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Abstract

In this paper, we address the problem of em-
bedded feature selection for ranking on top of
the list problems. We pose this problem as a
regularized empirical risk minimization with
p-norm push loss function (p =∞) and spar-
sity inducing regularizers. We leverage the is-
sues related to this challenging optimization
problem by considering an alternating direc-
tion method of multipliers algorithm which
is built upon proximal operators of the loss
function and the regularizer. Our main tech-
nical contribution is thus to provide a numer-
ical scheme for computing the infinite push
loss function proximal operator. Experimen-
tal results on toy, DNA microarray and BCI
problems show how our novel algorithm com-
pares favorably to competitors for ranking on
top while using fewer variables in the scoring
function.

1. Introduction

Learning to rank is a supervised learning problem
which objective is to estimate a scoring function from
training examples. That function is expected to define
a partial order on the examples by scoring relevant in-
stances higher than the non-relevant ones. Examples
of applications in which ranking is central are infor-
mation retrieval (Chapelle & Keerthi, 2010), drug dis-
covery (Agarwal et al., 2010).

Many machine learning algorithms have been proposed
for learning ranking functions. Some of them aim
at optimizing a pairwise ranking criterion using ex-
ponential loss, like the RankBoost of Freund et al.
(2003) or using Hinge loss (Joachims, 2002). Meth-
ods based on decision trees have also been investigated
(Clémencon & Vayatis, 2009). While these methods
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have shown their interests, they may not be optimally
targeted at a specific goal which is getting an accurate
ranking at the top of the list. Indeed, for instance,
in information retrieval, one usually wants to have
the most relevant documents as possible at the top
of the list, while getting an accurate pairwise ordering
in other part of the list is not of great importance. For
this reason, several recently proposed algorithms focus
on correctly ranking the best instances (Rudin, 2009;
Agarwal, 2011).

For most of the works we described above, the scoring
function is a linear function of the form f(x) = w⊤x,
where w is the weight vector that has to be learned.
The resulting weight vector w is usually a non-sparse
vector, which means that all features will be con-
sidered in the scoring function even though they are
non-informative. Hence, similarly to other supervised
learning paradigms, ranking methods may also bene-
fit from feature selection as keeping only few features
in the scoring function may improve performances as
well as reducing prediction time. To the best of our
knowledge, very few works have addressed the prob-
lem of feature selection in ranking (Geng et al., 2007)
and in ranking on top of the list problems. Naturally,
algorithms like the SVM-RFE or methods based on
sparsity-inducing norms like the ℓ1 norm can be easily
extended to ranking algorithms. But developing algo-
rithms for embedded feature selection becomes more
challenging when loss functions related to ranking on
top have to be considered. This is the challenge we
want to address in this paper and as far as we know,
this is the first paper proposing embedded feature se-
lection using sparsity inducing norms for ranking on
top of the list.

We focus on the recent p-norm push loss function in-
troduced by Rudin (2009) and more specifically, on
the case where p = ∞, denoted as an infinite push
framework by Agarwal (2011). In this latter work,
Agarwal (2011) has also proposed a support vector
like algorithm, named as support vector Infinite Push,
which has been proved to perform better than com-
petitors when the goal is to maximize the number of
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relevant instances on top of the list. Here, we provide
a novel algorithm for solving the regularized empirical
risk minimization related to the support vector Infi-
nite Push loss function that can also handle sparsity
inducing regularizers. While typical methods dealing
with sparsity suppose that the loss function is smooth
(Bach et al., 2011), our optimization problem is chal-
lenging since both the loss function and the regularizer
can be non-differentiable. We propose to overcome this
issue by proposing an alternating direction method of
multipliers (ADMM), which is wrapped around the
computation of the infinite push loss function proxi-
mal operator in addition to the one of the regularizer.

Globally, the paper provides contributions to the state
of the art in several points: (a) it proposes a numer-
ical scheme for computing the proximal operator of
the support vector infinite push loss function, (b) it
shows that the optimization framework we consider
offers some theoretical guarantees on the uniqueness
of the problem minimizer, property that is not always
insured by Agarwal’s algorithm, (c) it is the first paper
showing that p-norm push ranking algorithms can also
embed feature selection through the use of sparsity in-
ducing norms. It demonstrates that ranking on top
applications can also benefit from feature selection ei-
ther by improved performances or reduced prediction
time.

