Online Structured Prediction via Coactive Learning

Pannaga Shivaswamy
Thorsten Joachims

PANNAGA@QCS.CORNELL.EDU
TJQCS.CORNELL.EDU

Department of Computer Science, Cornell University, Ithaca NY 14853

Abstract

We propose Coactive Learning as a model of
interaction between a learning system and a
human user, where both have the common
goal of providing results of maximum util-
ity to the user. At each step, the system
(e.g. search engine) receives a context (e.g.
query) and predicts an object (e.g. ranking).
The user responds by correcting the system
if necessary, providing a slightly improved —
but not necessarily optimal — object as feed-
back. We argue that such feedback can often
be inferred from observable user behavior, for
example, from clicks in web-search. Evalu-
ating predictions by their cardinal utility to
the user, we propose efficient learning algo-
rithms that have O(ﬁ) average regret, even
though the learning algorithm never observes
cardinal utility values as in conventional on-
line learning. We demonstrate the applica-
bility of our model and learning algorithms
on a movie recommendation task, as well as
ranking for web-search.

1. Introduction

In a wide range of systems in use today, the interac-
tion between human and system takes the following
form. The user issues a command (e.g. query) and re-
ceives a — possibly structured — result in response (e.g.
ranking). The user then interacts with the results (e.g.
clicks), thereby providing implicit feedback about the
user’s utility function. Here are three examples of such
systems and their typical interaction patterns:

Web-search: In response to a query, a search engine
presents the ranking [A, B, C, D, ...] and observes
that the user clicks on documents B and D.

Appearing in Proceedings of the 29" International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).

Movie Recommendation: An online service recom-
mends movie A to a user. However, the user rents
movie B after browsing the collection.

Machine Translation: An online machine transla-
tor is used to translate a wiki page from language
A to B. The system observes some corrections the
user makes to the translated text.

In all the above examples, the user provides some
feedback about the results of the system. However,
the feedback is only an incremental improvement, not
necessarily the optimal result. For example, from the
clicks on the web-search results we can infer that the
user would have preferred the ranking [B, D, A, C, ...]
over the one we presented. However, this is unlikely to
be the best possible ranking. Similarly in the recom-
mendation example, movie B was preferred over movie
A, but there may have been even better movies that
the user did not find while browsing. In summary, the
algorithm typically receives a slightly improved result
from the user as feedback, but not necessarily the op-
timal prediction nor any cardinal utilities. We conjec-
ture that many other applications fall into this schema,
ranging from news filtering to personal robotics.

Our key contributions in this paper are threefold.
First, we formalize Coactive Learning as a model of
interaction between a learning system and its user,
define a suitable notion of regret, and validate the
key modeling assumption — namely whether observ-
able user behavior can provide valid feedback in our
model — in a web-search user study. Second, we derive
learning algorithms for the Coactive Learning Model,
including the cases of linear utility models and convex
cost functions, and show O(1/v/T) regret bounds in
either case with a matching lower bound. The learn-
ing algorithms perform structured output prediction
(see (Bakir et al., 2007)) and thus can be applied in
a wide variety of problems. Several extensions of the
model and the algorithm are discussed as well. Third,
we provide extensive empirical evaluations of our algo-
rithms on a movie recommendation and a web-search
task, showing that the algorithms are highly efficient
and effective in practical settings.



Coactive Learning

2. Related Work

The Coactive Learning Model bridges the gap between
two forms of feedback that have been well studied
in online learning. On one side there is the multi-
armed bandit model (Auer et al., 2002b;a), where an
algorithm chooses an action and observes the util-
ity of (only) that action. On the other side, utili-
ties of all possible actions are revealed in the case of
learning with expert advice (Cesa-Bianchi & Lugosi,
2006). Online convex optimization (Zinkevich, 2003)
and online convex optimization in the bandit setting
(Flaxman et al., 2005) are continuous relaxations of
the expert and the bandit problems respectively. Our
model, where information about two arms is revealed
at each iteration sits between the expert and the ban-
dit setting. Most closely related to Coactive Learn-
ing is the dueling bandits setting (Yue et al., 2009;
Yue & Joachims, 2009). The key difference is that
both arms are chosen by the algorithm in the duel-
ing bandits setting, whereas one of the arms is chosen
by the user in the Coactive Learning setting.

