
Large-Scale Feature Learning With Spike-and-Slab Sparse Coding

Ian J. Goodfellow goodfeli.@iro.umontreal.ca
Aaron Courville Aaron.Courville@umontreal.ca
Yoshua Bengio Yoshua.Bengio@umontreal.ca

DIRO, Université de Montréal, Montréal, Québec, Canada

Abstract

We consider the problem of object recogni-
tion with a large number of classes. In or-
der to overcome the low amount of labeled
examples available in this setting, we in-
troduce a new feature learning and extrac-
tion procedure based on a factor model we
call spike-and-slab sparse coding (S3C). Prior
work on S3C has not prioritized the abil-
ity to exploit parallel architectures and scale
S3C to the enormous problem sizes needed
for object recognition. We present a novel
inference procedure for appropriate for use
with GPUs which allows us to dramatically
increase both the training set size and the
amount of latent factors that S3C may be
trained with. We demonstrate that this ap-
proach improves upon the supervised learn-
ing capabilities of both sparse coding and
the spike-and-slab Restricted Boltzmann Ma-
chine (ssRBM) on the CIFAR-10 dataset. We
use the CIFAR-100 dataset to demonstrate
that our method scales to large numbers of
classes better than previous methods. Fi-
nally, we use our method to win the NIPS
2011 Workshop on Challenges In Learning
Hierarchical Models’ Transfer Learning Chal-
lenge.

1. Introduction

We consider here the problem of unsupervised feature
discovery for supervised learning. In supervised learn-
ing, one is given a set of examples V = {v(1), . . . , v(m)}
and associated labels {y(1), . . . , y(m)}. The goal is to
learn a model p(y | v) so that new labels can be pre-
dicted from new unlabeled examples v.

Appearing in Proceedings of the 29 th International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).

The idea behind unsupervised feature discovery is that
the final learning problem can become much easier if
the problem is represented in the right way. By learn-
ing the structure of V we can discover a feature map-
ping φ(v) that can be used to preprocess the data prior
to running a standard supervised learning algorithm,
such as an SVM.

There has been a great deal of recent interest in in-
vestigating different unsupervised learning schemes to
train φ from V . In particular, the goal of deep learn-
ing (Bengio, 2009) is to learn a function φ that con-
sists of many layers of processing, each of which re-
ceives the previous layers as input and incrementally
disentangles the factors of variation in the data. Deep
learning systems are usually created by composing to-
gether several shallow unsupervised feature learners.
Examples of shallow models applied to feature dis-
covery include sparse coding (Raina et al., 2007), re-
stricted Boltzmann machines (RBMs) (Hinton et al.,
2006; Courville et al., 2011b), various autoencoder-
based models (Bengio et al., 2007), and hybrids of
autoencoders and sparse coding (Kavukcuoglu et al.,
2010). In the context of probabilistic generative mod-
els, such as the RBM, φ(v) is typically taken to be the
conditional expectation of the latent variables, and the
process of learning φ consists simply of fitting the gen-
erative model to V .

Single-layer convolutional models based on simple fea-
ture extractors currently achieve state-of-the-art per-
formance on the CIFAR-10 object recognition dataset
(Coates and Ng, 2011; Jia and Huang, 2011). It is
known that the best models for the detection layer
of the convolutional model do not perform well when
fewer labeled examples are available (Coates and Ng,
2011). In particular, sparse coding outperforms a sim-
ple thresholded linear feature extractor when the num-
ber of labeled examples decreases. Our objective is to
further improve performance when the number of la-
beled examples is low by introducing a new feature
extraction procedure based on spike-and-slab sparse

Large-Scale Feature Learning With Spike-and-Slab Sparse Coding

coding. We hypothesize that these features have a
stronger regularizing effect than sparse coding fea-
tures. Their superior performance with low numbers
of labeled examples allows us to improve performance
on datasets with high numbers of classes and low num-
bers of labeled examples.

In this paper we overcome two major scaling chal-
lenges. First we scale inference in the spike-and-
slab coding model to work for the large problem sizes
required for object recognition. We then use the
enhanced regularization properties of spike-and-slab
sparse coding to scale object recognition techniques to
work with large numbers of classes and small amounts
of labeled data.