The paper is organized as follows. Section 2 introduces
the global framework for ranking on top of the list
as well as the optimization related to sparse support
vector infinite push. In Section 3, the ADMM-based
algorithm proposed for solving the problem and the
numerical scheme for computing the proximal operator
of the infinite push loss are presented. Experimental
results are described in Section 4 while conclusion is
in Section 5.

2. Infinite Push framework

In this section, we introduce the Infinite Push loss
function and the support vector Infinite Push opti-
mization problem we are interested in. Existence and
uniqueness of solutions to the problem are also dis-
cussed.

2.1. Infinite Push loss function

We limited ourselves to the case of bipartite ranking
problem which goal is to learn a function that, given
a training set {xi}

ℓ
i=1, xi ∈ R

d, with m positive and n

negative examples, gives higher scores to positive ex-
amples than to negatives ones. Learning such a func-
tion can be cast into an empirical regularized risk min-

imization framework, where the loss function related
to the risk is designed so as to favor higher scores for
positive examples. Typically, in such a context, the
loss function focuses on the average pairwise scoring
losses and it can be written as :

L(f(·), S) =
1

mn

∑

i,j

If(x+

i
)≤f(x−

j
)

where I· is the indicator function, S is a set of exam-
ples with known labels and f(·) is the scoring function
that we want to evaluate. Several extensions of this
loss function have been recently considered in order
to provide more importance to errors made on top of
the lists, for instance by weighting the pairwise loss
(Usunier et al., 2009) or by replacing the mean with
some more appropriate functions. For this purpose,
Rudin (2009) has introduced the Infinite Push loss
function

L(f(·), S)∞ = max
j

∑

i

If(x+

i
)≤f(x−

j
) (1)

which gets smaller as the negative example with high-
est score is assigned a small score. This loss function
is the one on which we have focused our interest.

2.2. Support Vector Infinite Push

We can now define the empirical risk minimization
(ERM) framework used for learning the scoring func-
tion f(·) that we have chosen to be linear so that
f(x) = w⊤x. the loss function given in Equation (1)
is non-convex and different convexifications proposed
in the literature have led to different ERM frameworks
and algorithms. We can mention for instance the re-
laxation by means of exponential loss that yield to
boosting-like algorithm (Rudin, 2009). If Hinge loss is
used as a convex relaxation then we get the following
Support Vector like optimization problem :

min
w

λΩ(w) + max
1≤j≤n

(

1

m

m
∑

i=1

(

1−w⊤(x+
i − x−

j )
)

+

)

(2)
where Ω(w) is some regularization term and the func-
tion (u)+ = u if u > 0 and 0 otherwise.

For Ω(w) = λ
2 ‖w‖

2, Agarwal has proposed an algo-
rithm for solving the dual of this problem, which is :

min
αi,j

1

2

∑

i,j

∑

k,l

αi,jαk,l(x
+
i − x−

j )
⊤(x+

k − x−
l )−

∑

i,j

αi,j

st
∑

j maxi(αi,j) ≤
1

λm

αi,j ≥ 0
(3)
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which has smooth quadratic objective function under
some mixed-norm constraints over the dual variables
αi,j . The algorithm is based on a nice and clever gra-
dient projection algorithm (Agarwal, 2011).

In this paper, we focus our effort on this support vec-
tor infinite push problem and propose a novel opti-
mization algorithm for solving it when Ω(w) is some
non-differentiable sparsity-inducing regularizer so as
to perform feature selection in a top-ranking learning
problem. For this purpose, we investigate an algorithm
that directly solves the primal problem in Equation
(2).

However, before delving into the details of the algo-
rithm, we discuss, in what follows the existence and
uniqueness of the solution of the primal problem (2)
based on some classical results on convex analysis:

Proposition 1. (a) For any convex regularization
term Ω(w) that is lower semi-continuous and and coer-
cive, problem (2) admits at least one solution. (b) For
any strictly convex, lower semi continuous and coer-
cive regularization term, problem (2) admits an unique
solution.