While feedback in Coactive Learning takes the form
of a preference, it is different from ordinal regression
and ranking. Ordinal regression (Crammer & Singer,
2001) assumes training examples (z,y), where y is a
rank. In the Coactive Learning model, absolute ranks
are never revealed. Closely related is learning with
pairs of examples (Herbrich et al., 2000; Freund et al.,
2003; Chu & Ghahramani, 2005) where absolute ranks
are not needed; however, existing approaches require
an iid assumption and typically perform batch learn-
ing. There is also a large body of work on ranking
(see (Liu, 2009)). These approaches are different from
Coactive Learning; they require training data (z,y)
where y is the optimal ranking for query x.

3. Coactive Learning Model

We now introduce coactive learning as a model of in-
teraction (in rounds) between a learning system (e.g.
search engine) and a human (e.g. search user) where
both the human and learning algorithm have the same
goal (of obtaining good results). At each round ¢, the
learning algorithm observes a context x; € X (e.g. a
search query) and presents a structured object y; € )
(e.g. a ranked list of URLs). The utility of y; € Y to
the user for context x; € X is described by a utility
function U(x¢,y+), which is unknown to the learning
algorithm. As feedback the user returns an improved
object y; € Y (e.g. reordered list of URLs), i.e.,

U(xe,5¢) > U(xe,y1), (1)

when such an object ¥, exists. In fact, we will also
allow violations of (1) when we formally model user
feedback in Section 3.1. The process by which the
user generates the feedback y; can be understood as
an approximate utility-maximizing search, but over a
user-defined subset ), of all possible ). This mod-
els an approximately and boundedly rational user that
may employ various tools (e.g., query reformulations,
browsing) to perform this search. Importantly, how-
ever, the feedback ¥, is typically not the optimal label

yi = argmax, U (xq,y). (2)

In this way, Coactive Learning covers settings where
the user cannot manually optimize the argmax over the
full ¥ (e.g. produce the best possible ranking in web-
search), or has difficulty expressing a bandit-style car-
dinal rating for y; in a consistent manner. This puts
our preference feedback y; in stark contrast to super-
vised learning approaches which require (x¢,y;). But
even more importantly, our model implies that reliable
preference feedback (1) can be derived from observable
user behavior (i.e., clicks), as we will demonstrate in
Section 3.2 for web-search. We conjecture that simi-
lar feedback strategies also exist for other applications,
where users can be assumed to act approximately and
boundedly rational according to U.

Despite the weak preference feedback, the aim of a
coactive learning algorithm is to still present objects
with utility close to that of the optimal y;. Whenever,
the algorithm presents an object y; under context x;,
we say that it suffers a regret U(xs,y;) — U(x¢,y¢) at
time step t. Formally, we consider the average regret
suffered by an algorithm over T steps as follows:

REGr = 23" (Ulxeyi) ~Ulkiy)) - (3)
t=1

The goal of the learning algorithm is to minimize
REGy, thereby providing the human with predictions
y¢ of high utility. Note, however, that a cardinal value
of U is never observed by the learning algorithm, but
U is only revealed ordinally through preferences (1).

3.1. Quantifying Preference Feedback Quality

To provide any theoretical guarantees about the regret
of a learning algorithm in the coactive setting, we need
to quantify the quality of the user feedback. Note that
this quantification is a tool for theoretical analysis,
not a prerequisite or parameter to the algorithm. We
quantify feedback quality by how much improvement
¥ provides in utility space. In the simplest case, we
say that user feedback is strictly a-informative when



Coactive Learning

c 1
Qo
‘g 0.9
z 08
g0
5 0.6
e}
S 05
B
0 04
Lo3 Normal Condition
0.2 Swapped Condition
2 Reversed Condition -
Eol o All Conditions
O 0 S vl
-5 -4 1 2 3 4 5

2 0
DCG(x,ybar)-DCG(x,y)

Figure 1. Cumulative distribution of utility differences be-

tween presented ranking y and click-feedback ranking y in

terms of DCG@Q10 for three experimental conditions and
overall.

the following inequality is satisfied:
Uxe,¥:) —U(xe,y0) > (U(xe,y7) = Uxe,5¢)). (4)

In the above inequality, a € (0,1] is an unknown pa-
rameter. Feedback is such that utility of ¥, is higher
than that of y; by a fraction a of the maximum pos-
sible utility range U(x¢,y;) — U(x¢,y+). Violations of
the above feedback model are allowed by introducing
slack variables & > 0:!

