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Abstract

Learning multiple tasks across heterogeneous
domains is a challenging problem since the
feature space may not be the same for dif-
ferent tasks. We assume the data in multi-
ple tasks are generated from a latent com-
mon domain via sparse domain transforms
and propose a latent probit model (LPM) to
jointly learn the domain transforms, and a
probit classifier shared in the common do-
main. To learn meaningful task relatedness
and avoid over-fitting in classification, we in-
troduce sparsity in the domain transforms
matrices, as well as in the common classifier
parameters. We derive theoretical bounds for
the estimation error of the classifier parame-
ters in terms of the sparsity of domain trans-
form matrices. An expectation-maximization
algorithm is derived for learning the LPM.
The effectiveness of the approach is demon-
strated on several real datasets.

1. Introduction

There are two basic approaches for analysis of data
from two or more tasks, single-task learning (STL) and
multi-task learning (MTL). Whereas STL solves each
task in isolation, with possible relations between the
tasks ignored, MTL solves the tasks jointly, exploiting
between-task relations to reduce the hypothesis space
and improve generalization (Baxter, 2000). The ad-
vantage of MTL is known to be manifested when the
tasks are truly related and the task relations are ap-
propriately employed. For supervised learning, in par-
ticular, MTL can achieve the same level of general-
ization performance as STL, and yet uses significantly
fewer labeled examples per task (Baxter, 2000). The
reduced sample complexity in each task is achieved by
transferring labeling information from related tasks.
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While the MTL literature has primarily assumed that
the tasks have the same input and output domains and
differ only in data distributions (Baxter, 2000; Bakker
& Heskes, 2003; Argyriou et al., 2007; Ben-David &
Borbely, 2008), a number of recent publications are
beginning to break the limit of this assumption, in an
attempt of extending MTL to a wider range of appli-
cations (He & Rick, 2011; Maayan & Mannor, 2011;
Kulis et al., 2011; Wang & Mahadevan, 2011).

In these recent publications, different tasks are per-
mitted to have different feature spaces. In particu-
lar, (He & Rick, 2011) simultaneously performs multi-
view learning in each task and multi-task learning in
shared views, assuming each task has its own features
but may also share features with other tasks. The
method in (Maayan & Mannor, 2011) allows tasks to
have different feature representations, learning rota-
tions between the feature representations by matching
the tasks’ empirical means and covariance matrices.
The work in (Kulis et al., 2011) considers a source
task and a target task, assumed to have different fea-
ture dimensions, and learns a nonlinear transformation
between the source feature domain and the target fea-
ture domain using kernel techniques. Finally, (Wang &
Mahadevan, 2011) employs a manifold alignment tech-
nique to map each task’s input domain to a common
latent space, with the task-specific maps achieving the
goal of simultaneously clustering examples with the
same label, separating examples with different labels,
and preserving the topology of each task’s manifold.

In this paper, we address the problem of multi-task
learning across heterogenous domains, assuming that
each task is a binary classification with a task-specific
feature representation. The approach we take differs
from (Maayan & Mannor, 2011; Kulis et al., 2011;
Wang & Mahadevan, 2011) in several important as-
pects. First, while these previous methods all learn
domain transforms and classification in two separate
steps, we integrate the two steps by learning domain
transforms and classification jointly. Secondly, the do-
main transforms in our approach are represented by
sparse matrices, with the sparsity enforced by a Lapla-
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cian prior on the transform matrices (corresponding to
an `1 penalty to the log-likelihood). By contrast, all
previous methods do not impose sparsity on domain
transforms. The third difference is that the overall
model in our approach consists of a factor model for
the observed features, which can be used to synthe-
size new data unseen during training. Finally, our
approach is semi-supervised, using labeled as well as
unlabeled examples to jointly find the domain trans-
forms and the classification. By contrast, the meth-
ods in (Maayan & Mannor, 2011; Kulis et al., 2011)
are supervised, and the method in (Wang & Mahade-
van, 2011) is semi-supervised in learning domain trans-
forms, but supervised in learning classification. While
full supervision can be challenged by the scarcity of
labeled examples (typically assumed in MTL), semi-
supervision is doubly beneficial to a joint learning ap-
proach, in which unlabeled examples help to perform
classification, while labeled examples help to find the
domain transforms.