We omit the proof of these two propositions since they
are rather direct consequences of some well known re-
sults on the minimization of composite non-smooth
functions (Combettes & Pesquet, 2007). Instead, we
prefer to bring to light some properties of the pri-
mal problem compared to the dual one that are con-
sequences of these propositions :

An interesting point is that for Ω(w) = λ
2 ‖w‖

2, point
2 of the proposition guarantees uniqueness of solution
since Ω satisfies all required properties. Conversely,
when considering the dual problem (3) as in Agarwal
(2011), this property may be lost. Indeed, it can be
easily shown that when the dimensionality of the prob-
lem d is smaller than m ·n, the Hessian of the dual ob-
jective function is only positive semi-definite. We re-
mark that even for small-scale high-dimensional learn-
ing problem, the condition d < m · n can be rapidly
reached making optimization in the primal theoreti-
cally more sound.

Uniqueness of the solution for ℓ1 norms or mixed-
norms are more involved and we have left these anal-
yses for future works.

3. Algorithm for sparse Support Vector

Infinite Push

In this section, we show how we leverage the issues
raised by the non-smooth objective function in prob-
lem (2) and we describe in details the ADMM algo-

rithm we propose for solving the sparse support vector
infinite push problem.

3.1. Deriving ADMM formulation

Before delving into the derivations, we want to men-
tion that Douglas-Rachford splitting algorithm is tai-
lored for minimizing the sum of two non-smooth ob-
jective functions. However, the presence of the design
matrix will add some linear constraint on the prob-
lem, making it easier to address through an ADMM
framework. For this purpose, we rewrite the optimiza-
tion problem (2) as the following linearly-constrained
problem :

min
w,a

Ω(w) + max
1≤j≤n

(

1

m

∑

i

(ai,j)+

)

ai,j = 1−wT (x+
i − x−

j )

(4)

where Ω(w) can be any sparsity inducing norm like
the ℓ1 norm, any mixed-norm (Bach et al., 2011) or
the classical ℓ2 regularization term. Then, by prop-
erly defining the matrix X (which rows are of the
form (x+

i − x−
j )

T ), the vector a and the function

g(a) = maxj
(

1
m

∑

i max(ai,j , 0)
)

we yield the follow-
ing reformulation :

min
w,a

Ω(w) + g(a)

Xw + a− 1 = 0
(5)

The augmented Lagrangian related to this problem is

L(w,a, δ, µ) = Ω(w) + g(a) + δ⊤(Xw + a− 1)
+µ

2 ‖Xw + a− 1‖2

where δ is a vector of Lagrangian multipliers related to
the equality constraint and µ is a parameter weighting
the quadratic penalty. After rearranging the terms,
one can show that the augmented Lagrangian is

L(w,a, γ) = Ω(w) + g(a) + µ
2 ‖Xw + a− 1+ γ‖2

where γ = δ
µ
. The alternating direction method of

multipliers that solves our original problem (4) looks
for a saddle point of the augmented Lagrangian by
solving alternatively at iteration k the following prob-
lems :

wk+1 = argmin
w

L(w,ak, γk) (6)

ak+1 = argmin
a

L(wk+1,a, γk) (7)

γk+1 = γk +Xwk+1 + ak+1 − 1 (8)

All the challenges of the algorithm now resides essen-
tially in the resolution of these problems.
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3.2. Solving problem (6)

The optimization problem related tow can be restated
as

min
w

1

2
‖Xw − s‖22 +

1

µ
Ω(w)

with s being 1 − ak − γk. Depending on the form of
Ω(w), this problem becomes a ridge regression prob-
lem for Ω(w) = λ

2 ‖w‖2, a Lasso when Ω(w) = λ‖w‖1,
or another (probably known) problem if a different reg-
ularization term is considered.

For sparsity-inducing regularizers (e.g ℓ1 norm), the
problem has to be solved numerically and thus, each
iteration of the ADMM approach involves the resolu-
tion of a Lasso. Depending on the Lasso algorithm
used, one can highly benefit from warm-starting the
solution since between two consecutive ADMM itera-
tion, the second member s is not expected to vary a
lot.

