is generated by
an adversary. The widely-accepted formal
definition of an online algorithm’s ability to
learn is the game-theoretic notion of regret.
We argue that the standard definition of re-
gret becomes inadequate if the adversary is
allowed to adapt to the online algorithm’s ac-
tions. We define the alternative notion of pol-
icy regret, which attempts to provide a more
meaningful way to measure an online algo-
rithm’s performance against adaptive adver-
saries. Focusing on the online bandit set-
ting, we show that no bandit algorithm can
guarantee a sublinear policy regret against
an adaptive adversary with unbounded mem-
ory. On the other hand, if the adversary’s
memory is bounded, we present a general
technique that converts any bandit algorithm
with a sublinear regret bound into an algo-
rithm with a sublinear policy regret bound.
We extend this result to other variants of re-
gret, such as switching regret, internal regret,
and swap regret.

1. Introduction

Online learning with bandit feedback is commonly de-
scribed as a repeated game between a player and an
adversary. On each round of the game, the player
chooses an action X; from an action set X, the ad-
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versary chooses a loss function f;, and the player suf-
fers a loss of fi(X;). We often assume that fi(X;) is
bounded in [0,1]. The player observes the loss value
f+(Xy) and uses it to update its strategy for subsequent
rounds. Unlike the full-information player, the bandit
player does not observe the entire loss function f;. The
player’s goal is to accumulate the smallest possible loss
over T rounds of play.

While this presentation is intuitively appealing, it
hides the details on what information the adversary
may use when choosing f;. Since this aspect of the
problem is the main focus of our paper, we opt for a
less common, yet entirely equivalent, definition of the
online bandit problem.

We think of online prediction with bandit feedback
as an iterative process where only the player makes
active choices on each round. The adversary, on the
other hand, prepares his entire sequence of loss func-
tions in advance. To ensure that this assumption does
not weaken the adversary, we make the additional as-
sumption that the loss function f; takes, as input, the
player’s entire sequence of past and current actions
(X1,...,X), which we abbreviate by X;,_ ;. More
formally, for each ¢, F; is a class of loss functions from
X' to the unit interval [0, 1], and the adversary chooses
each f; from the respective class F;.

We model the player as a randomized algorithm that
defines a distribution over X’ on each round and sam-
ples X; from this distribution. Therefore, even though
ft is a deterministic function fixed in advance, the loss
fi(X1,..+) is a bounded random variable. The player
observes the value of this random variable and nothing
else, and uses this value to define a new distribution
over the action space.
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Interesting special cases of online learning with ban-
dit feedback are the k-armed bandit (Robbins, 1952;
Auer et al., 2002), bandit convexr optimization (Klein-
berg, 2004; Flaxman et al., 2005; Abernethy et al.,
2008), and bandit submodular minimization (Hazan &
Kale, 2009). In the k-armed bandit problem, the ac-
tion space X is the discrete set {1,...,k} and each
Fi contains all functions from X* to [0,1]. In ban-
dit convex optimization, X is a predefined convex set
and each F; is the set of functions that are convex in
their last argument. A special case of bandit convex
optimization is bandit linear optimization (Awerbuch
& Kleinberg, 2004; Bartlett et al., 2008), where the
functions in F; are linear in their last argument. In
bandit submodular minimization, X is the power-set
of {1,...,k} and each F; contains all of the functions
that are submodular in their last argument.

Various different adversary types have been proposed
in the literature (Borodin & El-Yaniv, 1998; Cesa-
Bianchi & Lugosi, 2006). All adversary types are
strategic and possibly malicious, have unlimited com-
putational power, and are free to use random bits when
choosing their loss functions. If the adversary is not
restricted beyond the setting described above, he is
called an adaptive adversary. Other adversary types
are restricted in various ways. For example, an oblivi-
ous adversary is restricted to choose a sequence of loss
functions such that each f; is oblivious to the first ¢ —1
arguments in its input. In other words, f; can only be
a function of the current action. Formally,

) x;,l, xt) s

ft(xl,...,xt) = ft(l'/l,..

for all z1,...,2y and 2,...,2;_; in X.