2. The Spike-and-Slab Sparse Coding
model

The Spike-and-Slab Sparse Coding (S3C) model con-
sists of latent binary spike variables h ∈ {0, 1}N , latent
real-valued slab variables s ∈ RN , and real-valued D-
dimensional visible vector v ∈ RD generated according
to this process:

∀i ∈ {1, . . . , N}, d ∈ {1, . . . , D},

p(hi = 1) = σ(bi)

p(si | hi) = N (si | hiµi, α−1
ii) (1)

p(vd | s, h) = N (vd |Wd:(h ◦ s), β−1
dd)

where σ is the logistic sigmoid function, b is a set of
biases on the spike variables, µ and W govern the lin-
ear dependence of s on h and v on s respectively, α
and β are diagonal precision matrices of their respec-
tive conditionals, and h ◦ s denotes the element-wise
product of h and s.

To avoid overparameterizing the distribution, we con-
strain the columns ofW to have unit norm, as in sparse
coding. We restrict α to be a diagonal matrix and β
to be a diagonal matrix or a scalar. We refer to the
variables hi and si as jointly defining the ith hidden
unit, so that there are a total of N rather than 2N
hidden units. The state of a hidden unit is best un-
derstood as hisi, that is, the spike variables gate the
slab variables.

In the subsequent sections we motivate our use of S3C
as a feature discovery algorithm by describing how this
model occupies a middle ground between sparse coding
and the spike-and-slab Restricted Boltzmann Machine
(ssRBM). The S3C model avoids many disadvantages
that the ssRBM and sparse coding have when applied
as feature discovery algorithms.

2.1. Comparison to sparse coding

Sparse coding has been widely used to discover fea-
tures for classification (Raina et al., 2007). Recently
Coates and Ng (2011) showed that this approach
achieves excellent performance on the CIFAR-10 ob-
ject recognition dataset.

Sparse coding (Olshausen and Field, 1997) describes
a class of generative models where the observed data
v is normally distributed given a set of continuous
latent variables s and a dictionary matrix W : v ∼
N (Ws, σI). Sparse coding places a factorial prior on s
such as a Cauchy or Laplace distribution, chosen to en-
courage the mode of the posterior p(s | v) to be sparse.
One can derive the S3C model from sparse coding by
replacing the factorial Cauchy or Laplace prior with a
spike-and-slab prior.

One drawback of sparse coding is that the latent vari-
ables are not merely encouraged to be sparse; they are
encouraged to remain close to 0, even when they are
active. This kind of regularization is not necessarily
undesirable, but in the case of simple but popular pri-
ors such as the Laplace prior (corresponding to an L1

penalty on the latent variables s), the degree of regu-
larization on active units is confounded with the degree
of sparsity. There is little reason to believe that in re-
alistic settings, these two types of complexity control
should be so tightly bound together. The S3C model
avoids this issue by controlling the sparsity of units via
the b parameter that determines how likely each spike
unit is to be active, while separately controlling the
magnitude of active units via the µ and α parameters
that govern the distribution over s. Sparse coding has
no parameter analogous to µ and cannot control these
aspects of the posterior independently.

Another drawback of sparse coding is that the factors
are not actually sparse in the generative distribution.
Indeed, each factor is zero with probability zero. The
features extracted by sparse coding are only sparse be-
cause they are obtained via MAP inference. In the
S3C model, the spike variables ensure that each fac-
tor is zero with non-zero probability in the generative
distribution. Since this places a greater restriction on
the code variables, we hypothesize that S3C features
provide more of a regularizing effect when solving clas-
sification problems.

Sparse coding is also difficult to integrate into a deep
generative model of data such as natural images.
While Yu et al. (2011) and Zeiler et al. (2011) have
recently shown some success at learning hierarchical
sparse coding, our goal for our future work is to in-
tegrate the feature extraction scheme into a proven

Large-Scale Feature Learning With Spike-and-Slab Sparse Coding

generative model framework such as the deep Boltz-
mann machine (Salakhutdinov and Hinton, 2009).
Such models with their combination of feed-forward
and feed-back connections during inference can learn
a much richer description of the data than simple
stacked feed-forward models. We expect that being
able to extract such complicated structure during un-
supervised learning on a large number of unlabeled
examples will yield even better performance with high
numbers of classes and low numbers of labels per class
than a feed-forward architecture. Existing inference
schemes known to work well in the DBM-type set-
ting are all either sample-based or are based on vari-
ational approximations to the model posteriors, while
sparse coding schemes typically employ MAP infer-
ence. Our use of variational inference makes the S3C
framework well-suited to integrate into the known suc-
cessful strategies for learning and inference in DBM
models. It is not obvious how one can employ a vari-
ational inference strategy to standard sparse coding
with the goal of achieving sparse feature encoding.