For the ℓ2 norm regularizer, the solution has a closed-
form solution

wk+1 = (X⊤X+
λ

µ
I)−1(X⊤s)

In some situations, when the dimensionality of the
problem is large, it may be more efficient to numer-
ically solve this linear system by means of a conjugate
gradient descent approach.

3.3. Solving problem (7)

Now supposing that w and the Lagrangian multipliers
γ are fixed in the Lagrangian, the optimization prob-
lem related to (7) boils down to be :

ak+1 = argmin
a

g(a) +
µ

2
‖a− s‖22 (9)

with s being 1 − γk −Xwk+1. We note that by def-
inition, ak+1 is the result of 1

µ
g(·) proximal operator

applied to the vector s (Combettes & Pesquet, 2010).
Now, let us look into more details at this problem. The
most challenging part of it comes from the two nested
max functions defining g(·). In order to overcome part
of the issues, we propose to use the doubling trick and
rewrites the minimization problem as :

min
a
+,a−

1
2‖a

+ − a− − s‖22 +maxj

(

1
mµ

∑

i a
+
)

st a+ ≥ 0,a− ≥ 0
(10)

with a = a+− a−. Now, since the regularization term
and the constraints are decoupled in a+ and a−, we
suggest to solve problem (10) by means a of block-
coordinate descent (BCD) algorithm that starts from

some positive random vectors and alternatively opti-
mize over a+ then a− keeping the other vector fixed.
Before providing algorithmic details, we state here a
proposition based on the work of Tseng (2001) that
guarantees the soundness of the BCD algorithm.

Proposition 2. Let us define f0(a
+,a−) = 1

2‖a
+ −

a− − s‖22, f1(a
+) = maxj

(

1
mµ

∑

i a
+
)

+ I
a
+≥0,

f2(a
−) = I

a
−≥0, the sequence generates by the BCD

method by alternatively optimizing over a+ and a−

converges towards the minimum of Problem 10.

Proof. It is easy to see that the objective function
f(a+,a−) of Problem 10 is f(a+,a−) = f0(a

+,a−) +
f1(a

+,a−) + f2(a
+,a−). Besides, f0 is continuous on

its domain and coercive, f(·, ·) is convex with respect
to any of its parameter with the other fixed and the
functions fi(·),i = {0, 1, 2} are lower semi-continuous.
Owing to all these properties, applying Theorem 5.1
of Tseng (2001) concludes the proof.

Now, we are interested in solving each coordinate de-
scent of Equation (10). When considering minimizing
over a− with a+ fixed, the problem is rather simple
since it boils down to be a projection of −s + a+ on
the positive quadrant. Hence, we have the following
closed-form solution for each component of a− :

a−k =

{

−sk + a+k if − sk + a+k ≥ 0
0 otherwise

We can now focus on the other alternate problem

min
a
+

1
2‖a

+ − b‖22 +maxj

(

1
mµ

∑

i∈Gi
a+i

)

st a+ ≥ 0

with b = a− + s and Gi being the indices of elements
of a coupling the negative example xj with positive
examples. Interestingly, owing to the positiveness of
a+ and by replacing the constraint in the objective
value this problem is equivalent to

min
a
+

1
2‖a

+ − b‖22 +maxj

(

1
mµ

∑

i∈Gi
|a+i |

)

+ I
a
+≥0

(11)

We can note here that the solution of this problem
occurs at

a+⋆ = proxI·≥0+Ω†(b)

with I·≥0 being the indicator on the positive quad-

rant and Ω†(u) = maxj

(

1
mµ

∑

i∈Gi
|u+

i |
)

which is

a mixed ℓ∞ − ℓ1 norm on u. The proximal opera-
tor proxI·≥0+Ω(b) is non-trivial and needs to be com-
puted numerically. For this purpose, we have applied
a Douglas-Rachford algorithm which can handle the
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minimization of the sum of two non-smooth convex
functions f1 and f2. The following proposition makes
this explicit :

Proposition 3. (Combettes & Pesquet, 2010) Let f1
and f2 be two convex lower semi-continuous functions
of Rd such that the intersection of their domain rela-
tive interiors is not empty and such that f1(·) + f2(·)
is coercive. Set v0 ∈ R

d and build un for n ≥ 0 as

un = proxγf2(vn)
vn+1 = vn + η

(

proxγf1(2un − vn)− un)
) (12)

with γ > 0 and η ∈]0, 2[, then every sequence {un}
generated by this algorithm converges towards a mini-
mizer of f1 + f2.