U(xt, ¥¢) = U(xt, y¢) > a(U(xt,y¢) = U (xe,y¢) =&+ (5)

We refer to the above feedback model as a-informative
feedback. Note also that it is possible to express feed-
back of any quality using (5) with an appropriate value
of &. Our regret bounds will contain &, quantifying
to what extent the strict a-informative modeling as-
sumption is violated.

Finally, we will also consider an even weaker feedback
model where a positive utility gain is only achieved in
expectation over user actions:

Eq[Uk:. 1) — Ubse,yo)] > a(Ubry;) = Ubse,y)) =& (6)

We refer to the above feedback as expected -
informative feedback. In the above equation, the ex-
pectation is over the user’s choice of y; given y; under
context x; (i.e., under a distribution Py, [¥;|y.] which
is dependent on x;).

3.2. User Study: Preferences from Clicks

We now validate that reliable preferences as specified
in Equation (1) can indeed be inferred from implicit
user behavior. In particular, we focus on preference
feedback from clicks in web-search and draw upon
data from a user study (Joachims et al., 2007). In this
study, subjects (undergraduate students, n = 16) were

1Strictly speaking, the value of the slack variable de-
pends on the choice of « and the definition of utility. How-
ever, for brevity, we do not explicitly show this dependence.

asked to answer 10 questions — 5 informational, 5 navi-
gational — using the Google search engine. All queries,
result lists, and clicks were recorded. For each subject,
queries were grouped into query chains by question?.
On average, each query chain contained 2.2 queries
and 1.8 clicks in the result lists.

We use the following strategy to infer a ranking ¥ from
the user’s clicks: prepend to the ranking y from the
first query of the chain all results that the user clicked
throughout the whole query chain. To assess whether
U(x,y) is indeed larger than U(x,y) as assumed in
our learning model, we measure utility in terms of a
standard measure of retrieval quality from Information
Retrieval. We use DCGQ10(x,y) = Zzlil qg’;fﬂ)v
where r(x, y[i]) is the relevance score of the i-th doc-
ument in ranking y (see e.g. (Manning et al., 2008)).
To get ground-truth relevance assessments 7(x, d), five
human assessors were asked to manually rank the set
of results encountered during each query chain. We
then linearly normalize the resulting ranks to a rela-
tive relevance score r(x,d) € [0..5] for each document.

We can now evaluate whether the feedback ranking y
is indeed better than the ranking y that was originally
presented, i.e. DCGQ10(x,y) > DCGQ10(x,y).
Figure 1 plots the Cumulative Distribution functions
(CDFs) of DCGQ10(x,y) — DCGQ10(x,y) for three
experimental conditions, as well as the average over
all conditions. All CDFs are shifted far to the right of
0, showing that preference feedback from our strategy
is highly accurate and informative. Focusing first on
the average over all conditions, the utility difference is
strictly positive on ~ 60% of all queries, and strictly
negative on only ~ 10%. This imbalance is significant
(binomial sign test, p < 0.0001). Among the remain-
ing ~ 30% of cases where the DCG@10 difference is
zero, 88% are due to ¥ =y (i.e. click only on top 1
or no click). Note that a learning algorithm can easily
detect those cases and may explicitly eliminate them
as feedback. Overall, this shows that implicit feedback
can indeed produce accurate preferences.

What remains to be shown is whether the reliability
of the feedback is affected by the quality of the cur-
rent prediction, i.e., U(x,y:). In the user study, some
users actually received results for which retrieval qual-
ity was degraded on purpose. In particular, about one
third of the subjects received Google’s top 10 results in
reverse order (condition “reversed”) and another third
received rankings with the top two positions swapped
(condition “swapped”). As Figure 1 shows, we find
that users provide accurate preferences across this sub-

2This was done manually, but can be automated with

high accuracy (Jones & Klinkner, 2008).