The proposed approach is based on a sparse hierar-
chical Bayesian model, referred to as the latent probit
model (LPM), which jointly represents the sparse do-
main transforms and a common sparse probit classi-
fier (Albert & Chib, 1993) in the latent feature space,
with the sparsity imposed by a hierarchical Lapla-
cian prior (Figueiredo, 2003). We employ expectation-
maximization (EM) to find the maximum a posterior
(MAP) solution to the domain transforms and probit
parameters.

The sparsity of domain transforms in LPM plays a
pivotal role in defining the between-task relations.
Roughly speaking, a greater sparsity in domain trans-
forms indicates closer relations between the tasks. In
other words, sparser domain transforms imply that dif-
ferent tasks look more similar to each other in the la-
tent feature space, and thus greater performance gain
may be achieved by sharing information among the
tasks. We give a quantitative analysis of the perfor-
mance gain by providing an upper bound to the es-
timation error of the probit classifier, which is shared
among the tasks in the latent space. The bound has an
analytic functional dependence on the sparsity level of
domain transforms, showing that sparsity contributes
directly to the error reduction. In addition, the bound
also reveals the error’s dependency on the number of
tasks, the number of labeled examples in each task,
and the latent dimensionality.

2. The Latent probit Model

The latent probit model (LPM) is a generative prob-
abilistic model for M ≥ 2 partially labeled sets of

Figure 1. A graphic representation of the proposed la-
tent probit model, where solid circles denote data, hollow
circles denote unknown parameters and latent variables,
and diamonds denote input parameters (including hyper-
parameters and fixed model parameters).

feature vectors (data points), assuming each dataset
has a different feature representation. The LPM has a
hierarchical Bayesian structure, as graphically shown
in Figure 1, and is parameterized by {η,µ,Σ, b,w}
and {Fm,dm}Mm=1. The parameters w specify the pro-
bit classifier shared by the tasks in the latent feature
space, and Fm specifies the domain transform for the
m-th dataset up to a translation (which is specified
by dm). The parameters w and {Fm}Mm=1 are given
hierarchical Laplacian priors (Figueiredo, 2003) to en-
courage sparsity, with the priors specified by hyper-
parameters {γ, λ}. The other hollow circles in Figure 1
denote latent variables, which include {τ ,u, s, z}. The
generative process in the LPM is described below, with
N (µ,Σ) denoting a normal distribution with mean µ
and covariance matrix Σ.

Given hyper-parameters {γ, λ}, the sparse parameters
w and {Fm}Mm=1 are generated as follows.

1. Draw w = [wj ]F0×1, the sparse parameters of the
probit model shared by the tasks in the latent
feature space,

wj ∼ N (0, uj),

uj ∼ λ

2
exp{−λ

2
uj}, uj ≥ 0, j = 1, 2, ..., F0,

where F0 is the latent feature dimensionality.

2. For m = 1, 2, · · · ,M , draw the sparse domain
transform matrix Fm = [fmkj ]Dm×F0

by

fmkj ∼ N (0, τmkj),
τmkj ∼ γ

2 exp{−γ2 τmkj}, τmkj ≥ 0,

k = 1, · · · , Dm and j = 1, ..., F0, with Dm the ob-
served feature dimensionality of the m-th dataset.
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Given parameters {η,µ,Σ, b,w} ∪ {Fm,dm}Mm=1, the
data sets are generated as follows.

For i = 1, 2, · · · , Nm and m = 1, 2, · · · ,M ,

1. Draw a latent feature vector

smi ∼ N (µ,Σ), (1)

where µ ∈ RF0×1 and Σ ∈ RF0×F0 are the
mean and covariance matrix, respectively.

2. Draw an observed feature vector

xmi ∼ N (Fmsmi + dm, ηI), (2)

where dm ∈ RDm , η > 0 and I denotes an
identity matrix of appropriate dimensions.

3. If the feature vector xmi requires a label,
draw the label by

ymi =

{
+1, if zmi ≥ 0,
−1, otherwise,

zmi ∼ N (wT smi + b, 1), b ∈ R. (3)

Note that the latent normal distribution in (1) can
be extended to a mixtures of normal distributions to
account for more complicated data manifolds.