Hence, a direct application of this algorithm to our
problem given in Equation (11) with f2(v) = 1

2‖v −

b‖22 + Iv≥0 and f1(v) = maxj

(

1
mµ

∑

i∈Gi
|vi|
)

leads

to the minimizer of Equation (11). Now the remaining
question is : what are the proximal operators of γf1
and γf2?

For γf2, we have to solve the problem

proxγf2(vn) = argmin
z

1

2
‖z−vn‖

2
2+

γ

2
‖z−b‖22+ Iz≥0

which solution can be easily proven to be

proxγf2(vn) = PC

(

vn + γb

1 + γ

)

with PC being the projection on the positive quadrant.
Now, regarding γf1, we look for

proxγf1(v) = argmin
z

1

2
‖z−v‖22+

γ

mµ
max

j

(

∑

i∈Gi

|zi|

)

(13)
which is the proximal operator of a ℓ∞ − ℓ1 mixed
norm. For solving this problem, we use classical
result from convex analysis and proximal operator
(Combettes & Wajs, 2005; Sra, 2011), which states
that the proximal operator of a norm ‖ · ‖ is

proxτ‖·‖(u) = u−Π‖·‖∗≤τ (u)

with Π‖·‖∗≤τ (u) being the projection of u on the τ -
radius ball of the dual norm ‖ · ‖∗. Then, since the
dual norm of ℓ∞ − ℓ1 norm is the ℓ1 − ℓ∞ norm, we
have

proxγf1(v) = v −Π‖·‖1,∞≤ γ

mµ
(v) (14)

This problem is easily tractable since projection of vec-
tor on a ℓ1 − ∞ ball has been recently studied and
several efficient algorithms proposed (Quattoni et al.,
2009; Sra, 2011).

Algorithm 1 ADMM approach for primal infinite
push.

1: Input : X : matrix of pairwise difference of exam-
ples, λ regularization term

2: set µ > 0, k = 0
3: initialize ak and γk to vectors of 0.
4: repeat
5: s = 1− ak − γk

6: wk+1 = argminw
1
2‖Xw − s‖22 + λΩ(w)

7: s = 1− γk −Xwk+1

8: set a+ = 0 and a− = 0
9: repeat

10: a− = max(−s+ a+, 0)
11: set b = a− + s and v0 = 0
12: repeat
13: un = 1

1+γ
max(vn + γb, 0)

14: vn+1 = vn+η(un−vn−Π‖·‖1,∞
(2un−vn))

15: until convergence is met
16: a+ = un

17: until convergence is met
18: ak+1 = a+ − a−

19: γk+1 = γt +Xwk+1 + ak+1 − 1
20: k ← k + 1
21: until condition

3.4. Convergence analysis

Convergence of Algorithm 1, for solving the primal in-
finite push problem builds upon classical convergence
results of ADMM or Douglas-Rachford splitting algo-
rithm (Eckstein & Bertsekas, 1992). Indeed, a direct
application of Theorem 8 in that paper tells us that
our algorithm converges for any µ > 0, as long as
the matrix X has full column rank (condition that is
satisfied by most non-degenerate problems for which
d < m · n) and that the computation errors of prob-
lem (6) and problem (7) are summable. Practically,
this latter condition means that the convergence cri-
terion on these two problems should become tighter
and tighter as the iterations go. However, in our im-
plementation, these stopping criteria have been kept
fixed but still no empirical problem of convergence has
been noticed.

3.5. Computational complexity

The two most computationally demanding part of our
algorithm for sparse infinite push is the Lasso prob-
lem that has to be solved at each iteration and the
projection on the ℓ1 − ℓ∞ ball. For the Lasso, there
exists efficient algorithms that scale linearly with the
number of training examples. We can, for instance,
mention the SpaRSa algorithm of Figueiredo et al.
(Figueiredo et al., 2007). Similarly, the projection on
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Figure 1. Rate of positives at top of the list of when the
number of discriminative features is 10 and the number of
noisy variables is : left) 20. right) 100.

the ℓ1 − ℓ∞ ball of Quattoni et al. (2009) has a com-
plexity of O(n log n) in the size of the vector to project.
Hence, in our case, since the number of examples in the
Lasso and the size of the vector to project are both
m · n, we end up with an algorithm which complexity
is O(m · n logm · n).