The expected cumulative loss suffered by the player af-
ter T rounds (which we abbreviate simply as loss) is
E[Z?:l ft(XL,__,t)]. To evaluate how good this loss
is, we compare it to a baseline. To this end, we choose
a competitor class Cr, which is simply a set of deter-
ministic action sequences of length 7. Intuitively, we
would like to compare the player’s loss with the cumu-
lative loss of the best action sequence in Cp. In prac-
tice, the most common way to evaluate the player’s
performance is to measure his external pseudo-regret
compared to Cr (Auer et al., 2002) (which we abbrevi-
ate as regret), defined as

T

max E th(xl,...,t)*ft(Xl,...,t—l’yt) - (1)

(Y1,e-y7)ECT et

Most of the theoretical work on online learning uses
this definition, both in the bandit setting (e.g., (Auer
et al., 2002; Awerbuch & Kleinberg, 2004; Kleinberg,

2004; Flaxman et al., 2005; Bartlett et al., 2008; Aber-
nethy et al., 2008; Hazan & Kale, 2009)) and in the
full information setting (e.g., (Zinkevich, 2003; Cesa-
Bianchi & Lugosi, 2006; Hazan et al., 2006; Blum &
Mansour, 2007; Hazan & Kale, 2009)).

If the adversary is oblivious, regret has a simple and
intuitive meaning. In this special case, we can slightly
overload our notation and rewrite fi(x1,...,2¢) as
fi(x¢). With this simplified notation, the regret de-
fined in Eq. (1) becomes

> A(X)

The above is the difference between the player’s loss
and the loss of the best sequence in the competitor
class Cr. Intuitively, this difference measures how
much the player regrets choosing his action-sequence
over the best sequence in Cr.

E

T
- min_ Y fi(y)
t=1

(Y1, yr)ECT =

However, if the adversary is adaptive, this simple
intuition no longer applies, and the standard no-
tion of regret losses much of its meaning. To ob-
serve the problem, note that if the player would
have chosen a sequence from the competitor class,
say (y1,...,yr), then his loss would have been
Zthl ft(y1,...,y:). However, the definition of regret
in Eq. (1) instead compares the player’s loss to the
term E[Etll ft(Xlr__,t_l,yt)]. We can attempt to
articulate the meaning of this term: it is the loss in
the peculiar situation where the adversary reacts to
the player’s original sequence (Xi,...,Xr), but the
player somehow manages to secretly play the sequence
(Yiy ... yr). This is not a feasible situation and it is
unclear why this quantity is an interesting baseline for
comparison.

As designers of online learning algorithms, we actu-
ally have two different ways to obtain a small regret:
we can either design an algorithm that attempts to
minimize its loss Zthl fir(X4,..1), or we can cheat
by designing an algorithm that attempts to maximize
Zle fir(X1,.t—1,y:). For example, consider an al-
gorithm that identifies an action to which the adver-
sary always responds (on the next round) with a loss
function that constantly equals 1 (here we use our as-
sumption that the adversary may play any strategy,
not necessarily the most malicious one). Repeatedly
playing that action would cause regret to asymptote
to a constant (the best possible outcome), since the
player’s loss would grow at an identical rate to the
loss of all of its competitors. While this algorithm min-
imizes regret, it certainly isn’t learning how to choose
good actions. It is merely learning how to make its
competitors look bad.
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The problem described above seems to be largely over-
looked in the online learning literature, with the ex-
ception of two important yet isolated papers (Merhav
et al., 2002; de Farias & Megiddo, 2006). To overcome
this problem, we define the policy regret of the player
as the difference between his loss after T' rounds and
the loss that he would have suffered had he played the
best sequence from a competitor class. Policy regret
captures the idea that the adversary may react differ-
ently to different action sequences. We focus on the
bandit setting and start with the class of constant-
action competitors. We first prove a negative result:
no online bandit algorithm can guarantee a sublinear
policy regret. However, if the adversary has a bounded
memory, we show how a simple mini-batching tech-
nique converts an online bandit algorithm with a re-
gret bound of O(T?) into an algorithm with a policy
regret bound of O(T*/(2~9)). We use this technique
to derive a policy-regret bound of O(T?/3) for the k-
armed bandit problem, O(T4/ %) for bandit convex op-
timization, O(T?/%) for bandit linear optimization (or
O(T?/3) if the player knows the adversary’s memory
size), and O(T3/*) for bandit submodular optimiza-
tion. We then extend our technique to other notions
of regret, namely, switching regret, internal regret, and
swap regret.