Coactive Learning

Algorithm 1 Preference Perceptron.
Initialize wi < 0
fort=1to T do
Observe x;
Present y; < argmaxyeyw;r d(Xt,y)
Obtain feedback ¥
Update: Wit & Wi + d)(Xt, )_/'t) —
end for

d(x¢,y1)

stantial range of retrieval quality. Intuitively, a worse
retrieval system may make it harder to find good re-
sults, but it also makes an easier baseline to improve
upon. This intuition is formally captured in our def-
inition of a-informative feedback. The optimal value
of the a vs. ¢ trade-off, however, will likely depend
on many application-specific factors, like user motiva-
tion, corpus properties, and query difficulty. In the
following, we therefore present algorithms that do not
require knowledge of «, theoretical bounds that hold
for any value of «, and experiments that explore a
large range of a.

4. Coactive Learning Algorithms

In this section, we present algorithms for minimizing
regret in the coactive learning model. In the rest of this
paper, we use a linear model for the utility function,

U(X?Y) = W;r(b(x?Y)’ (7)

where w, € RY is an unknown parameter vector and
¢ : X xY — RN is a joint feature map such that
lo(x,¥)|le, < R for any x € X and y € ). Note that
both x and y can be structured objects.

We start by presenting and analyzing the most ba-
sic algorithm for the coactive learning model, which
we call the Preference Perceptron (Algorithm 1). The
Preference Perceptron maintains a weight vector wy
which is initialized to 0. At each time step t, the algo-
rithm observes the context x; and presents an object y
that maximizes w, ¢(x;,y). The algorithm then ob-
serves user feedback y; and the weight vector w; is
updated in the direction ¢(x¢,¥:) — ¢(x¢, yit)-

Theorem 1 The average regret of the preference per-
ceptron algorithm can be upper bounded, for any « €
(0,1] and for any w. as follows:

T

1 2R||w,
1§y 2l

REGt <
’ s Wax

Proof First, consider |[wz,1||?, we have,

— ¢(x1,y71))
— ¢(x7,y71)

W Wr1 = WpWr + 2w ($(Xr, §7)
+ (¢(x1,¥7) — d(x1, y7)) " (O(x1,F7)
< wiwr +4R? <AR’T

On line one, we simply used our update rule from

algorithm 1. On line two, we used the fact that

wi (¢(x7,¥7) — ¢(x7,y7)) < 0 from the choice of

yr in Algorithm 1 and that ||¢(x,y)|| < R. Further,
from the update rule in algorithm 1, we have,

Wiy Wy = WJW* + (3(x1,¥7) — d(x1,y7)) Wi

fZ

We now use the fact that wj w. < [[wl|[|[wri
(Cauchy-Schwarz inequality), which implies

Z (Xt,¥+)

t=1

(x4, ¥t) — U(xt,¥1)) - 9)

—U(xs,yt)) < 2RVT||w.]|.

From the a-informative modeling of the user feedback
in (5), we have

T T
az xtayt Xtayf Z 2R\/THW*”7
t=1 t=1
from which the claimed result follows. [ |

The first term in the regret bound denotes the qual-
ity of feedback in terms of violation of the strict a-
informative feedback. In particular, if the user feed-
back is strictly a-informative, then all slack variables
in (8) vanish and REGr = O(1/VT).

Though user feedback is modeled via a-informative
feedback, the algorithm itself does not require the
knowledge of «; a plays a role only in the analysis.

Although the preference perceptron appears similar to
the standard perceptron for multi-class classification
problems, there are key differences. First, the stan-
dard perceptron algorithm requires the true label y*
as feedback, whereas much weaker feedback y suffices
for our algorithm. Second, the standard analysis of
the perceptron bounds the number of mistakes made
by the algorithm based on margin and the radius of the
examples. In contrast, our analysis bounds a different
regret that captures a graded notion of utility.

An appealing aspect of our learning model is that sev-
eral interesting extensions are possible. We discuss
some of them in the rest of this section.



Coactive Learning

4.1. Lower Bound

We now show that the upper bound in Theorem 1
cannot be improved in general.

