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Abstract

We develop new representations for the
Lévy measures of the beta and gamma pro-
cesses. These representations are manifested
in terms of an infinite sum of well-behaved
(proper) beta and gamma distributions. Fur-
ther, we demonstrate how these infinite sums
may be truncated in practice, and explicitly
characterize truncation errors. We also per-
form an analysis of the characteristics of pos-
terior distributions, based on the proposed
decompositions. The decompositions pro-
vide new insights into the beta and gamma
processes (and their generalizations), and we
demonstrate how the proposed representa-
tion unifies some properties of the two. This
paper is meant to provide a rigorous founda-
tion for and new perspectives on Lévy pro-
cesses, as these are of increasing importance
in machine learning.

1. Introduction

A prominent distinction of nonparametric methods rel-
ative to parametric approaches is the utilization of
stochastic processes rather than probability distribu-
tions. For example, a Gaussian process (Rasmussen
& Williams, 2006) may be employed to nonparamet-
rically represent general smooth functions on a con-
tinuous space of covariates (e.g., time). Recently the
idea of nonparametric methods has extended to fea-
ture learning and data clustering, with interest respec-
tively in the beta-Bernoulli process (Thibaux & Jor-
dan, 2007) and the Dirichlet process (Ferguson, 1973).
In such processes the nonparametric aspect concerns
the number of features/clusters, which are allowed to
be unbounded (“infinite”), permitting the model to
adapt the number of these entities as the given and fu-
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ture data indicate. The increasing importance of these
models in machine learning warrants a detailed theo-
retical analysis of their properties, as well as simple
constructions for their implementation. In this paper
we focus on Lévy processes (Sato, 1999), which are of
increasing interest in machine learning.

A family of Lévy processes, the pure-jump nonde-
creasing Lévy processes, also fit into the category of
the completely random measure proposed by King-
man (Kingman, 1967). The beta process (Hjort, 1990)
is an example of such a process, which is applied in
nonparametric feature learning. The gamma process
falls in this family as well, with its normalization the
well-known Dirichlet process. Hierarchical forms of
such models have become increasingly popular in ma-
chine learning (Teh et al., 2006; Teh, 2006; Thibaux
& Jordan, 2007), as have nested models (Blei et al.,
2010), and models that introduce covariate depen-
dence (MacEachern, 1999; Williamson et al., 2010; Lin
et al., 2010).

As a consequence of the important role these mod-
els are playing in machine learning, there is a need for
the study of the properties of pure-jump nondecreasing
Lévy processes. As examples of such work, (Thibaux
& Jordan, 2007) and (Paisley et al., 2010) present ex-
plicit constructions for generating the beta process,
(Teh et al., 2007) derives a construction for the Indian
buffet process parallel to the stick-breaking construc-
tion of the Dirichlet process (Sethuraman, 1994), and
(Thibaux, 2008) obtains a construction for the gamma
process under the gamma-Poisson context. Apart from
these specialized construction methods, in (Kingman,
1967) a general construction method for completely
random measures is proposed, by first decomposing it
into a sum of a countable number of σ-finite measures,
and then superposing the Poisson processes according
to these sub-measures. By regarding the completely
random measure as a Lévy process, this method corre-
sponds to decomposing the Lévy measure, which pro-
vides clarity of theoretical properties and simplicity in
practical implementation. However this Lévy measure
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decomposition method has not yet come into wide use
in machine learning and statistics, probably due to the
nonexistence of a universal construction of the measure
decomposition.

In this paper we develop explicit and simple decom-
positions by following the conjugacy principle for two
widely used Lévy processes, the beta and gamma pro-
cesses. The conjugacy means that the decompositions
are manifested by leveraging the forms of conjugate
likelihoods to the Lévy measures. The decompositions
bring new perspectives on the beta and gamma pro-
cesses, with associated properties analyzed here in de-
tail. The decompositions are constituted in terms of
an infinite set of sub-processes of form convenient for
computation. Since the number of sub-processes is
infinite, a truncation analysis is also presented, of in-
terest for practical use. We show some posterior prop-
erties of such decompositions, with the beta process
as an example. We also extend the decomposition to
the symmetric gamma process (positive and negative
jumps), suggesting that the Lévy measure decomposi-
tion is applicable for other pure-jump Lévy processes
represented by their Lévy measures. Summarizing the
main contributions of the paper:

• We constitute Lévy measure decompositions for
the beta, stable-beta, gamma, generalized gamma
and symmetric gamma processes via the principle
of conjugacy, providing new perspectives on these
processes.