1.1. Related Work

The pioneering work of Merhav et al. (2002) addresses
the problem discussed above in the ezperts setting (the
full-information version of the k-armed bandit prob-
lem) and presents a concrete full-information algo-
rithm with a policy regret of O(7%/3) against memory-
bounded adaptive adversaries. Our work extends and
improves on Merhav et al. (2002) in various ways.
First, Merhav et al. (2002) are not explicit about the
shortcomings of the standard regret definition. Sec-
ond, note that a bandit algorithm can always be run
in the full-information setting (by ignoring the extra
feedback) so all of our results also apply to the full-
information setting and can be compared to those of
Merhav et al. (2002). While Merhav et al. (2002)
present one concrete algorithm with a policy regret
bound, we show a general technique that endows any
existing bandit algorithm with a policy regret bound.
Despite the wider scope of our result, our proofs are
simpler and shorter than those in Merhav et al. (2002)
and our bound is just as good. Our extensions to
switching regret, internal regret, and swap regret are
also entirely novel.

The work of de Farias & Megiddo (2006) is even more
closely related to ours as it presents a family of al-
gorithms that deal with adaptive adversaries in the

bandit setting. However, it is difficult to compare the
results in de Farias & Megiddo (2006) with our results.
While we stick with the widely accepted notion of on-
line regret, de Farias & Megiddo (2006) forsake the
notion of regret and instead analyze their algorithms
using a non-standard formalization. Moreover, their
analysis makes the assumption that the true value of
any constant action can be estimated by repeating that
action for a sufficiently large number of rounds, at any
point in the game.

The reinforcement learning (RL) literature is also re-
lated to our work, at least in spirit. Specifically, the
PAC-MDP framework (Szepesvdri, 2010, section 2.4.2)
models the player’s state on each round; typically,
there is a finite number S of states and the player’s
actions both incur a loss and cause him to transition
from one state to another. The PAC-MDP bounds
typically hold when the comparison is with all &% poli-
cies (mappings from states to actions), not just the k
constant-action policies. Our work is still substantially
different from RL. The state transitions in RL are of-
ten assumed to be stochastic, whereas our setting is
adversarial. An adversarial variant of the MDP set-
ting was studied in Even-Dar et al. (2009), however,
it assumes that all loss functions across all states are
observed by the player. There are recent extensions
(Yu et al., 2009; Neu et al., 2010) to the partial feed-
back or bandit setting but they either give asymptotic
rates or make even more stringent assumptions on the
underlying state transition dynamics. Also, the de-
pendence on the number of states, S, tends to be of
the form ©(S%) for some a > 0. In the case of an
m-~memory bounded adaptive adversary, associating a
state with each possible m-length history results in an
exponential number of states.

In other related work, Ryabko & Hutter (2008) ad-
dress the question of learnability in a general adap-
tive stochastic environment. They prove that envi-
ronments that allow a rapid recovery from mistakes
are asymptotically learnable. At a high level, the
assumption that the adaptive adversary is memory
bounded serves the same purpose. Our results differ
from theirs in various ways: we consider adversarial
environments rather than stochastic ones, we present
a concrete tractable algorithm whereas their algorithm
is intractable, and we prove finite-horizon convergence
rates while their analysis is asymptotic.