With {Fm}Mm=1 drawn from sparse prior distributions,
most entries of these matrices will be zero; by (2) this
implies that only a few latent features are responsi-
ble for generating the observed features. Since this
is true for any m, the chance for different datasets
to use the same features to generate their observed
features is large. However, latent features are identi-
cally distributed; thus the shared latent features must
have the same statistics across the tasks. Therefore,
the datasets (sets of features vectors) generated by the
LPM model are encouraged to be closely related.

While the sparsity of {Fm}Mm=1 reflects the relatedness
between the sets of features vectors, the sparsity of w
encourages the classification to be dependent on a few
latent features. This is important, because even when
the observed features differ among tasks to entail less
sparse {Fm}Mm=1, the tasks may still be able to share
information for classification through appropriately se-
lected latent features.

3. Theoretical Analysis of the LPM

The goal of our analysis is to quantify the notion that
sparse domain transforms encourage the tasks to be
related, and that better generalization can be achieved
by sharing information among related tasks to learn
the common classifier. The analysis is based on an

upper bound for the estimation error of w, with the
bound represented in terms of the number of nonzero
elements of the true {Fm}Mm=1.

Since we are analyzing the general information-sharing
mechanism in the LPM, we expect the results to
be insensitive to the choice of estimation method.
We therefore employ a simple two-step approach to
estimate w. The estimation is based on training
data generated by the true LPM parameterized by
{η,µ,Σ, b,w∗} ∪ {Fm,dm}Mm=1, with the simplifica-
tions b = 0, Σ = I, µ = 0, and dm = 0 ∀m, where
0 is a vector of zeros of appropriate dimensions. Note
we have used a superscript ∗ to emphasize w∗ is the
vector of unknown parameters to be estimated.

Let {Xm}Mm=1, with Xm = [xm1,xm2, · · · ,xmLm ], be
M sets of feature vectors, each corresponding to a task.
By the generative process of the LPM,

Xm = FmSm + [εmij ]Dm×Nm ,

where {εmij} are i.i.d. drawn from a zero-mean normal
distribution with variance η, and the entries of Sm are
i.i.d. from the standard normal distribution. Given
Xm, the maximum-likelihood solutions to {Sm} are
given by

Ŝm = (FTmFm)−1FTmXm, ∀m, (4)

which form a global data matrix by pooling data across
the tasks,

Ψ = [Ŝ1, Ŝ2, ..., ŜM ] ∈ RF0×nt , (5)

where nt =
∑M
m=1 Lm is the total number of training

examples across all M tasks.

To simplify the analysis, we assume access to the latent
responses of w∗ to Ψ, i.e,

z = ΨTw∗ + e (6)

where z = [z1, · · · , zM ]T with zm = [zm1, · · · , zmLm ],
and the entries in e are assumed i.i.d. from the stan-
dard normal distribution. These assumptions may be
avoided at the price of complicating the bound, which
is not pursued here. The estimate of w∗ is given by

ŵ = arg min
w

(
‖z−ΨTw‖22 + r‖w‖1

)
. (7)

We derive an upper bound to ‖ŵ − w∗‖2, following
similar arguments as in (Bickel et al., 2009; Lounici
et al., 2009) and making use of a key result in (Byrne,
2009) on extreme singular values of Hermitian matri-
ces. Our main results are stated in Theorem 1, the
proof of which is in the Appendix.
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Theorem 1. Let w∗ have nonzero and zero elements
indexed respectively by J and Jc. Denote s = |J | as
the cardinality of J . Let δ = ŵ − w∗ with ŵ given
in (7), and c0 be the minimum nonnegative number
such that ‖δJc‖1 ≤ c0‖δJ‖1. Let ψj be the transpose
of the j-th row of Ψ and εψ = maxj ‖ψj‖2. For any
F0 ≥ 2 and a ≥

√
8, it holds with probability of at least

Pe = 1− F 1−a2/8
0 that

‖δ‖2 ≤
2aεψn

−1
t

√
s(1 + c20s) lnF0

M∑
m=1

ωmin(XT
mXm/nt)

maxi

(∑F0

j=1 ‖fm,:,j‖0|fij |2
) , (8)

where fm,:,j denotes the j-th column of Fm and ‖f‖0
denotes the number of nonzero elements in vector f .