2.2. Comparison to Restricted Boltzmann
Machines

The S3C model also resembles another class of models
commonly used for feature discovery: the RBM. An
RBM (Smolensky, 1986) is a model defined through
an energy function that describes the interactions be-
tween the observed data variables and a set of latent
variables. It is possible to interpret the S3C as an
energy-based model, by rearranging p(v, s, h) to take
the form exp{−E(v, s, h)}/Z, with the following en-
ergy function:

E(v, s, h) =
1

2

v −

X
i

Wisihi

!T
β

v −

X
i

Wisihi

!

+
1

2

NX
i=1

αi(si − µihi)2 −
NX
i=1

bihi, (2)

The ssRBM model family is a good starting point for
S3C because it has demonstrated both reasonable per-
formance as a feature discovery scheme and remarkable
performance as a generative model (Courville et al.,
2011a). Within the ssRBM family, S3C’s closest rel-
ative is a variant of the µ-ssRBM, defined by the fol-
lowing energy function:

E(v, s, h) = −
NX
i=1

vTβWisihi +
1

2
vTβv

+
1

2

NX
i=1

αi(si − µihi)2 −
NX
i=1

bihi, (3)

where the variables and parameters are defined identi-

cally to the S3C. Comparison of equations 2 and 3 re-
veals that the simple addition of a latent factor interac-
tion term 1

2 (h◦s)TWTβW (h◦s) to the ssRBM energy
function turns the ssRBM into the S3C model. With
the inclusion of this term S3C moves from an undi-
rected ssRBM model to the directed graphical model
described in equation (1). One can think of this term
as designed to cancel the interactions in the RBM’s
marginal p(h, s) that make the RBM’s partition func-
tion intractable. This change from undirected model-
ing to directed modeling has three important effects,
that we describe in the following paragraphs:

The effect on the partition function: The
most immediate consequence of the transition to di-
rected modeling is that the partition function becomes
tractable. This changes the nature of learning algo-
rithms that can be applied to the model, since most
of the difficulty in training an RBM comes from esti-
mating the gradient of the log partition function. The
partition function of S3C is also guaranteed to exist for
all possible settings of the model parameters, which is
not true of the ssRBM.

The effect on the posterior: RBMs have a facto-
rial posterior, but S3C and sparse coding have a com-
plicated posterior due to the “explaining away” effect.
This means that for RBMs, features defined by similar
basis functions will have similar activations, while in
directed models, similar features will compete so that
only the most relevant feature will remain active. As
shown by Coates and Ng (2011), the sparse Gaussian
RBM is not a very good feature extractor – the set of
basis functions W learned by the RBM actually work
better for supervised learning when these parameters
are plugged into a sparse coding model than when the
RBM itself is used for feature extraction. We think
this is due to the factorial posterior. In the vastly
overcomplete setting, being able to selectively activate
a small set of features that cooperate to explain the
input likely provides S3C a major advantage in dis-
criminative capability.

The effect on the prior: The addition of the inter-
action term causes S3C to have a factorial prior. This
probably makes it a poor generative model, but this is
not a problem for the purpose of feature discovery.

3. Other Related work

The notion of a spike-and-slab prior was established in
statistics by Mitchell and Beauchamp (1988). Outside
the context of unsupervised feature discovery for su-
pervised learning, the basic form of the S3C model
(i.e. a spike-and-slab latent factor model) has ap-

Large-Scale Feature Learning With Spike-and-Slab Sparse Coding

peared a number of times in different domains (Lücke
and Sheikh, 2011; Garrigues and Olshausen, 2008; Mo-
hamed et al., 2011; Zhou et al., 2009; Titsias and
Lázaro-Gredilla, 2011). In most work, the model varies
slightly from S3C. For example, Titsias and Lázaro-
Gredilla (2011) share a single spike activation proba-
bility parameter across all spike variables. Lücke and
Sheikh (2011) use exactly the S3C model, but use in-
tractable exact inference. To this literature, we con-
tribute an approximate inference scheme that scales to
the kinds of object classifications tasks that we con-
sider. We outline this inference scheme next.