More recently, Maillard & Munos (2010) considered
adaptive adversaries in the k-armed bandit setting.
They define a framework where the set of all action-
histories is partitioned into equivalence classes. For
example, assuming that the adversary is m-memory-
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bounded is the same as assuming that two action-
histories with a common suffix of length m are equiv-
alent. Within this framework, they study adversaries
whose losses are functions of the equivalence classes
and competitors whose actions are functions of the
equivalence classes. However, they still use the stan-
dard notion of regret and do not address its intuitive
problems. As mentioned above, this makes their regret
bounds difficult to interpret. Moreover, when faced
with an m-memory-bounded adversary, their bounds
and running time both grow exponentially with m.

2. Policy regret

Define the player’s policy regret compared to a com-
petitor class Cr as

T T
. [zmxl,...,t)] S min S e
t=1 t=1

(Y1, yr)ECT 1=

This coincides with Eq. (1) for oblivious adversaries.

First, we show a negative result. Let Cr be the set
of constant action sequences, namely, sequences of the
form (y,...,y) for y € X. We prove that it is impossi-
ble to obtain a non-trivial (sublinear) upper-bound on
policy regret that holds for all adaptive adversaries.

Theorem 1. For any player there exists an adaptive
adversary such that the player’s policy regret compared
to the best constant action sequence is Q(T).

Proof. Let y € X and p € (0,1] be such that Pr(X; =
y) = p. Define an adaptive adversary that chooses the
loss functions f;(z1) = 0 and

1 ifx; =y

thQ ff(l‘l,,xf){o 1f$ #y
1

All of the loss functions defined above are constant
functions of the current action. From round two and
on, the value of the loss function depends entirely on
whether the player’s first action was y or not. The
player’s expected cumulative loss against this adver-
sary equals pT, since the probability that X; = y
equals p. On the other hand, if the player were to play
any constant sequence other than (y,...,y), it would
accumulate a loss of zero. Therefore, the player’s pol-
icy regret is at least pT'. For comparison, note that
the player’s (standard) regret is zero. O

Other adversarial strategies can cause specific algo-
rithms to suffer a linear regret. For example, the popu-
lar EXP3 algorithm (Auer et al., 2002) for the k-armed
bandit problem maintains a distribution (p1,¢, - - ., Pk.¢)

over the k£ arms on each round. This distribution is a
deterministic function of the algorithm’s past observa-
tions. If the adversary mimics EXP3’s computations
and sets the loss to be fi(j) = pj,+ we can prove that
this distribution converges to the uniform distribution
and EXP3 suffers a linear loss. In contrast, playing
any constant arm against this adversary results in a
sublinear loss, which implies a linear policy regret.

Given that no algorithm can guarantee a small pol-
icy regret against all adaptive adversaries, we must
restrict the set of possible adversaries. We consider
an adversary that lies between oblivious and adaptive:
An m-memory-bounded adaptive adversary is an ad-
versary that is constrained to choose loss functions
that depend only on the m + 1 most recent actions.
Formally,

,Tt)

,ZCt) = ft(LU/l, e 7x:£7m71;$t7m7 e

ft (.1‘17 N
for all x1,...,zy and o), ..., 2;_,,_; in X. An obliv-
ious adversary is 0-memory-bounded, while a general
adaptive adversary is oo-memory-bounded. We note
that m-memory-bounded adversaries arrise in many
natural scenarios. For example, the friction cost asso-
ciated with switching from one action to another can
be modeled using a 1-memory-bounded adversary.

For m-memory-bounded adaptive adversaries we prove
a positive result, in the form of a reduction. Again,
let the competitor class Cp be the set of all constant
action sequences of length 7. We show how an al-
gorithm A with a sublinear (standard) regret bound
against an adaptive adversary can be transformed into
another algorithm with a (slightly-inferior) policy re-
gret bound against an m-memory-bounded adaptive
adversary. We note that this new algorithm does not
need to know m, but m does appear as a constant in
our analysis.