Lemma 2 For any coactive learning algorithm A with
linear utility, there exist x;, objects Y and w, such that
REGT of A in T steps is Q(1/V/T).

Proof Consider a problem where Y = {—1,+1}, X =
{x € RT : x| = 1}. Define the joint feature map
as ¢(x,y) = yx. Consider T contexts eq,...,er such
that e; has only the 4" component equal to one and
all the others equal to zero. Let yi,...y7 be the se-
quence of outputs of A on contexts eq,...,er. Con-
struct w. = [~y1/VT —y2/VT--- —yr/VT]T

have for this construction ||w.| = 1. Let the user
feedback on the t*" step be —y;. With these choices,
the user feedback is always a-informative with a = 1

since y; = —y:. Yet, the regret of the algorithm is
T *
%Zt=1(wj¢(et»)’t)*Wjﬂs(eta}’t)) :Q(ﬁ) u

4.2. Batch Update

In some applications, due to high volumes of feedback,
it might not be possible to do an update after every
round. For such scenarios, it is natural to consider a
variant of Algorithm 1 that makes an update every k
iterations; the algorithm simply uses w; obtained from
the previous update until the next update. It is easy
to show the following regret bound for batch updates:

if 2R||w.||VE

REGT < T

4.3. Expected a-Informative Feedback

So far, we have characterized user behavior in terms
of deterministic feedback actions. However, if a bound
on the expected regret suffices, the weaker model of
Expected a-Informative Feedback from Equation (6)
is applicable.

Corollary 3 Under expected a-informative feedback
model, the expected regret (over user behavior distri-
bution) of the preference perceptron algorithm can be
upper bounded as follows:

L 28lw.dl

P

T
E[REGr] < %Z&

The above corollary can be proved by following the
argument of Theorem 1, but taking expectations
over user feedback: E[w, ,wri1] = Elwjwr] +

Algorithm 2 Convex Preference Perceptron.

Initialize wi < 0
fort=1to T do
Set ny %
Observe x;
Present y; < argmax,cyw, ¢(x,y)
Obtain feedback ¥,
Update: Wy < wy + mG(d(xt, §i) — O(xe,yt))
Project: wWyy1 < argmingeg |[u — Wiy ||?
end for

E[2wy (¢(x1, 1) — ¢(x7,¥7))] + Er[(¢(x1,¥7) —
o(xr,y7)) " (6(x7,§7) — ¢(x7,¥7)] < ElWwrwr] +
4R?. In the above, E denotes expectation over all user
feedback ¥y, given y,; under the context x;. It follows
that E[W;,ﬂrJerT_i_l] < 4TR2

Applying Jensen’s inequality on the concave func-
tion 5, we get: E[wjw,] < |w.|E[jwrl] <

E[w, wr]. The corollary follows from the def-

[[w.l

inition of expected a-informative feedback.

4.4. Convex Loss Minimization

We now generalize our results to minimize convex
losses defined on the linear utility differences. We as-
sume that at every time step ¢, there is an (unknown)
convex loss function ¢; : R — R which determines the
loss ¢ (U(xt,yt) — U(x¢,y7)) at time t. The functions
¢; are assumed to be non-increasing. Further, sub-
derivatives of the ¢;’s are assumed to be bounded (i.e.,
c;(0) € [-G,0] for all t and for all # € R). The vector
w, which determines the utility of y; under context
X, is assumed from a closed and bounded convex set
B whose diameter is denoted as |B].

Algorithm 2 minimizes the average convex loss. There
are two differences between this algorithm and Algo-
rithm 1. Firstly, there is a rate 7; associated with the
update at time ¢t. Moreover, after every update, the re-
sulting vector W41 is projected back to the set B. We
have the following result for Algorithm 2, a proof of
which is provided in an extended version of this paper
(Shivaswamy & Joachims, 2012).