4. Variational EM for S3C

Having explained why S3C is a powerful model for un-
supervised feature discovery we turn to the problem of
how to perform learning and inference in this model.
Because computing the exact posterior distribution is
intractable, we derive an efficient and effective infer-
ence mechanism and a variational EM learning algo-
rithm.

We turn to variational EM (Saul and Jordan, 1996)
because this algorithm is well-suited for models with
latent variables whose posterior is intractable. It works
by maximizing a variational lower bound on the log-
likelihood called the energy functional (Neal and Hin-
ton, 1999). More specifically, it is a variant of the
EM algorithm with the modification that in the E-
step, we compute a variational approximation to the
posterior rather than the posterior itself. While our
model admits a closed-form solution to the M-step, we
found that online learning with small gradient steps
on the M-step objective worked better in practice. We
therefore focus our presentation on the E-step, given
in Algorithm 1.

The goal of the variational E-step is to maximize the
energy functional with respect to a distribution Q over
the unobserved variables. We can do this by selecting
the Q that minimizes the Kullback–Leibler divergence:

DKL(Q(h, s)‖P (h, s|v)) (4)

where Q(h, s) is drawn from a restricted family of dis-
tributions. This family can be chosen to ensure that
Q is tractable.

Our E-step can be seen as analogous to the encod-
ing step of the sparse coding algorithm. The key dif-
ference is that while sparse coding approximates the
true posterior with a MAP point estimate of the latent
variables, we approximate the true posterior with the
distribution Q.

We use the family Q(h, s) = ΠiQ(hi, si). This is a

Figure 1. Q imposes a sparse distribution on h; Q(hi) < .01
99.7% of the time in this example histogram of values of
Q(hi) for 6,000 different hidden units from a trained model
applied to 100 different 6× 6 image patches.

Figure 2. The inference procedure sparsifies the represen-
tation due to the explaining-away effect.

richer approximation than the fully factorized fam-
ily used in the mean field approximation. It allows
us to capture the tight correlation between each spike
variable and its corresponding slab variable while still
allowing simple and efficient inference in the approxi-
mating distribution. It also avoids a pathological con-
dition in the mean field distribution where Q(si) can
never be updated if Q(hi) = 0.

Observing that eq. (4) is an instance of the Euler-
Lagrange equation, we find that the solution must take
the form

Q(hi) = ĥi,

Q(si | hi) = N (si | hiŝi, (αi + hiW
T
i βWi)−1) (5)

where ĥi and ŝi must be found by an iterative pro-
cess. In a typical application of variational inference,
the iterative process consists of sequentially applying
fixed point equations that give the optimal value of
the parameters ĥi and ŝi for one factor Q(hi, si) given

Large-Scale Feature Learning With Spike-and-Slab Sparse Coding

the value all of the other factors’ parameters. This is
for example the approach taken by Titsias and Lázaro-
Gredilla (2011) who independently developed a varia-
tional inference procedure for the same problem. This
process is only guaranteed to decrease the KL diver-
gence if applied to each factor sequentially, i.e. first
updating ĥ1 and ŝ1 to optimize Q(h1, s1), then updat-
ing ĥ2 and ŝ2 to optimize Q(h2, s2), and so on. In
a typical application of variational inference, the op-
timal values for each update are simply given by the
solutions to the Euler-Lagrange equations. For S3C,
we make three deviations from this standard approach.

Because we apply S3C to very large-scale problems, we
need an algorithm that can fully exploit the benefits of
parallel hardware such as GPUs. Sequential updates
across all N factors require far too much run-time to
be competitive in this regime.

We have considered two different methods that enable
parallel updates to all units. In the first method, we
start each iteration by partially minimizing the KL
divergence with respect to ŝ. The terms of the KL di-
vergence that depend on ŝ make up a quadratic func-
tion so this can be minimized via conjugate gradient
descent. We implement conjugate gradient descent ef-
ficiently by using the R-operator to perform Hessian-
vector products rather than computing the entire Hes-
sian explicitly (Schraudolph, 2002). This step is guar-
anteed to improve the KL divergence on each iteration.
We next update ĥ in parallel, shrinking the update by
a damping coefficient. This approach is not guaran-
teed to decrease the KL divergence on each iteration
but it is a widely applied approach that works well in
practice (Koller and Friedman, 2009).