We define a new algorithm by wrapping A with a mini-
batching loop (e.g., Dekel et al. (2011)). We spec-
ify a batch size 7 and name the new algorithm A..
The algorithm A, groups the online rounds 1,...,7T
into consecutive and disjoint mini-batches of size 7:
The j’th mini-batch begins on round (j — 1)7 + 1 and
ends on round j7. At the beginning of mini-batch
j, A invokes A and receives an action Z; drawn
from A’s internal distribution over the action space.
Then, A, plays this action for 7 rounds, namely,
X(-1)r+1 = ... = Xj; = Z;. During the mini-batch,
A does not observe any feedback, does not update its
internal state, and is generally unaware that 7 rounds
are going by. At the end of the mini-batch, A, feeds
A with a single loss value, the average loss suffered
during the mini-batch, 1 Zi;(jfl)‘rJrl Fir(Xq 1)
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From A’s point of view, every mini-batch feels like a
single round: it chooses a single action Z;, receives a
single loss value as feedback, and updates its internal
state once. Put more formally, A is performing stan-
dard online learning with bandit feedback against the
loss sequence fl, cee fJ, where J = |T/7],

1 - T T
Filan o) = - > fo-vran(zl 2] g, 2b), (2)
k=1

and z' denotes i repetitions of the action z. By
assumption, A’s regret against fl,...,fJ is upper
bounded by a sublinear function of J. The following
theorem transforms this bound into a bound on the
policy regret of A;.

Theorem 2. Let A be an algorithm whose (standard)
regret, compared to constant actions, against any se-
quence of J loss functions generated by an adaptive
adversary, is upper bounded by a monotonic function
R(J). Let 7 > 0 be a mini-batch size and let A, be the
mini-batched version of A. Let (f;)I_, be a sequence
of loss functions generated by an m-memory-bounded
adaptive adversary, let Xq,..., X be the sequence of
actions played by A, against this sequence, and let y
be any action in X. If T > m, the policy regret of A,
compared to the constant action y, is bounded by

T
E lz fi(Xa1,.0)— Y| <R <Zj> + 7T;n + T
=1

Specifically, if R(J) = CJ%+ o(J9) for some C > 0
and g € (0,1), and 7 is set to CﬁTé—;Z, then

lz F(Xa0) = Fely")

(m+1)C7 7.

< O'T7i +o(T7) |

where C' =

Proof. Assume that 7 > m, otherwise the theorem
makes no claim. Let J = |T/7| and let (fj)jzl be
the sequence of loss functions defined in Eq. (2). Let
Z1,...,Zj41 be the sequence of actions played by A
against the loss sequence ( fj)j:r Our assumption on
A implies that

Zf

(Zl,...,j—h y)| < R(J). (3)

From the definitions of A, and fj,

J 1 JT
Z 1j) = 7th(xl,..‘,t) . (4)

Introducing the notation t; = (j — 1)7, we rewrite

T

J
f( Lj-1Y %sztﬁk

j=1k=1

,4..,tj,yk)- (5)

ig-

For any j < J, the bound on the loss implies

NE

(Fryu (Xt ¥) = fryee(¥9 ) < m , (6)

>
Il
—

and our assumption that the adversary is m-memory-
bounded implies

Z ftj+k(X1,...,tj,yk) =

k=m+1

S Foay ). (1)

k=m+1

Combining Eqs.(5-7) gives the bound

J
ij(zl,..‘,jfla < ; (th +Jm>
j=1 t=1

Together with Eq. (3) and Eq. (4), we have

Jr
E Y fiXie) = fily")
t=1

We can bound the regret on rounds J7 + 1,...,T by
7. Plugging in J < T'/7 gives an overall policy regret
bound of 7R(T/7)+Tm/7+7. Focusing on the special
case where R(J) = CJ9 4+ o(J7), the bound becomes

<7TR(J) + Jm.