Theorem 4 For the convex preference perceptron, we
have, for any o € (0,1] and any w. € B,

1 & 1 <&
Tzct XtaYt U(Xtay:)) < fzct (0)
t= t=1
26 & BIG |B|G 4R%G
tar 248 <|z¢|f+|1|“ * ﬁ) o

t=1



Coactive Learning

In the bound (11), ¢(0) is the minimum possible
convex loss since U(xy,y:) — U(x¢,y;) can never be
greater than zero by definition of y;. Thus the the-
orem upper bounds the average convex loss via the
minimum achievable loss and the quality of feedback.
Like the previous result (Theorem 1), under strict a-
informative feedback, the average loss approaches the
best achievable loss at O(1/+/T) albeit with larger con-
stant factors.

5. Experiments

We empirically evaluated the Preference Perceptron
algorithm on two datasets. The two experiments dif-
fered in the nature of prediction and feedback. While
the algorithm operated on structured objects (rank-
ings) in one experiment, atomic items (movies) were
presented and received as feedback in the other.

5.1. Structured Feedback: Learning to Rank

We evaluated our Preference Perceptron algo-
rithm on the Yahoo! learning to rank dataset
(Chapelle & Chang, 2011). This dataset consists of
query-url feature vectors (denoted as x! for query g
and URL i), each with a relevance rating r{ that ranges
from zero (irrelevant) to four (perfectly relevant). To
pose ranking as a structured prediction problem, we
defined our joint feature map as follows:

5 T q
T _ w Xyi

In the above equation, y denotes a ranking such that
y; is the index of the URL which is placed at position
1 in the ranking. Thus, the above measure considers
the top five URLs for a query ¢ and computes a score
based on a graded relevance. Note that the above util-
ity function defined via the feature-map is analogous to
DCG@5 (see e.g. (Manning et al., 2008)) after replac-
ing the relevance label with a linear prediction based
on the features.

For query ¢; at time step ¢, the Preference Percep-
tron algorithm presents the ranking y# that maximizes
w, ¢(qs,y). Note that this merely amounts to sort-
ing documents by the scores w, x?*, which can be
done very efficiently. The utility regret in Eqn. (3),
based on the definition of utility in (12), is given by
% Zle w, (6(qs, y2*) — d(qs, y¥t)). Here y9+* denotes
the optimal ranking with respect to w,, which is the
best least squares fit to the relevance labels from the
features using the entire dataset. Query ordering was
randomly permuted twenty times and we report aver-
age and standard error of the results.

5.1.1. STRONG VS WEAK FEEDBACK

The goal of the first experiment was to see how the
regret of the algorithm changes with feedback quality.
To get feedback at different quality levels a, we used
the following mechanism. Given the predicted ranking
y¢, the user would go down the list until she found
five URLs such that, when placed at the top of the
list, the resulting y; satisfied the strictly a-informative
feedback condition w.r.t. the optimal w,.

avg. util regret

Figure 2. Regret based on strictly a-informative feedback.

Figure 2 shows the results for this experiment for
two different o values. As expected, the regret with
«a = 1.0 is lower compared to the regret with respect
a = 0.1. Note, however, that the difference between
the two curves is much smaller than a factor of ten.
This is because strictly a-informative feedback is also
strictly (-informative feedback for any f < a. So,
there could be several instances where user feedback
was much stronger than what was required. As ex-
pected from the theoretical bounds, since the user
feedback is based on a linear model with no noise, util-
ity regret approaches zero.

5.1.2. Noisy FEEDBACK

In the previous experiment, user feedback was based
on actual utility values computed from the optimal
w.. We next make use of the actual relevance labels
provided in the dataset for user feedback. Now, given
a ranking for a query, the user would go down the list
inspecting the top 10 URLs (or all the URLs if the
list is shorter) as before. Five URLs with the highest
relevance labels () are placed at the top five locations
in the user feedback. Note that this produces noisy
feedback since no linear model can perfectly fit the
relevance labels on this dataset.