• The decomposition of the beta process unifies the
constructions in (Thibaux & Jordan, 2007), (Teh
& Görür, 2009), and (with a different decompos-
ing method) (Paisley et al., 2010), and a new gen-
erative construction for the gamma process and
its variations is derived.

• Truncation analyses and posterior properties for
such decompositions are presented for practical
use.

2. Background

Lévy processes (Sato, 1999) and completely random
measures (Kingman, 1967) are two closely related con-
cepts. Specifically, some Lévy processes can be re-
garded as completely random measures. In this section
brief reviews and connections are presented for these
two important concepts.

2.1. Lévy process

A Lévy process X(ω) is a stochastic process with in-
dependent increments on a measure space (Ω,F). Ω

is usually taken to be one-dimensional, such as the
real line, to represent a stochastic process with varia-
tion over time. By the Lévy-Itô decomposition (Sato,
1999), a Lévy process can be decomposed into a con-
tinuous Brownian motion with drift, and a discrete
part of a pure-jump process. When a Lévy process
X(ω) only has the discrete part and its jumps are pos-
itive, then for ∀A ∈ F the characteristic function of
the random variable X(A) is given by:

E{ejuX(A)} = exp{
∫

R+×A
(ejup − 1)ν(dp, dω)} (1)

with ν satisfying the integrability condition (Sato,
1999). The expression in (1) defines a category of
pure-jump nondecreasing Lévy processes, including
most of the Lévy processes currently used in nonpara-
metric Bayesian methods, such as the beta, gamma,
Bernoulli, and negative binomial processes. With (1),
such a Lévy process can be regarded as a Poisson point
process on the product space R+ × Ω with the mean
measure ν, called the Lévy measure. On the other
hand, if the increments of X(ω) on any measurable
set A ∈ F are regarded as a random measure assigned
on the set, then X(ω) is also a completely random
measure. Due to this equivalence, in the following dis-
cussion we will not discriminate the pure-jump nonde-
creasing Lévy process X with its corresponding com-
pletely random measure Φ.

2.2. Completely random measure

A random measure Φ on a measure space (Ω,F) is
termed “completely random” if for any disjoint sets
A1,A2 ∈ F the random variables Φ(A1) and Φ(A2)
are independent. A completely random measure Φ can
be split into three independent components:

Φ = Φf + Φd + Φo (2)

where Φf =
∑

ω∈I φ(ω)δω is the fixed component,
with the atoms in I fixed and the jump φ(ω) ran-
dom; I is a countable set in F . The deterministic
component Φd is a deterministic measure on (Ω,F).
Φf and Φd are relatively less interesting compared to
the third component Φo, which is called the ordinary
component of Φ. According to (Kingman, 1967), Φo

is discrete with both random atoms and jumps.

In (Kingman, 1967), it is noted that Φo can be further
split into a countable number of independent parts:

Φo =
∑

k

Φk, Φk =
∑

(φ(ω),ω)∈Πk

φ(ω)δω (3)

Denote ν as the Lévy measure of (the Lévy process
corresponding to) Φo, νk as the Lévy measure of Φk,
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Π a Poisson process with ν its mean measure, and Πk a
Poisson process with νk its mean measure; (3) further
yields:

ν =
∑

k

νk, Π =
⋃
k

Πk (4)

which provides a constructive method for Φo: first con-
struct the Poisson process Πk underlying Φk, and then
with the superposition theorem (Kingman, 1993) the
union of Πk will be a realization of Φo. In the following
sections we show how this general construction method
of (4) can be applied on pure-jump nondecreasing Lévy
processes of increasing interest in machine learning,
with an emphasis on the beta and gamma processes,
and their generalizations.