The bound in (8) establishes the functional depen-
dency of ‖ŵ − w∗‖2 on a number of character-
istic parameters of the LPM. Foremost, the term
‖fm,:,j‖0 measures the number of nonzero elements
in the j-th column of Fm. A sparse Fm has small
‖fm,:,j‖0 for its columns, which decreases the term

maxj

(
‖fm,:,j‖0

∑F0

j=1 |fij |2
)

and contributes to the er-

ror reduction. Second, s is the number of nonzero el-
ements in w; a sparse w has a small s, which makes
the error small.

Third, recall that nt =
∑M
m=1 Lm, where M is the

number of tasks, and Lm is the number of training
samples in the m-th task. The nt in the denominator
of (8) plays the role of normalization with respect to
the training examples across all tasks, leaving the nt
in the numerator to influence the error: large nt in-
dicates small error. Note that some tasks may have
few examples while other have abundant ones; as long
as they add up to a large nt, similar error reduction
will be achieved. Lastly, F0 is the dimensionality of la-
tent features shared across the tasks. The error bound
decreases as F0 becomes smaller.

4. Parameter Estimation

We seek a MAP estimate of the parameters Θ =
{µ,Σ, b,w} ∪ {Fm,dm}Mm=1. Taking into account all
data (labeled and unlabeled) and the sparse priors,
and integrating out the latent variables {τ ,u, s, z}, one
obtains the logarithmic posterior probability of Θ,

`(Θ) =
∑M
m=1

∑
i∈Um ln

∫
p(xmi, smi|Θ)dsmi

+

M∑
m=1

∑
i∈Lm

ln

∫
p(xmi, ymi, zmi, smi|Θ)dzmidsmi

+

M∑
m=1

∑
k

∑
j

ln

∫
p(fmkj |τmkj)p(τmkj |γ)dτmkj ,

+
∑
j ln

∫
p(wj |uj)p(uj |λ)duj

labeled and unlabeled feature vectors in the m-th data
set, i.e., Lm ∪ Um = {1, 2, · · · , Nm}.

We employ an expectation-maximization (EM) algo-
rithm to maximize `(Θ), with {η, F0} and hyper-
parameters {γ, λ} treated as input parameters to the
algorithm, determined separately by cross-validation
when necessary. The EM algorithm consists of an
iteration of E-step and M-step. In the E-step, one
computes the conditional moments of latent variables
{zmi, smi, τ ,u} given the data and the most recent
parameters Θ. In the M-step, one calculates the up-
dated model parameters Θ̂ using the latent variables’
moments obtained in E-step. The complete EM al-
gorithm is given in Algorithm 1, with major update
equations summarized below. The algorithm requires
O(F0

∑M
m=1Dm(Fm + F 2

0 )) scalar products per itera-
tion.

Update of Latent Features’ Distribution1

µ̂ =
1

na

∑M
m=1

∑Nm
i=1 φmi (9a)

Σ̂ =
1

na

∑M
m=1

∑Nm
i=1

(
(φmi − µ)(φmi − µ)T

+ Rmwβmiw
TRm + Rm

)
(9b)

where na =
∑M
m=1Nm.

φmi = Rm(Σ−1µ+ w(ξmi − b) + η−1FTm(xmi−dm)),
Rm = (Σ−1 + wwT + η−1FTmFm)−1,

βmi =


ρmi, if i ∈ Um,
(ζ2mi+ρmi)gcdf (

ζmi√
ρmi

)

+ζmi
√
ρmigpdf (

ζmi√
ρmi

)
, if i ∈ Lm,

ξmi =


ζmi, if i ∈ Um,
ζmigcdf (

ζmi√
ρmi

)

+
√
ρmigpdf (

ζmi√
ρmi

)
, if i ∈ Lm,

ρmi = 1 + wTQmw,
ζmi = wTµ+ b+ η−1wTQmFTm(xmi − Fmµ− dm),
Qm = (Σ−1 + η−1FTmFm)−1.