As a baseline, we repeatedly trained a conventional
Ranking SVM3. At each iteration, the previous SVM
model was used to present a ranking to the user. The
user returned a ranking based on the relevance la-
bels as above. The pairs of examples (q¢,y%,,,) and
(q:,5%,,) were used as training pairs for the ranking

Shttp://svmlight.joachims.org



Coactive Learning

SVMs. Note that training a ranking SVM after each
iteration would be prohibitive, since it involves solv-
ing a quadratic program and cross-validating the reg-
ularization parameter C. Thus, we retrained the SVM
whenever 10% more examples were added to the train-
ing set. The first training was after the first iteration
with just one pair of examples (starting with a random
y9), and the C value was fixed at 100 until there were
50 pairs of examples, when reliable cross-validation be-
came possible. After there were more than 50 pairs in
the training set, the C' value was obtained via five-fold
cross-validation. Once the C value was determined,
the SVM was trained on all the training examples
available at that time. The same SVM model was then
used to present rankings until the next retraining.

@ swM
< Pref. Perceptron

avg. util regret

04 . . . |
10° 10

t
Figure 3. Regret vs time based on noisy feedback.

Results of this experiment are presented in Figure 3.
Since the feedback is now based on noisy relevance la-
bels, the utility regret converges to a non-zero value
as predicted by our theoretical results. Over most
of the range, the Preference Perceptron performs sig-
nificantly* better than the SVM. Moreover, the per-
ceptron experiment took around 30 minutes to run,
whereas the SVM experiment took about 20 hours on
the same machine. We conjecture that the regret val-
ues for both the algorithms can be improved with bet-
ter features or kernels, but these extensions are orthog-
onal to the main focus of this paper.

5.2. Item Feedback: Movie Recommendation

In contrast to the structured prediction problem in
the previous section, we now evaluate the Preference
Perceptron on a task with atomic predictions, namely
movie recommendation. In each iteration a movie is
presented to the user, and the feedback consists of a
movie as well. We use the MovieLens dataset, which
consists of a million ratings over 3090 movies rated by
6040 users. The movie ratings ranged from one to five.

We randomly divided users into two equally sized sets.
The first set was used to obtain a feature vector m; for
each movie j using the “SVD embedding” method for
collaborative filtering (see (Bell & Koren, 2007), Eqn.

4The error bars are extremely tiny at higher iterations.

(15)). The dimensionality of the feature vectors and
the regularization parameters were chosen to optimize
cross-validation accuracy on the first dataset in terms
of squared error. For the second set of users, we then
considered the problem of recommending movies based
on the movie features m;. This experiment setup sim-
ulates the task of recommending movies to a new user
based on movie features from old users.

For each user 7 in the second set, we found the best
least squares approximation w;-";mj to the user’s util-
ity functions on the available ratings. This enables us
to impute utility values for movies that were not ex-
plicitly rated by this user. Furthermore, it allows us to
measure regret for each user as + S wi(my,—my),
which is the average difference in utility between the
recommended movie m; and the best available movie
my.. We denote the best available movie at time ¢
by my,, since in this experiment, once a user gave a
particular movie as feedback, both the recommended
movie and the feedback movie were removed from the
set of candidates for subsequent recommendations.

5.2.1. STRONG VS WEAK FEEDBACK

Analogous to the web-search experiments, we first ex-
plore how the performance of the Preference Percep-
tron changes with feedback quality «.. In particular, we
recommended a movie with maximum utility accord-
ing to the current w; of the algorithm, and the user
returns as feedback a movie with the smallest utility
that still satisfied strictly a-informative feedback ac-
cording to w;,. For every user in the second set, the
algorithm iteratively recommended 1500 movies in this
way. Regret was calculated after each iteration and
separately for each user, and all regrets were averaged
over all the users in the second set.

6F

.
@ a=01

5 <« a=05|
B a=10
[
547
o
g 3
2
© 2F
n
0
10° 10" 10° 10°

Figure 4. Regret for strictly a-informative feedback.

Figure 4 shows the results for this experiment. Since
the feedback in this case is strictly a-informative, the
average regret in all the cases decreases towards zero
as expected. Note that even for a moderate value of
«a, regret is already substantially reduced after 10’s of
iterations. With higher o values, the regret converges
to zero at a much faster rate than with lower « values.



Coactive Learning

5.2.2. Noisy FEEDBACK

We now consider noisy feedback, where the user feed-
back does not necessarily match the linear utility
model used by the algorithm. In particular, feedback is
now given based on the actual ratings when available,
or the score u;, m; rounded to the nearest allowed rat-
ing value. In every iteration, the user returned a movie
with one rating higher than the one presented to her.
If the algorithm already presented a movie with the
highest rating, it was assumed that the user gave the
same movie as feedback.