3. Beta process

A beta process (Hjort, 1990) is a Lévy process with
beta-distributed increments; B ∼ BP(c(ω), µ) is a beta
process if

B(dω) ∼ Beta(c(ω)µ(dω), c(ω)(1− µ(dω))) (5)

where µ is the base measure on measure space (Ω,F)
and a positive function c(ω) the concentration func-
tion. Expression (5) indicates that the increments of
the beta process are independent, which makes it a
special case of the Lévy process family. The Lévy mea-
sure of the beta process is

ν(dπ, dω) = c(ω)π−1(1− π)c(ω)−1dπµ(dω) (6)

where Beta(0, c(ω)) = c(ω)π−1(1 − π)c(ω)−1 is an im-
proper beta distribution since its integral over (0, 1) is
infinite. As a result, its underlying Poisson process,
i.e., the Poisson process with ν as its mean measure
on the product space Ω × (0, 1), denoted Π, has an
infinite number of points drawn from ν, yielding

B =
∞∑

i=1

πiδωi (7)

where πi is the jump (increment) which happens at the
atom ωi. Real variable γ = µ(Ω) is termed the mass
parameter of B, and we assume γ < ∞.

3.1. Beta process Lévy measure decomposition

The infinite integral of the improper beta distribution
inspires a decomposition of the improper distribution
with an infinite number of proper distributions. The
singularity in the improper beta distribution is mani-
fested from π−1. Since π ∈ (0, 1), the geometric series
expansion yields

π−1 =
∞∑

k=0

(1− π)k, π ∈ (0, 1) (8)

and substituting (8) in (6), with manipulation detailed
in the Supplementary Material, we have the Lévy mea-
sure decomposition theorem of the beta process:

Theorem 1 For a beta process B ∼ BP(c(ω), µ) with
base measure µ and concentration c(ω), denote Π as its
underlying Poisson process and ν the Lévy measure,
then B and Π can be expressed as

Π =
∞⋃

k=0

Πk , B =
∞∑

k=0

Bk (9)

where Bk is a Lévy process with Πk its underlying
Poisson process. The Lévy measure νk of Bk is a de-
composition of ν:

ν =
∞∑

k=0

νk

νk(dπ, dω) = Beta(1, c(ω) + k)dπµk(dω)

µk(dω) =
c(ω)

c(ω) + k
µ(dω)

(10)

where Beta(1, c(ω)+k) is the PDF of beta distribution
with parameters 1 and c(ω) + k.

Theorem 1 is the beta process instantiation of the com-
pletely random measure decomposing in (4), which in-
dicates that the underlying Poisson process Π of the
beta process B is the superposition of an infinite num-
ber of independent Poisson processes {Πk}∞k=0, with
νk the mean measure of Πk and µk the mean measure
of the restriction of Πk on Ω. As a result, the beta pro-
cess B can be expressed as a sum of an infinite number
of independent Lévy processes {Bk}∞k=0 with {Πk}∞k=0

the underlying Poisson process. The independence of
{Πk}∞k=0 and {Bk}∞k=0 w.r.t. index k is justified by the
fact that both µ and c(ω) are fixed parameters.

3.2. The Lévy process Bk

It is interesting to study the properties of Bk, such
as the expectation and variance. Denoting Bk(dω) =

1
c(ω)+k+1µk(dω) as the base measure of Bk, for ∀A ∈
F :

E(Bk(A)) =
∫
A
Bk(dω) = Bk(A)

Var(Bk(A)) =
∫
A

2
c(ω) + k + 2

Bk(dω)
(11)

It is noteworthy that the Lévy process Bk is no longer
a beta process, since (5) is not satisfied. By Theorem
1, the jumps of Bk follow a proper beta distribution
parameterized by the concentration function c(ω) and
the index k, and µk determines the locations where the
jumps happen. Since {Bk}∞k=0 are independent w.r.t.
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the index k, with Theorem 1:
∞∑

k=0

E(Bk(A)) = E(B(A))

∞∑
k=0

Var(Bk(A)) = Var(B(A))

(12)

The detailed procedure to derive (11) and (12) is given
in the Supplementary Material.

3.3. Simulating the beta process

3.3.1. Poisson superposition simulation

Theorem 1 reveals that the underlying Poisson pro-
cess of a beta process is a superposition of an infinite
number of Poisson processes, each of which has a finite
set of atoms. This perspective also provides a simula-
tion procedure for the beta process: first, the Poisson
process Πk is sampled for all k = 0, 1, 2, · · · , (here we
term the index k as the “round” of the simulation);
then take the union of the samples of each Πk as a
realization of the Poisson process Π. With the mark-
ing theorem (Kingman, 1993) implicitly applied, the
simulation procedure of the beta process is as follows:

Simulation procedure: For round k:

1: Sample the number of points for Πk: nk ∼
Poisson(

∫
Ω

µk(dω));

2: Sample nk points from µk: ωki
i.i.d.∼ µk∫

Ω µk(dω)
, for

i = 1, 2, · · · , nk;

3: Sample Bk(ωki)
i.i.d.∼ Beta(1, c(ωki) + k), for i =

1, 2, · · · , nk;

Then the union
⋃∞

k=0{(ωki, Bk(ωki)}nk
i=1 is a realiza-

tion of Π (and equivalently of B).