Update of Domain Transforms

d̂m = 1
Nm

∑Nm
i=1 (xmi − Fmφmi) , (10a)

f̂mk = Vmk(αIF0
+ VmkΓm1Vmk)−1Vmk

×
∑Nm
i=1 φ

T
mi(xmik − d̂mk), (10b)

1It can be shown that, under the LPM, the marginal
distribution of xmi isN (Fmµ+dm, ηI+FmΣFTm), with the
mean and covariance matrix defined duplicately by (µ,dm)
and (Fm,Σ), respectively. Similar situations exist for zmi.
To void duplicatedness, one may wish to set µ = 0, Σ = I,
and do not update them during learning.
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Algorithm 1 The EM algorithm for learning the LPM

Input: {xmi}Nmi=1 ∪ {ymi}i∈Lm , m = 1, 2, · · · ,M ; {γ, λ} and {η, F0}.
Initialize Θ.
repeat

Update Σ, µ using {xmi}Nmi=1 ∪ {ymi}i∈Lm , m = 1, 2, · · · ,M , according to (9)
for m = 1 to M do

Update Fm, dm using {xmi}Nmi=1 ∪ {ymi}i∈Lm according to (10)
end for
Estimate w, b according to (11) using {xmi}i∈Lm ∪ {ymi}i∈Lm , m = 1, 2, · · · ,M ,

until `(Θ) Converges

for k = 1, 2, · · · , F0 and m = 1, 2, · · · ,M , where α =
η
√
γ is a regularization parameter and

Γm1 =

Nm∑
i=1

(φmiφ
T
mi + Rm + βmiRmwwTRm),

Vmk = diag(
√
|fmk1|,

√
|fmk2|, · · · ,

√
|fmkF0 |).

Update of Probit Classifier

ŵ =G(ϑI+GΓ1G)−1G

M∑
m=1

∑
i∈Lm

φmi(ξmi−b), (11a)

b̂ =
1∑M

m=1Nm

M∑
m=1

∑
i∈Lm

(ξmi − φTmiŵ), (11b)

where ϑ =
√
λ is another regularization parameter and

Γ2 =

M∑
m=1

∑
i∈Lm

(φmiφ
T
mi + Rm + Rmwβmiw

TRm),

G = diag(
√
|w1|,

√
|w2|, · · · ,

√
|wF0 |).

5. Experimental Results

5.1. Cancer Diagnosis

We first consider the two Wisconsin breast cancer
datasets (original and diagnostic) from the UCI ma-
chine learning repository2. The objective of both tasks
is to identify benign or malignant cells. The feature
dimensionality is 9 for the original data and 30 for
the diagnostic data. We set F0 to the smallest dimen-
sionality among the tasks to favor error reduction (as
suggested by (8)), and η = 10−3 to enlarge the role
of domain transforms in connecting the tasks, with
the regularization parameters (α, ϑ) determined via
cross-validation (the robustness to these parameters
is shown below). We perform both multitask learn-
ing and transfer learning experiments, and compare

2UC Irvine Machine Learning Repository: http://
archive.ics.uci.edu/ml/.

the LPM to STL and the methods in (Wang & Ma-
hadevan, 2011) (abbreviated as HDAMA), (Maayan &
Mannor, 2011), and (Kulis et al., 2011), with all com-
peting methods using standard probit classifiers. The
method in (Maayan & Mannor, 2011) cannot perform
MTL and is excluded in the comparisons on MTL.
The performance is measured in terms of the area un-
der ROC curve (AUC), as a function of the number
of labeled examples per task in the MTL case, or the
number of labeled examples in the target task in the
transfer learning case. The results are averaged over
50 independent runs, each constituting an independent
split of the data into training sets and test sets.

Figure 2(a) shows that, for MTL, the LPM performs
comparably as or slightly better than HDAMA and
both outperform the other methods, especially when
labeled data are scarce. In transfer learning, all data
in the source domain are labeled, and we have only a
few labeled data in the target domain. We transfer all
the labeled data from the source domain to the target
domain. Figure 2(b-c) show that the performance of
the LPM is slightly better than HDAMA, probably
due to the fact that the amount of data (labeled and
unlabeled) is balanced between the two tasks.