With the second method (Algorithm 1), we find in
practice that we obtain faster convergence, reaching
equally good solutions by replacing the conjugate gra-
dient update to ŝ with a more heuristic approach. We
use a parallel damped update on ŝ much like what we
do for ĥ. In this case we make an additional heuristic
modification to the update rule which is made neces-
sary by the unbounded nature of ŝ. We clip the update
to ŝ so that if ŝnew has the opposite sign from ŝ, its
magnitude is at most ρŝ. In all of our experiments we
used ρ = 0.5 but any value in [0, 1] is sensible. This
prevents a case where multiple mutually inhibitory s
units inhibit each other so strongly that rather than
being driven to 0 they change sign and actually in-
crease in magnitude. This case is a failure mode of
the parallel updates that can result in ŝ amplifying
without bound if clipping is not used.

Figure 1 shows that our E-step produces a sparse rep-
resentation. Figure 2 shows that the explaining-away

Figure 3. Semi-supervised classification accuracy on sub-
sets of CIFAR-10. Thresholding, the best feature extrac-
tor on the full dataset, performs worse than sparse coding
when few labels are available. S3C improves upon sparse
coding’s advantage.

effect incrementally makes the representation more
sparse.

Algorithm 1 Fixed-Point Inference
Let K be a user-defined number of inference updates to run (e.g. 20)

Initialize ĥ(0) = σ(b) and ŝ(0) = µ.
for k=0:K do

Compute the individually optimal value ŝ∗i for each i simultaneously:

ŝ
∗
i =

µiαii + vT βWi −Wiβ
hP

j 6=i Wj ĥj ŝ
(k)
j

i
αii +WT

i βWi

Clip reflections by assigning

ci = ρsign(ŝ
∗
i)|ŝ(k)

i |
for all i such that sign(ŝ∗i) 6= sign(ŝ

(k)
i) and |ŝ∗i | > ρ|ŝ(k)

i |, and

assigning ci = ŝ∗i for all other i.
Damp the updates by assigning

ŝ
(k+1)
i = ηc + (1− η)ŝ

(k)

where η ∈ (0, 1].

Compute the individually optimal values for ĥ:

ĥ
∗
i = σ

0@0@v −X
j 6=i

Wj ŝ
(k+1)
j ĥ

(k)
j −

1

2
Wiŝ

(k+1)
i

1AT

βWiŝ
(k+1)
i + bi

−
1

2
αii(ŝ

(k+1)
i − µi)

2 −
1

2
log(αii +W

T
i βWi) +

1

2
log(αii)

«

Damp the update to ĥ:

ĥ
(k+1)

= ηĥ
∗

+ (1− η)ĥ
(k)

end for

5. Performance results

Our inference scheme achieves very good computa-
tional performance, both in terms of memory con-
sumption and in terms of runtime. The computational
bottleneck in our classification pipeline is SVM train-
ing, not feature learning or feature extraction.

Comparing the computational cost of our inference
scheme to others is a difficult task because it could
be confounded by differences in implementation and
because it is not clear exactly what sparse coding prob-

Large-Scale Feature Learning With Spike-and-Slab Sparse Coding

lem is equivalent to an equivalent spike-and-slab sparse
coding problem. However, we observed informally dur-
ing our supervised learning experiments that feature
extraction using S3C took roughly the same amount
of time as feature extraction using sparse coding.

In Fig. 4, we show that our improvements to spike-
and-slab inference performance allow us to scale spike-
and-slab modeling to the problem sizes needed for ob-
ject recognition tasks.

As a large-scale test of our inference scheme’s ability,
we trained over 8,000 densely-connected filters on full
32 × 32 color images. Some example filters are pre-
sented in Fig. 5. This exercise demonstrated that our
approach scales well to large (over 3,000 dimensional)
inputs, though it is not yet known how to use features
for classification as effectively as patch-based features
which can be incorporated into a convolutional archi-
tecture with pooling. For comparison, to our knowl-
edge the largest image patches used in previous spike-
and-slab models with lateral interactions were 16× 16
(Garrigues and Olshausen, 2008).