CTiIT' 94+ Tmr ' +7+40 (Tqu_q) .

Plugging in 7 = C =774 concludes the proof. O

3. Applying the Result

With Thm. 2 in hand, we prove that the policy regret
of existing online bandit algorithms grows sublinearly
with 7. We begin with the EXP3 algorithm (Auer
et al., 2002) in the classic k-armed bandit setting, with
its regret bound of 1/7Jklog k against any sequence of
J loss functions generated by an adaptive adversary.
Applying Thm. 2 with C = /Tklogk and ¢ = 1/2
proves the following result.

Corollary 1 (k-armed bandit). Let X = {1,...,k}
and let Fy consist of all functions from X' to [0,1].
The policy regret of the mini-batched version of the
EXP3 algorithm (Auer et al., 2002), with batch size
7 = (Tklog k)~ Y/3TY3 against an m-memory bounded
adaptive adversary, is upper bounded by

(m + 1)(Tklog k)Y/3T?/3 + o(T?/3).
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We move on to the bandit convex optimization prob-
lem. The algorithm and analysis in Flaxman et al.
(2005) guarantees a regret bound of 18d(v/ LD +1).J3/4
against any sequence of J loss functions generated by
an adaptive adversary, where d is the dimension, D
is the diameter of X, and L is the Lipschitz coef-
ficient of the loss functions. Applying Thm. 2 with
C = 18d(vVLD + 1) and q = 3/4 proves the following
result.

Corollary 2 (Bandit convex optimization). Let X C
R? be a closed bounded convex set with diameter D and
let F; be the class of functions from X' to [0,1] that
are convex and L-Lipschitz in their last argument. The
policy regret of the mini-batched version of Flaxman,
Kalai, and McMahan’s algorithm (Flaxman et al.,
2005), with batch size T = (18d(v/LD + 1))~4/5T'/5,
against an m-memory bounded adaptive adversary is
upper bounded by

(m +1)(18d(VLD + 1)T)"® 4 o(T*/5).

An important special case of bandit convex optimiza-
tion is bandit linear optimization. The analysis in
Dani & Hayes (2006) proves a regret bound of 15d.J2/3
for the algorithm of McMahan & Blum (2004) against
any sequence of J loss functions generated by an adap-
tive adversary. Applying Thm. 2 with C' = 15d and
g = 2/3 proves the following result.

Corollary 3 (Bandit linear optimization). Let X C
[—2,2]? be a polytope (or, more generally, let X C RY
be a convex set over which linear optimization can be
done efficiently). Let F; be the class of functions from
X' to [0,1] that are linear in their last argument. The
policy regret of the mini-batched version of McMahan
and Blum’s algorithm (McMahan € Blum, 2004), with
batch size T = (15d)=3/*T/*, against an m-memory
bounded adaptive adversary is upper bounded by

(m +1)(15dT)3/* + o(T3/*).

Finally, we apply our result to bandit submodular min-
imization over a ground set {1,...,k}. Recall that a
set function f is submodular if for any two subsets of
the ground set A, B it holds that f(AUB)+ f(ANB) <
f(A) + f(B). The algorithm in Hazan & Kale (2009)
has a regret bound of 12kJ?/3 against any sequence of
J loss functions generated by an adaptive adversary.
Applying Thm. 2 with C = 12k and ¢ = 2/3 proves
the following result.

Corollary 4 (Bandit submodular minimization). Let
X be the power set of {1,...,k} and let F; be the class
of functions from X' to [0,1] that are submodular in
their last argument. The policy regret of the mini-
batched version of Hazan and Kale’s algorithm (Hazan

& Kale, 2009), with batch size T = (12k)~3/*T1/4,
against an m-memory bounded adaptive adversary is

(m + 1)(12kT)3/* + o(T3/4).