The regularization parameters α and ϑ control the
sparsity of domain transforms and the classifier, re-
spectively. Table 1 summarizes the performance of the
LPM relative to STL, under a wide range of settings
for these parameters. The importance of sparsity is in-
dicated by the diminishing performance improvements
as the regularization parameters approach zero. Over
a wide range in the middle, the LPM maintains stable
performance improvements over STL, indicating the
learning is robust to the settings of regularization pa-
rameters. The table also shows that the sparsity of
domain transforms plays a more prominent role in in-
fluencing the performance than the classifier itself, sig-
naling that the benefit of sharing information among
the tasks can outweigh the benefit of feature selection.

http://archive.ics.uci.edu/ml/.
http://archive.ics.uci.edu/ml/.
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Figure 2. A comparison of performance on the Wisconsin breast cancer data; (a) multitask learning; (b) transfer learning
with the original data as the source domain and the diagnostic data as the target domain; (c) transfer learning with the
diagnostic data as the source domain and the original data as the target domain.

Table 1. The performance of the LPM on Wisconsin breast cancer data with α = η
√
γ and ϑ =

√
λ taking various values.

The numbers shown are the improvements in AUC (%) relative to STL, averaged over 50 independent runs.

Label=50 Label=100 Label=150
ϑ = 0 ϑ = 0.1 ϑ = 1 ϑ = 10 ϑ = 0 ϑ = 0.1 ϑ = 1 ϑ = 10 ϑ = 0 ϑ = 0.1 ϑ = 1 ϑ = 10

α = 0 1.69 1.69 1.74 1.81 -0.28 -0.27 -0.24 -0.17 -0.68 -0.67 -0.64 -0.58
α = 0.01 2.40 2.37 2.40 2.12 0.51 0.52 0.57 0.49 0.20 0.20 0.23 0.19
α = 0.05 2.42 2.43 2.51 1.95 0.67 0.68 0.73 0.66 0.36 0.36 0.39 0.38
α = 0.1 2.42 2.44 2.55 1.97 0.74 0.75 0.79 0.74 0.40 0.40 0.43 0.44
α = 0.5 2.35 2.37 2.49 2.09 0.70 0.71 0.74 0.66 0.42 0.43 0.46 0.48
α = 1 1.73 1.78 1.95 1.34 0.40 0.42 0.49 0.55 0.26 0.27 0.29 0.27
α = 5 2.51 2.51 2.57 2.00 0.74 0.74 0.79 0.72 0.41 0.41 0.43 0.42
α = 10 -1.36 -1.17 -0.90 -0.46 -2.23 -2.13 -2.03 -1.68 -1.71 -1.70 -1.66 -1.56

5.2. Mine Detection

The land-mine detection problem (Xue et al., 2007)
is based on airborne synthetic-aperture radar (SAR)
data and the underwater mine detection problem (Liu
et al., 2009) is based on synthetic-aperture sonar (SAS)
data3. Here we solve these two problems together, us-
ing the proposed cross-domain multitask learning ap-
proach. The feature dimensionality of land-mine data
is 9 and that of underwater mine data is 13, and the
labels do not have the same exact meaning for the two
problem domains. There are a total of 19 land-mine
tasks and 8 underwater mine tasks. The number of
data points in the underwater mine tasks ranges from
756 to 3562, which is much larger than that for the
land-mine tasks (ranging from 445 to 454). This prob-
lem can be viewed as a multitask learning across het-
erogeneous input and output domains (although the
labels have known correspondence). We consider 9
land-mine tasks and all 8 underwater tasks, pairing

3The land-mine data are available at http://www.ee.
duke.edu/~lcarin/LandmineData.zip and the underwa-
ter mine data are available at http://www.ece.duke.edu/

~lcarin/UnderwaterMines.zip

them up to form 9 × 8 = 72 MTL problems. The re-
sults are reported as an average over the 72 problems,
with the setting of F0 and regularization parameters
based on the same rule as in Section 5.1.