Finally, we provide empirical justification for our
heuristic inference method. Timing experiments pre-
sented in Fig. 6 show that the heuristic method is con-
sistently faster than the conjugate gradient method.

Figure 4. Our inference scheme enables us to extend spike-
and-slab modeling from small problems to the scale needed
for object recognition. Previous object recognition work is
from (Coates and Ng, 2011; Courville et al., 2011a). Pre-
vious spike-and-slab work is from (Mohamed et al., 2011;
Zhou et al., 2009; Garrigues and Olshausen, 2008; Lücke
and Sheikh, 2011; Titsias and Lázaro-Gredilla, 2011).

6. Classification results

We conducted experiments to evaluate the usefulness
of S3C features for supervised learning on the CIFAR-
10 and CIFAR-100 (Krizhevsky and Hinton, 2009)
datasets. Both datasets consist of color images of
objects such as animals and vehicles. Each contains

Figure 5. Example filters from a dictionary of over 8,000
learned on full 32x32 images.

Figure 6. The heuristic method is consistently faster than
the conjugate gradient method. The inference speed for
each method was computed based on the inference time
for the same set of 100 examples from each dataset. In all
cases we report the best speed after searching over hyper-
parameters controlling the amount of damping / conjugate
gradient steps to apply at each update.

50,000 train and 10,000 test examples. CIFAR-10 con-
tains 10 classes while CIFAR-100 contains 100 classes,
so there are fewer labeled examples per class in the
case of CIFAR-100.

For all experiments, we used the same overall proce-
dure as Coates and Ng (2011) except for feature learn-
ing. CIFAR-10 consists of 32 × 32 images. We train
our feature extractor on 6×6 contrast-normalized and
ZCA-whitened patches from the training set. At test
time, we extract features from all 6× 6 patches on an
image, then average-pool them. The average-pooling
regions are arranged on a non-overlapping grid. Fi-
nally, we train an L2-SVM with a linear kernel on the
pooled features.

Coates and Ng (2011) used 1600 basis vectors in all of
their sparse coding experiments. They post-processed
the sparse coding feature vectors by splitting them into
the positive and negative part for a total of 3200 fea-
tures per average-pooling region. They average-pool
on a 2× 2 grid for a total of 12,800 features per image
(i.e. each element of the 2 × 2 grid averages over a
block with sides d(32− 6 + 1)/2e or b(32− 6 + 1)/2c).
We used EQ[h] as our feature vector. This does not

Large-Scale Feature Learning With Spike-and-Slab Sparse Coding

Model Latent Dimension Pooling Structure Best 5-fold CV Accuracy
S3C 1600 3× 3 51.3 %
SC 1600 2× 2 48.4 %
SC 800 3× 3 48.7 %

OMP-1 1600 2× 2 49.1 %
OMP-1 800 3× 3 47.1 %

Table 1. CIFAR-100 validation accuracy. These results demonstrate that using S3C for the detection layer improves upon
OMP-1 (the best detector layer for CIFAR-10) and sparse coding.

have a negative part, so using a 2 × 2 grid we would
have only 6,400 features. In order to compare with
similar sizes of feature vectors we used a 3× 3 pooling
grid for a total of 14,400 features (i.e. each element of
the 3× 3 grid averages over 9× 9 locations).

6.1. CIFAR-10

We use CIFAR-10 to evaluate our hypothesis that S3C
resembles a more regularized version of sparse coding.

On the full dataset, S3C achieves a test set accuracy
of 78.3 ± 0.9 % with 95% confidence. Coates and Ng
(2011) do not report test set accuracy for sparse cod-
ing with “natural encoding” (i.e., extracting features
in a model whose parameters are all the same as in
the model used for training) but sparse coding with
different parameters for feature extraction than train-
ing achieves an accuracy of 78.8 ± 0.9% (Coates and
Ng, 2011). Since we have not enhanced our perfor-
mance by modifying parameters at feature extraction
time these results seem to indicate that S3C is roughly
equivalent to sparse coding for this classification task.
S3C also outperforms ssRBMs, which require 4,096 ba-
sis vectors per patch and a 3×3 pooling grid to achieve
76.7 ± 0.9% accuracy. All of these approaches are
close to the best result using the pipeline from Coates
and Ng (2011) of 81.5% achieved using thresholding
of linear features learned with OMP-1. These results
show that S3C is a useful feature extractor that per-
forms comparably to the best approaches when large
amounts of labeled data are available.