@ SvM
<« Pref. Perceptron

avg. util regret

Figure 5. Regret based on noisy feedback.

As a baseline, we again ran a ranking SVM. Like in
the web-search experiment, it was retrained whenever
10% more training data was added. The results for
this experiment are shown in Figure 5. The regret of
the Preference Perceptron is again significantly lower
than that of the SVM, and at a small fraction of the
computational cost.

6. Conclusions

We proposed a new model of online learning where
preference feedback is observed but cardinal feedback
is never observed. We proposed a suitable notion of
regret and showed that it can be minimized under
our feedback model. Further, we provided several ex-
tensions of the model and algorithms. Furthermore,
experiments demonstrated its effectiveness for web-
search ranking and a movie recommendation task. A
future direction is to consider A-strongly convex func-
tions, and we conjecture it is possible to derive algo-
rithms with O(log(T")/T') regret in this case.

Acknowledgements We thank Peter Frazier,
Bobby Kleinberg, Karthik Raman and Yisong Yue
for helpful discussions. This work was funded in part
under NSF awards 11S-0905467 and 11S-1142251.

References

Auer, P.; Cesa-Bianchi, N., and Fischer, P. Finite-time
analysis of the multiarmed bandit problem. Machine
Learning, 47(2-3):235-256, 2002a.

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R.

The non-stochastic multi-armed bandit problem. STAM
Journal on Computing, 32(1):48-77, 2002b.

Bakir, G.H., Hofmann, T., Scholkopf, B., Smola, A.J.
Taskar, B., and Vishwanathan, S.V.N. (eds.). Predicting
Structured Data. The MIT Press, 2007.

Bell, R. M. and Koren, Y. Scalable collaborative filtering
with jointly derived neighborhood interpolation weights.
In ICDM, 2007.

Cesa-Bianchi, N. and Lugosi, G. Prediction, learning, and
games. Cambridge University Press, 2006.

Chapelle, O. and Chang, Y. Yahoo! learning to rank
challenge overview. JMLR - Proceedings Track, 14:1—
24, 2011.

Chu, W. and Ghahramani, Z. Preference learning with
gaussian processes. In ICML, 2005.

Crammer, K. and Singer, Y. Pranking with ranking. In
NIPS, 2001.

Flaxman, A., Kalai, A. T., and McMahan, H. B. Online
convex optimization in the bandit setting: gradient de-
scent without a gradient. In SODA, 2005.

Freund, Y., Iyer, R. D., Schapire, R. E., and Singer, Y. An
efficient boosting algorithm for combining preferences.
Journal of Machine Learning Research, 4:933-969, 2003.

Herbrich, R., Graepel, T., and Obermayer, K. Large mar-
gin rank boundaries for ordinal regression. In Advances
in Large Margin Classifiers. MIT Press, 2000.

Joachims, T., Granka, L., Pan, Bing, Hembrooke, H.,
Radlinski, F., and Gay, G. Evaluating the accuracy of
implicit feedback from clicks and query reformulations in
web search. ACM Transactions on Information Systems
(TOIS), 25(2), April 2007.

Jones, R. and Klinkner, K. Beyond the session timeout:
automatic hierarchical segmentation of search topics in
query logs. In CIKM, 2008.

Liu, T-Y. Learning to rank for information retrieval. Foun-
dations and Trends in Information Retrieval, 3, March
2009.

Manning, C., Raghavan, P., and Schiitze, H. Introduction
to Information Retrieval. Cambridge University Press,
2008.

Shivaswamy, P. and Joachims, T. Online structured pre-
diction via coactive learning. arXiv:1205.4213, 2012.

Yue, Y. and Joachims, T. Interactively optimizing infor-
mation retrieval systems as a dueling bandits problem.
In ICML, 2009.

Yue, Y., Broder, J., Kleinberg, R., and Joachims, T. The
k-armed dueling bandits problem. In COLT, 2009.

Zinkevich, M. Online convex programming and generalized
infinitesimal gradient ascent. In ICML, 2003.