4. Extensions

Theorem 2 is presented in its simplest form, and we
can extend it in various interesting ways.

4.1. Relaxing the Adaptive Assumption

Recall that we assumed that A has a (standard) re-
gret bound that holds for any loss sequence generated
by an adaptive adversary. A closer look at the proof
of Thm. 2 reveals that it suffices to assume that A’s
regret bound holds against any loss sequence gener-
ated by a 1-memory-bounded adaptive adversary. To
see why, note that the assumption that each f; is m-
memory-bounded, the assumption that 7 > m, and
the definition of f; in Eq. (2) together imply that each
fj is 1-memory-bounded.

4.2. When m is Known

We can strengthen Thm. 2 in two ways if the mem-
ory bound m is given to A,. First, we redefine

fj(Zl,...,Zj) as
1

T—m

-
Z f(j_l)ﬂ_k(zf,...,zjlhz?). (8)
k=m-+1
Note that the first m rounds in the mini-batch are
omitted. ~ This makes the sequence ( fj)‘jI:l a 0-
memory-bounded sequence. In other words, we only
need A’s regret bound to hold for oblivious adversaries.
In addition to relaxing the assumption on the regret
of the original algorithm A, we use m to further op-
timize the value of 7. This reduces the linear depen-
dence on m in our policy regret bounds, as seen in
the following example. We focus, once again, on the
bandit linear optimization setting. We use the algo-
rithm of Abernethy, Hazan, and Rakhlin (Abernethy
et al., 2008), whose regret bound is 16n+/9J log J when
J > 8dlog J, for any sequence of J loss functions gen-
erated by an oblivious adversary. The constant ¢ is
associated with a self-concordant barrier on X. In
the current context, understanding the nature of this
constant is unimportant, and it suffices to know that
¥ = O(n) when X is a closed convex set (Nesterov &
Nemirovsky, 1994).

Theorem 3 (Bandit linear optimization, known m).
Let X be a conver set and let F; be the class of func-
tions from X' to [0,1] that are linear in their last ar-
gument. In this setting, The policy regret of the mini-
batched wversion of Abernethy, Hazan, and Rakhlin’s



From Regret to Policy Regret

algorithm (Abernethy et al., 2008) where the first m
loss values in each mini-batch are ignored, with batch
size T = m2/3(16nv91og T)~2/3T"3 against an m-
memory-bounded adaptive adversary, is upper bounded
for all'T > 891ogT by

2m'/3(16nVIT log T)?/® + O(T/3).

4.3. Switching Competitors

So far, we defined Cr to be the simplest competitor
class possible, the class of constant action sequences.
We now redefine Cr to include all piece-wise constant
sequences with at most s switches (Auer et al., 2002).
Namely, a sequence in Cr is a concatenation of at most
s shorter constant sequences, whose total length is T'.
In this case, we assume that A’s regret bound holds
compared to sequences with s switches and we obtain a
policy regret bound that holds compared to sequences
with s switches.

Theorem 4. Repeat the assumptions of Thm. 2, ex-
cept that Cr is the set of action sequences with at most
s switches (where s is fized and independent of T ) and
A’s regret bound of R(J) holds compared to action-
sequences in Cy. Then, the policy regret of A, com-
pared to action-sequences in Cr, against the loss se-
quence (f;)L_,, is upper bounded by

TR(T/7)+Tm/T+ (s + 1)T.

The main observation required to prove this lemma is
that our proof of Thm. 2 bounds the regret batch-by-
batch. The s switches of the competitor’s sequence
may affect at most s batches. We can trivially upper
bound the regret on these batches using the fact that
the loss is bounded, adding s7 to the overall bound.

In the k-armed bandit setting, (Auer et al., 2002) de-
fines an algorithm named EXP3.S and proves a regret
bound compared to sequences with s switches. Com-
bining the guarantee of EXP3.S with the lemma above
gives the following result.