We then tested the regularizing effect of S3C by train-
ing the SVM on small subsets of the CIFAR-10 train-
ing set, but using features that were learned on patches
drawn from the entire CIFAR-10 train set. The results,
summarized in Figure 3, show that S3C has the ad-
vantage over both thresholding and sparse coding for
a wide range of amounts of labeled data. (In the ex-
treme low-data limit, the confidence interval becomes
too large to distinguish sparse coding from S3C).

6.2. CIFAR-100

Having verified that S3C features help to regularize a
classifier, we proceed to use them to improve perfor-
mance on the CIFAR-100 dataset, which has ten times

as many classes and ten times fewer labeled examples
per class.

We compare S3C to two other feature extraction meth-
ods: OMP-1 with thresholding, which Coates and
Ng (2011) found to be the best feature extractor on
CIFAR-10, and sparse coding, which is known to per-
form well when less labeled data is available. We eval-
uated only a single set of hyperparameters for S3C. For
sparse coding and OMP-1 we searched over the same
set of hyperparameters as Coates and Ng (2011) did:
{0.5, 0.75, 1.0, 1.25, 1.25} for the sparse coding penalty
and {0.1, 0.25, 0.5, 1.0} for the thresholding value. In
order to use a comparable amount of computational
resources in all cases, we used 1600 hidden units and
a 3 × 3 pooling grid for S3C, while for the other two
methods, which double their number of features via
sign splitting, we considered 2 × 2 pooling with 1600
latent variables and 3×3 pooling with 800 latent vari-
ables. These results are summarized in Table 1.

The best result to our knowledge on CIFAR-100 is
54.8 ± 1% (Jia and Huang, 2011), achieved using a
learned pooling structure on top of “triangle code” fea-
tures from a dictionary learned using k-means. This
feature extractor is very similar to thresholded OMP-
1 features and is known to perform slightly worse on
CIFAR-10. Table 1 shows that S3C is the best known
detector layer on CIFAR-100. If combined with the
pooling strategy of Jia and Huang (2011) it has the
potential to improve on the state of the art. Using
a pooling strategy of concatenating 1 × 1, 2 × 2 and
3× 3 pooled features we achieve a test set accuracy of
53.7± 1%.

7. Transfer Learning Challenge

For the NIPS 2011 Workshop on Challenges in Learn-
ing Hierarchical Models (Le et al., 2011), the orga-
nizers proposed a transfer learning competition. This
competition used a dataset consisting of 32 × 32 color
images, including 100,000 unlabeled examples, 50,000
labeled examples of 100 object classes not present in
the test set, and 120 labeled examples of 10 object
classes present in the test set. We applied the same
approach as on the CIFAR datasets and won the com-

Large-Scale Feature Learning With Spike-and-Slab Sparse Coding

petition, with a test set accuracy of 48.6 %. This
approach disregards the 50,000 labels and treats this
transfer learning problem as a semi-supervised learn-
ing problem. We experimented with some transfer
learning techniques but the transfer-free approach per-
formed best on leave-one-out cross-validation on the
120 example training set, so we chose to enter the
transfer-free technique in the challenge.

8. Conclusion

We have motivated the use of the S3C model for unsu-
pervised feature discovery. We have described a vari-
ational approximation scheme that makes it feasible
to perform learning and inference in large-scale S3C
models. We have demonstrated that S3C is an effec-
tive feature discovery algorithm for both supervised
and semi-supervised learning with small amounts of
labeled data. This work addresses two scaling prob-
lems: the computation problem of scaling spike-and-
slab sparse coding to the problem sizes used in object
recognition, and the problem of scaling object recog-
nition techniques to work with more classes.
References

Y. Bengio. Learning deep architectures for AI. Foundations
and Trends in Machine Learning, 2009.

Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle.
Greedy layer-wise training of deep networks. In Adv.
Neural Inf. Proc. Sys. 19, pages 153–160, 2007.

A. Coates and A. Y. Ng. The importance of encoding ver-
sus training with sparse coding and vector quantization.
In ICML’2011, 2011.