The performance comparisons for multi-task learning
are shown in Figure 3(a) in terms of average AUC.
Each curve results from an average of 100 independent
runs of independently splitting the data into training
and test sets and 9 × 8 combinations of underwater
tasks versus land-mine tasks. In the transfer learning
case, 50 labeled samples together with all other un-
labeled samples are transferred to the target domain.
The performance on the target task is shown in Fig-
ure 3(b-c). It is seen that the LPM outperforms all
other methods by significantly large margins, in both
multi-task learning and transfer learning from land-
mine data to underwater mine data. The competi-
tion on transfer learning from underwater mine data
to land-mine data is more intense, but the LPM still
gives the best overall outperformance.

While the amount of examples is balanced between the
two Wisconsin tasks, it is highly unbalanced between

http://www.ee.duke.edu/~lcarin/LandmineData.zip
http://www.ee.duke.edu/~lcarin/LandmineData.zip
http://www.ece.duke.edu/~lcarin/UnderwaterMines.zip
http://www.ece.duke.edu/~lcarin/UnderwaterMines.zip
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Figure 3. A comparison of performance on the land-mine/underwater mine detection problem; (a) multitask learning; (b)
transfer learning with land-mine data as the source domain and underwater mine data as the target domain; (c) transfer
learning with underwater mine data as the source domain and land-mine data as the target domain.

the land-mine tasks and the underwater mine tasks (as
detailed above). The results indicate that the LPM is
more robust to this unbalance than the other methods.

6. Conclusions

We have proposed the LPM model for cross-domain
multi-task learning, assuming heterogenous feature
representations across the tasks. The benefit of MTL
in the LPM is based on the tasks’ relatedness in the la-
tent feature space, which is characterized by the sparse
domain transforms. By promoting sparseness of do-
main transforms and the common classifiers, informa-
tion sharing is encouraged to the advantage of improv-
ing performance in each individual task. The impor-
tance of sparsity is demonstrated by both theoretical
analysis and experimental results.
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Appendix

Proof of Theorem 1

By (7), one has

1

nt
‖ΨT ŵ−z‖22 + r‖ŵ‖1 ≤

1

nt
‖ΨTw∗−z‖22 + r‖w∗‖1.

Substituting z = ΨTw∗ + e, one obtains

1

nt
‖ΨT (ŵ−w∗)− e‖22 ≤

1

nt
‖e‖22 + r(‖w∗‖1−‖ŵ‖1),

which, using the notations δ = ŵ − w∗ and re =
‖Ψe‖∞/nt, is expanded to give

1
nt
‖ΨT δ‖22 ≤ 2

nt
δTΨe + r(‖w∗‖1 − ‖ŵ‖1),

≤ 2re‖δ‖1 + r(‖w∗‖1 − ‖ŵ‖1),
= 2re(‖δJ‖1+‖ŵJc‖1)

+r(‖w∗J‖1−‖ŵJ‖1)− r‖ŵJc‖1,
(a)

≤ ‖δJ‖1(2re + r) + ‖ŵJc‖1(2re − r),
≤
√
s‖δJ‖2(2re+r) + ‖ŵJc‖1(2re−r), (12)

where inequality (a) arises because ‖w∗‖1−‖ŵ‖1 ≤ ‖w∗−
ŵ‖1 = ‖δJ‖1. Dividing both sides of (12) by ‖ΨT δ‖2 gives

1

nt
‖ΨT δ‖2 ≤

√
s‖δJ‖2
‖ΨT δ‖2

(2re+r) +
‖ŵJc‖1
‖ΨT δ‖2

(2re−r),

which is reduced to

1

nt
‖ΨT δ‖2 ≤ 2r

√
s
‖δJ‖2
‖ΨT δ‖2

. (13)

when 2re ≤ r. Clearly the inequality in (13) holds with
probability no less than Pe = p(2re ≤ r). We will come
back to find the expression of Pe; until then we assume
2re ≤ r is true. We follow (Bickel et al., 2009; Lounici et al.,

2009) to similarly define κs = min
δ 6=0

n
−1/2
t ‖δJ‖−1

2 ‖Ψ
T δ‖2,

then

‖δJ‖2 ≤ κ−1
s n

−1/2
t ‖ΨT δ‖2, (14)

Substitution of (14) into (13) yields ‖ΨT δ‖2 ≤ 2r
√
nts/κs,

which is substituted back into (14) to give

‖δJ‖2 ≤ 2rκ−2
s

√
s. (15)

By the definition of κs, one has

ntκ
2
s = min

υ 6=0

‖ΨTυ‖22
‖υJ‖22

≥ min
υ 6=0

‖ΨTυ‖22
‖υ‖22

.