We refer to the above simulation procedure as the
Poisson superposition simulation, for the central role
of the Poisson superposition. The especially conve-
nient case is when the beta process is homogeneous,
i.e., c(ω) = c is a constant. In this case {ωki}nk

i=1 for
all rounds k are drawn from the same distribution µ/γ;
and nk is drawn from Poisson( cγ

c+k ). For round k, both
the number of points and the jumps statistically di-
minish as k increases, suggesting that the infinite sum
in (9) may be truncated as B =

∑K
k=0 Bk for large

K, with minimal impact. Such truncation effects are
investigated in detail in Section 3.4.

3.3.2. Related work

In (Thibaux & Jordan, 2007) the authors derived the
above simulation procedure for the homogeneous case

within the beta-Bernoulli process context, which is
shown here a necessary result of the Lévy measure de-
composition. The same decomposing manipulation of
Theorem 1 can be also applied to the stable beta pro-
cess (Teh & Görür, 2009) which yields:

νk =Beta(1− σ, c(ω) + σ + k)dπ

· Γ(c(ω) + σ + k)Γ(c(ω) + 1)
Γ(c(ω) + k + 1)Γ(c(ω) + σ)

µ(dω)
(13)

It is noteworthy that the decomposition procedure de-
scribed in Theorem 1 is not the only Lévy measure de-
composing method for the beta process. The work of
(Paisley & Jordan, 2012) and (Broderick et al., 2011)
show that the stick-breaking construction of the beta
process in (Paisley et al., 2010) is indeed a result of
another way of decomposing the Lévy measure of the
beta process. We next analyze the truncation prop-
erty of the construction described in Section 3.3.1 and
make comparison with the construction of beta process
in (Paisley et al., 2010).

3.4. Truncation analysis

Since the Poisson superposition simulation operates in
rounds, it is natural to analyze the distance between
the true beta process B and its truncation

∑K
k=0 Bk,

with truncation at round K. A metric for such dis-
tance is the L1 norm:

||B−
K∑

k=0

Bk||1 = E|B−
K∑

k=0

Bk| =
∫

Ω

µK+1(dω)
γ

(14)

The expectation in (14) is w.r.t. the normalized mea-
sure ν/γ, which yields ‖B‖1 = 1. When B is homo-
geneous, (14) reduces to c

c+K+1 , which indicates that
the L1 distance decreases at a rate of O( 1

K ). For the
stick-breaking construction of beta process described
in (Paisley et al., 2010), the L1 distance is: ( c

c+1 )K+1.

Another metric is the L1 distance between the
marginal likelihood of a set of data b = b1:M , with
m∞(b) denotes the marginal likelihood (here the like-
lihood is a Bernoulli process) with prior B, and mK(b)
for

∑K
k=0 Bk. This metric was applied on the trun-

cated Indian buffet process (Doshi et al., 2009) and
truncated stick-breaking construction of the beta pro-
cess (Paisley & Jordan, 2012), which indicates

1
4

∫
|m∞(b)−mK(b)|db ≤

Pr(∃k > K, 1 ≤ i ≤ nk, 1 ≤ m ≤ M, s.t. bm
ki = 1)

(15)

where b1:M
i.i.d.∼ BeP(B) are drawn from a Bernoulli

process with base measure B; bm
ki = bm(ωki) is the
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mth realization of the Bernoulli process at atom ωki.
For the truncation

∑K
k=0 Bk it can be shown that the

RHS of (15) is bounded by:

RHS of (15) ≤ 1− exp(−M

∫
Ω

µK+1(dω)) (16)

For the homogeneous case, the bound of (16) is
1 − exp(−Mγ c

c+K+1 ). For the stick-breaking con-
struction of beta process, the bound is given by:
1− exp(−Mγ( c

c+1 )K+1) (Paisley & Jordan, 2012).