A. Courville, J. Bergstra, and Y. Bengio. Unsupervised
models of images by spike-and-slab RBMs. In Proceed-
ings of the Twenty-eight International Conference on
Machine Learning (ICML’11), June 2011a.

A. Courville, J. Bergstra, and Y. Bengio. A Spike and
Slab Restricted Boltzmann Machine. In AISTATS’2011,
2011b.

P. Garrigues and B. Olshausen. Learning horizontal con-
nections in a sparse coding model of natural images. In
NIPS’20. 2008.

G. E. Hinton, S. Osindero, and Y. Teh. A fast learning
algorithm for deep belief nets. Neural Computation, 18:
1527–1554, 2006.

Y. Jia and C. Huang. Beyond spatial pyramids: Re-
ceptive field learning for pooled image features, 2011.
NIPS*2011 Workshop on Deep Learning and Unsuper-
vised Feature Learning.

K. Kavukcuoglu, P. Sermanet, Y.-L. Boureau, K. Gregor,
M. Mathieu, and Y. LeCun. Learning convolutional fea-
ture hierarchies for visual recognition. In NIPS’10, 2010.

D. Koller and N. Friedman. Probabilistic Graphical Models:
Principles and Techniques. MIT Press, 2009.

A. Krizhevsky and G. Hinton. Learning multiple layers of
features from tiny images. Technical report, University
of Toronto, 2009.

Q. V. Le, M. Ranzato, R. Salakhutdinov,
A. Ng, and J. Tenenbaum. NIPS Workshop
on Challenges in Learning Hierarchical Mod-
els: Transfer Learning and Optimization, 2011.
https://sites.google.com/site/nips2011workshop.

J. Lücke and A.-S. Sheikh. A closed-form EM algorithm
for sparse coding. arXiv:1105.2493, 2011.

T. J. Mitchell and J. J. Beauchamp. Bayesian variable
selection in linear regression. J. Amer. Statistical Assoc.,
83(404):1023–1032, 1988.

S. Mohamed, K. Heller, and Z. Ghahramani. Bayesian
and l1 approaches to sparse unsupervised learning.
arXiv:1106.1157, 2011.

R. Neal and G. Hinton. A view of the em algorithm
that justifies incremental, sparse, and other variants. In
M. I. Jordan, editor, Learning in Graphical Models. MIT
Press, Cambridge, MA, 1999.

B. A. Olshausen and D. J. Field. Sparse coding with an
overcomplete basis set: a strategy employed by V1?
Vision Research, 37:3311–3325, December 1997. URL
http://view.ncbi.nlm.nih.gov/pubmed/9425546.

R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-
taught learning: transfer learning from unlabeled data.
In Z. Ghahramani, editor, ICML 2007, pages 759–766.
ACM, 2007.

R. Salakhutdinov and G. Hinton. Deep Boltzmann ma-
chines. In Proc. AISTATS’2009, volume 8, 2009.

L. K. Saul and M. I. Jordan. Exploiting tractable substruc-
tures in intractable networks. In NIPS’95. MIT Press,
Cambridge, MA, 1996.

N. N. Schraudolph. Fast curvature matrix-vector products
for second-order gradient descent. Neural Computation,
14(7):1723–1738, 2002.

P. Smolensky. Information processing in dynamical sys-
tems: Foundations of harmony theory. In D. E. Rumel-
hart and J. L. McClelland, editors, Parallel Distributed
Processing, volume 1, chapter 6, pages 194–281. MIT
Press, Cambridge, 1986.

M. K. Titsias and M. Lázaro-Gredilla. Spike and slab varia-
tional inference for multi-task and multiple kernel learn-
ing. In NIPS’2011. 2011.

K. Yu, Y. Lin, and J. Lafferty. Learning image representa-
tions from the pixel level via hierarchical sparse coding.
In CVPR, 2011.

M. Zeiler, G. Taylor, and R. Fergus. Adaptive deconvolu-
tional networks for mid and high level feature learning.
In ICML, 2011.

M. Zhou, H. Chen, J. W. Paisley, L. Ren, G. Sapiro, and
L. Carin. Non-parametric Bayesian dictionary learn-
ing for sparse image representations. In NIPS’09, pages
2295–2303, 2009.