Substituting (5), alongside (4), one gets

ntκ
2
s = min

υ 6=0

M∑
m=1

‖XT
mFm(FTmFm)−1υ‖22

‖υ‖22
,

≥
∑M
m=1 min

υ 6=0

‖XT
mFm(FTmFm)−1υ‖22

‖υ‖22
,

(Weyl’s Inequality)
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=

M∑
m=1

min
υ 6=0

‖XT
mFm(FTmFm)−1υ‖22
‖Fm(FTmFm)−1υ‖22

υT (FTmFm)−1υ

υTυ
,

≥
M∑
m=1

min
υ 6=0

‖XT
mFm(FTmFm)−1υ‖22
‖Fm(FTmFm)−1υ‖22

×min
υ 6=0

υT (FTmFm)−1υ

υTυ
,

≥
M∑
m=1

min
υ̃ 6=0

‖Xmυ̃‖22
‖υ̃‖22

min
υ 6=0

υT (FTmFm)−1υ

υTυ
,

≥
M∑
m=1

ωmin(XT
mXm)

ωmax(FTmFm)
, (16)

where ωmin(·) and ωmax(·) respectively represents the maxi-
mum and minimum eigenvalue of a Hermitian matrix. Sub-
stitution of (16) into (15) gives

‖δJ‖2 ≤
2r
√
s∑M

m=1 ωmin(XT
mXm/nt)ω

−1
max(FTmFm)

. (17)

By the result in (Byrne, 2009),

ωmax(FTmFm) ≤ maxi
(∑F0

j=1 ‖fm,:,j‖0|fij |
2
)
,

m = 1, 2, · · · ,M , which is substituted into (17) to
yield (8), using the auxiliary variable defined as a =

ntr (lnF0)−1/2ε−1
ψ and ‖δJc‖2 ≤ ‖δJc‖1 ≤ c0‖δJ‖1 ≤

c0
√
s‖δJ‖2, where ‖δJc‖1 ≤ c0‖δJ‖1 by assumption.

Recall that (13) holds with probability no less than Pe =
p(2re ≤ r). Since (8) is implied by (13), the probability for
(8) being true is no less than Pe also.

To evaluate Pe, we first plug re = ‖Ψe‖∞/nt into Pe =
p(2re ≤ r) and expand the result, yielding

Pe = p(2‖Ψe‖∞/nt ≤ r),
= 1− p(2‖Ψe‖∞/nt ≥ r),
≥ 1−

∑F0
j=1p

(
2|ψTj e|/nt ≥ r

)
,

= 1−
∑F0
j=1p

(
|ψTj e| ‖ψj‖−1

2 ≥ ntr2−1‖ψj‖−1
2

)
,

≥ 1−
∑F0
j=1p

(
|ψTj e| ‖ψj‖−1

2 ≥ ntr/(2εψ)
)
,

where the first inequality results from the union bound.
Since the elements of e are i.i.d. from the standard nor-
mal distribution, so is ψTj e/‖ψj‖2. Using the inequality

P(|X| > x) ≤ 2 exp (−x
2

2
)/(x
√

2π), x > 0, for any stan-
dard normal-distributed random number X, one obtains

Pe ≥ 1−
4F0 exp (−n

2
t r

2

8ε2
ψ

)
√

2πntrε
−1
ψ

= 1− 4

a
√

2π lnF0

F
1−a2/8
0 ,

≥ 1− F 1−a2/8
0 ,

where the equation is due to a = ntr (lnF0)−1/2ε−1
ψ , and

the second inequality arises because F0 ≥ 2 and a ≥
√

8 by
assumption, which ensure 4

a
√
2π lnF0

≤ 1. �
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