In order to analyze the bound w.r.t. the truncation
level by number of atoms, denote IK =

∑K
k=0 nk

as the total number of atoms in
∑K

k=0 Bk. Since

K ∼ O(e
E(IK )

cγ ), it is proved that (14) and the bound
in (16) decreases at a faster rate w.r.t. I than the
stick-breaking construction of beta process. This indi-
cates that the simulation procedure described in Sec-
tion 3.3.1 follows a steeper statistically-decreasing or-
der. The proof is presented in the Supplementary Ma-
terial.

3.5. Posterior estimation

The goal of the inference is to estimate the beta process
B from a set of observed data b with prior BP(c, µ).
The data b = b1:M is the same as in Section 3.4, which
can be expressed as:

bm =
∞∑

i=1

bi,mδωi , m = 1, 2, · · · ,M (17)

where each bi,m ∈ {0, 1}.

3.5.1. Posterior of Bk

Since B|b ∼ BP(c + M, cµ
c+M +

∑M
m=1 bm

c+M ) (Thibaux &
Jordan, 2007), the base measure of B|b is a measure
with positive masses assigned on single atoms. Theo-
rem 1 is still applicable to this beta process with mixed
type of base measure, which yields

B′ =
∞∑

k=0

B′k

ν′k = Beta(1, c + M + k)µ′k

µ′k =
cµ

c + M + k
+

∑M
m=1 bm

c + M + k

(18)

where the B′, B′k, ν′k, and µ′k are the posterior coun-
terparts of B, Bk, νk, and µk.

3.5.2. Posterior estimation of πi:

Since each µk has a mass
∑M

m=1 bi,m

c+M+k at the atom ωi,

each Bk will contribute Poisson(
∑M

m=1 bi,m

c+M+k ) draws with

the jumps following the distribution Beta(1, c + M +
k) at the atom ωi, whose sum is the πi. Thus the
posterior estimation of πi is given by

πi|b =
∞∑

k=0

Hk∑
h=1

bkh

Hk ∼ Poisson(
∑M

m=1 bi,m

c + M + k
)

bkh ∼ Beta(1, c + M + k)

(19)

from which it can be verified that E(πi|b) =
∑M

m=1 bi,m

c+M ,
the same as the posterior of πi without decomposition:
Beta(

∑M
m=1 bi,m, c + M −

∑M
m=1 bi,m).

For the πi with no observations, i.e.,
∑M

m=1 bi,m = 0,
only a particular Bk will contribute to πi. In this case,
first the round k to which πi belongs is drawn, then πi

is drawn from the beta distribution of that round:

πi ∼ Beta(1, c + M + k)

k ∼ MP(α), α ∝
∞∑

k=0

1
c + M + k

δk
(20)

where MP(α) is a multinomial process with proba-
bility vector α, and α is proportional to the average
number of points in each round. Since in practical pro-
cessing α is always to be truncated with a truncation
level K, by the analysis in Section 3.4, (20) provides a
way to estimate the πi within the first K rounds. And
πi in each round are of statistically different impor-
tance, contrasted to the evenly assigned mass in the
Indian buffet process.

3.6. Relating the IBP and beta process

The study of the beta process through its Lévy mea-
sure, as discussed in this paper, also uncovers a connec-
tion between the Indian buffet process (IBP) (Griffiths
& Ghahramani, 2005) and the beta process, by their
Lévy measures. The IBP with prior πi ∼ Beta(c γ

N , c)
can be regarded as a Lévy process with the Lévy mea-
sure given as:

νIBP =
N

γ
Beta(c

γ

N
, c)dπµ(dω) (21)

here N is the same as the K in (Griffiths & Ghahra-
mani, 2005). It can be proved that:

νIBP
N→∞= ν (22)

which indicates that the beta process is the limit of
the IBP with N → ∞. The detailed proof of (22) is
presented in the Supplementary Material. Thus the
IBP is like a “mosaic” approximation of beta process,
which becomes finer with N increases.
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4. Gamma process

A gamma process (Applebaum, 2009) is a Lévy process
with independent gamma increments. The gamma
process is traditionally parameterized with a shape
measure and a scale function: G ∼ ΓP(α, θ(ω)) where
α is the shape measure on a measure space (Ω,F),
and the scale θ(ω) a positive function. A gamma pro-
cess can be intuitively defined by its increments on
infinitesimal sets:

G(dω) ∼ Gamma(α(dω), θ(ω)) (23)

When θ(ω) = θ is a scalar, the gamma process is called
homogeneous. The gamma process can also be ex-
pressed in the form with a base measure G0 and a
concentration c(ω), with c = 1/θ and G0 = θα (Jor-
dan., 2009), to conform with other stochastic processes
widely used in machine learning, such as the Dirich-
let process. However, the discussion in this paper will
stick to the traditional form given by (23).