Theorem 5 (k-armed bandit with switches). Let X =
{1,...,k} and let F; consist of all functions from X*
to [0,1]. The policy regret of the mini-batched ver-
sion of the EXPS3.S algorithm, with batch size T =
(Tkslog(kT))~Y/3T/3, compared to action sequences
with at most s switches, against an m-memory bounded
adaptive adversary, is upper bounded by

(m + 1) (Tks log(kT))/*T2/3 4 O(T'/3).

It is possible to give similar guarantees for settings
such as bandit convex optimization, provided that re-
gret guarantees under action switches are available.

For instance, Flaxman et al. (Flaxman et al., 2005,
Section 4) talk about (but do not explicitly derive)
extensions of their bandit convex optimization regret
guarantees that incorporate switches.

4.4. Internal Regret, Swap Regret, ®-Regret

We have so far considered the standard notion of exter-
nal pseudo-regret, where the player’s action-sequence
is compared to action sequences in a class Cr, where
Cr is commonly chosen to be the set of constant se-
quences. Other standard (yet less common) ways to
analyze the performance of the player use the notions
of internal regret (Blum & Mansour, 2007) and swap
regret (Blum & Mansour, 2007). To define these no-
tions, let ® be a set of action transformations, namely
each ¢ € ® is a function of the form ¢ : & — &'. The
player’s ®-regret is then defined as:

T
max B | > fi(Xi,0) = filX, o1, 6(X0))
t=1

In words, we compare the player’s loss to the loss that
would have been attained if the player had replaced his
current action according to one of the transformations
in ®. We recover external regret compared to constant
action sequences by letting ® be the set of constant
functions, that map all actions to a constant action
y. Internal regret is defined by setting ® = {¢y_,, :
v,y € X}, where

by—y (2) = {y

x  otherwise

/

ifx=y

In other words, ¢,_,, replaces all occurrences of ac-
tion y with action g/, but leaves all other actions un-
modified. To define swap regret, we specialize to the
k-armed bandit case, where X = {1,...,k}. Swap re-
gret is defined by setting ® = {¢y, . 4. : Vj y; € X'},
where ¢, 4, (x) = y;. In other words, this function
replaces every action with a different action.

®-regret suffers from the same intuitive difficulty as
external regret, when the adversary is adaptive. Define
the policy ®-regret as

T

maxE th(XL...,t) = fi <¢(X1)7 EER) ¢(Xt))

ped

We repeat our technique to prove the following.

Theorem 6. Repeat the assumptions of Thm. 2, ex-
cept that now let ® be any set of action transforma-
tions and assume that A’s ®-regret against any se-
quence of J loss functions generated by an adaptive
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adversary is upper bounded by R(J). Then, the pol-
icy ®-regret of A, against (fi)I_, generated by an
m-memory-bounded adaptive adversary is bounded by
TR(T/T)+Tm/T + 7.

The proof is omitted due to space constraints.

Blum & Mansour (2007) presents a technique of con-
verting any online learning algorithm with an external
regret bound into an algorithm with an internal regret
bound. Combining that technique with ours endows
any of the online learning algorithms mentioned in this
paper with a bound on internal policy regret.

5. Discussion

We highlighted a problem with the standard defini-
tion of regret when facing an adaptive adversary. We
defined the notion of policy regret and argued that it
captures the intuitive semantics of the word “regret”
better than the standard definition. We then went
ahead to prove non-trivial upper bounds on the policy
regret of various bandit algorithms.

The main gap in our current understanding of policy
regret is the absence of lower bounds (in both the ban-
dit and the full-information settings). In other words,
we do not know how tight our upper bounds are. It
is conceivable that bandit algorithms that are specifi-
cally designed to minimize policy regret will have su-
perior bounds, but we are yet unable to show this. On
a related issue, we do not know if our mini-batching
technique is really necessary: perhaps one could prove
a non-trivial policy regret bound for the original (un-
modified) EXP3 algorithm. We leave these questions
as open problems for future research.
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