As a pure-jump Lévy process, the gamma process can
be regarded as a Poisson process on the product space
Ω× R+ with mean measure ν:

ν(dp, dω) = p−1e−
p

θ(ω) dpα(dω) (24)

where Gamma(0, θ(ω)) = p−1e−
p

θ(ω) is an improper
gamma distribution with an infinite integral on R+,
which yields the expression of G:

G =
∞∑

i=1

piδωi
(25)

4.1. Lévy measure decomposition

Like the beta process, the Lévy measure of the gamma
process is characterized by an improper distribution.
However, unlike the beta process, the decomposition
of the Lévy measure of the gamma process comes from
the exponential part. With the details shown in the
Supplementary Material, the gamma process G can be
decomposed into two parts:

G = Γ1 + ΓP(α, θ(ω)/2) (26)

The second term in (26) is a gamma process with
the same shape measure, and half the scale of the
gamma process G; the first term Γ1 is a Lévy process
with the Lévy measure

∑∞
h=1 Gamma(h, θ(ω)

2 )dpα(dω)
2hh

.
Here Gamma(h, θ(ω)

2 ) is the PDF of the gamma distri-
bution, with shape parameter h and scale parameter
θ(ω)

2 .

Further decomposing the exponential part of the
gamma process ΓP(α, θ(ω)/2) in (26) yields G =

Γ1+Γ2+ΓP(α, θ(ω)/3), bearing a gamma process with
the same shape and with the scale parameter further
decreased. Repeating this manipulation, we obtain the
Theorem 2:

Theorem 2 A gamma process G ∼ ΓP(α, θ(ω)) with
shape measure α and scale θ(ω) can be decomposed as:

G =
∞∑

k=1

Γk, Γk =
∞∑

h=1

Γkh, νk =
∞∑

h=1

νkh

νkh = Gamma(h,
θ(ω)
k + 1

)dp
α(dω)

(k + 1)hh

(27)

with Γk, Γkh Lévy processes with νk, νkh their Lévy
measures.

Theorem 2 is the gamma process instantiation of (4),
which indicates that G can be expressed as the sum of
an infinite number of Lévy processes Γk, k = 1, 2, · · · ,
where Γk is also the sum of an infinite number of Lévy
processes Γkh, h = 1, 2, · · · .

4.2. Lévy processes Γk and Γkh

In order to obtain further insights into the gamma pro-
cess G in Theorem 2, the expectations and variances
of Γk and Γkh on any measurable set A ∈ F are given:

E(Γkh(A)) =

∫
A θ(ω)α(dω)
(k + 1)h+1

E(Γk(A)) =

∫
A θ(ω)α(dω)
k(k + 1)

(28)

For the variances of Γk and Γkh:

Var(Γkh(A)) =
(h + 1)

(k + 1)h+2

∫
A

θ2(ω)α(dω)

Var(Γk(A)) = [
1
k2

− 1
(k + 1)2

]
∫
A

θ2(ω)α(dω)
(29)

Since the Lévy processes Γk are independent w.r.t. k,
with analogy to (12) it can be verified that the ex-
pectation and variance of Γk sum to the expectation
of variance of G. The derivations in this section are
presented in the Supplementary Material.

4.3. Simulation of gamma process

Parallel to the simulation of beta process in Section
3.3.1, a simulation procedure of the gamma process is
presented:

Simulation procedure: Sample the Lévy process
Γkh:
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1: Sample the number of points for Γkh: nkh ∼
Poisson(γ/(k + 1)hh);

2: Sample nkh points from α: ωkhi
i.i.d.∼ α

γ , for i =
1, 2, · · · , nkh;

3: Sample Γkh(ωkhi)
i.i.d.∼ Gamma(h, θ(ωkhi)

k+1 ), for
i = 1, 2, · · · , nkh;

where γ =
∫
Ω

α(dω) is the mass of the shape mea-
sure. Then the union

⋃∞
k=1

⋃∞
h=1(ωkhi,Γkh(ωkhi))nkh

i=1

is a realization of the gamma process G. An advan-
tage of the above simulation procedure compared to
the simulation procedure of the beta process in Sec-
tion 3.3.1 is that independent of whether the gamma
process is homogeneous or inhomogeneous, ωkhi is al-
ways drawn from a fixed distribution α/γ. Like with
the beta process construction in Section 3.3.1, for the
gamma process simulation procedure, as k increases
the expected number of new points and the expected
jumps decrease, again suggesting accurate truncation.

4.4. Truncation analysis

Since in the simulation procedure in Section 4.3 the
index k and h both go to infinity, it is practical to
analyze the distance between the true gamma process
and the truncated one. To measure such a distance,
we apply the L1 norm described in Section 3.4:

||G−
K∑

k=1

H∑
h=1

Γkh||1 = E|G−
K∑

k=1

H∑
h=1

Γkh| (30)

where the expectation in (30) is w.r.t. the normalized
measure ν/

∫
Ω

θ(ω)α(dω) with ||G||1 = 1; and K and
H are the truncation level of k and h. Then for the
situation with H = ∞:

‖G−
K∑

k=1

∞∑
h=1

Γkh‖1 =
1

K + 1
(31)

which indicates a O( 1
K ) decreasing rate as same as

the truncated beta process shown in (14). It is note-
worthy that Γ1 alone accounts for on average half the
mass of G. When H is finite, a remaining distance∑K

k=1
1

k(k+1)H+1 is added.

4.5. Generalized gamma process and
symmetric gamma process

Theorem 2 can be easily extended to some variations
of the gamma process. Here we give the examples of
the generalized gamma process (Brix, 1999) and sym-
metric gamma process (Çinlar, 2010).

The generalized gamma process extends the ordinary
gamma process by adding a parameter 0 < σ < 1,

whose Lévy measure is 1
Γ(1−σ)p

−σ−1e−
p

θ(ω) dpα(dω).
Then with the same decomposition procedure, it is
straightforward that the Lévy measure for Γkh of
the generalized gamma process will change to νkh =
Gamma(h− σ, θ(ω)

k+1 )dp α(dω)
Γ(1−σ)(k+1)hh

.

The symmetric gamma process is a Lévy process
whose increments are the differences of two gamma-
distributed variables with the same law, whose Lévy
measure is |p|−1e−

|p|
θ(ω) dpα(dω). Since there can be

negative increments, the symmetric gamma process is
not a completely random measure. However, the same
decomposition procedure is still applicable, yielding
νkh = Gamma(|p|

∣∣h, θ(ω)
k+1 )dp 2α(dω)

(k+1)hh
, where the dis-

tribution Gamma(|p|
∣∣h, θ(ω)

k+1 ) is to first draw |p| from

Gamma(h, θ(ω)
k+1 ), then decide the sign of p through a

symmetric Bernoulli distribution.

5. Conclusions

The Lévy measure decomposition of the beta and
gamma processes provides new perspectives on the two
widely used stochastic processes, by casting insights on
the sub-processes constituting them, here the Bk and
Γk. And the decomposition prescriptions described
here are far from the only ways of such decomposi-
tion. Theoretically elegant construction methods are
derived from the proposed decompositions, which are
directly implementable in practice.

We have applied the proposed beta and gamma rep-
resentations in numerical experiments, the details of
which are omitted, as this paper focuses on founda-
tional properties. However, to briefly summarize ex-
perience with such representations, consider for exam-
ple the image inpainting problem considered in (Zhou
et al., 2009), based upon a beta process factor analy-
sis model (Paisley & Carin, 2009). In experiments we
performed with such a model, using a Gibbs sampler,
the beta process prior was implemented using the pro-
cedure discussed in Section 3.3.1, with the posterior
estimation in Section 3.5 applied for inference. The
proposed representation infers a dictionary with the
“important” dictionary elements captured by the low-
index members (see the discussion in Section 3.3.1).
The model prioritized the first three dictionary el-
ements as being pure colors, specifically red, green,
and blue, with the important structured dictionary el-
ements following (and no other pure-color dictionary
elements, while in (Zhou et al., 2009) many – seem-
ingly redundant – pure-color dictionary elements are
inferred). This “clean” inference of prioritized dictio-
nary elements may be responsible for our also higher
observed PSNR in signal recovery, compared to the re-
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sult given in (Zhou et al., 2009). The new gamma pro-
cess construction in Section 4.3 may be implemented
in a similar manner, and may be employed within re-
cent models in machine learning in which the gamma
process has been utilized (e.g., (Paisley et al., 2011)).
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