As a comparison, a plain implementation of RankSVM
would also lead to a complexity that is linear
with respects to the number of pairwise exam-
ples (Chapelle & Keerthi, 2010). However, since
RankSVM is easier to deal with as the loss function can
be made differentiable we expect RankSVM to have a
better constant.

4. Experiments

Our objective here is to provide empirical evidences
that our method can be beneficial in problems with
noisy or redundant features compared to an infinite
push approach that considers all the features. We also
show that when compared to other feature selection
methods like recursive feature elimination (RFE) in an
infinite push context, our embedded approach based
on sparsity-inducing norm provides better accuracy on
top of the list.

Note that we have not compared our methods
to other ranking algorithms, except SVMRank
(Chapelle & Keerthi, 2010), since Agarwal (2011) has
already shown the superiority of the infinite push
model on other methods for ranking positive instances
on top of the list and because these methods such as
SVMMAP does not have their sparse counterpart in
the literature.

4.1. Toy problem

On this problem, we compare the efficiency of using
an ℓ1 sparsity-inducing norm to recursive-feature elim-
ination for reducing the influence of noisy variables

in an infinite push framework. Our RFE implemen-
tation follows exactly the same procedure as the one
used for SVM RFE (Guyon et al., 2002), but replac-
ing the SVM with the infinite push algorithm as pro-
posed by Agarwal (2011). This infinite push RFE
bears strong resemblance with the backward elimina-
tion of Geng et al. (2007). For a baseline comparison,
we have also included an ℓ1 SVM Rank.

The toy problem is a binary classification problem in
R

d with evenly distributed classes. Among these d

variables, only r of them define a subspace of Rd in
which classes can be discriminated. For these r rele-
vant variables, the two classes follow a Gaussian pdf
with mean respectively µ and −µ and covariance ma-
trices randomly drawn from a Wishart distribution. µ
has been randomly drawn from {−1,+1}r. The other
d − r non-relevant variables follow an i.i.d Gaussian
probability distribution with zero mean and unit vari-
ance for both classes. We have respectively sampled
n and nt number of examples for training and test-
ing. For some experiments, n is varying, but we have
always set nt = 1000. Before learning, the training
set has been normalized to zero mean and unit vari-
ance and the test sets have been rescaled accordingly.
Hyperparameters of all methods have been chosen as
those maximizing performance on a validation set ob-
tained by random 70%− 30% split of the training set
examples.

Averaged results over 20 trials are depicted on Fig-
ure 1 which plots the rate of positive on top of the
list defined as #pos. on top

m
, with respects to varying

number of training examples for fixed number of fea-
tures. We note that our ℓ1 support vector infinite push
significantly outperforms other competitors, in most
cases with a p-value of a Wilcoxon signed rank test
lower than 0.05 (the numbers besides the markers).
We can also remark that unlike the infinite push ap-
proach, SVM Rank does not necessarily improve its
performances on the top as the number of examples
increases. This is unsurprising as SVM Rank aims at
optimizing average ranking.

Figure 2 depicts the precision and the F-measure of the
different algorithms for retrieving the true variables.
We remark that the RFE infinite push performs very
good with respects to the F-measure. However, the
use of the ℓ1 norm yields to a better precision : more
relevant variables are selected at the expense of select-
ing some irrelevant ones. This is a well known issue of
the ℓ1 norm that can be overcome using an adaptive
approach (Zou, 2006).

An empirical illustration of the computational com-
plexity of our algorithm as well as the one of a sparse
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examples.
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L1 InfPush 20 noisy features p=1.21
SVM Rank 20 noisy features p=1.05
L1 InfPush 100 noisy features p=1.43
SVM Rank 100 noisy features p=1.00

Figure 3. Examples of running time as the number of pair-
wise training examples increases for a ℓ1 Infinite Push and
an ℓ1 RankSVM with (solid) 20 and (dotted) 100 noisy fea-
ture. p is empirical exponent of the computational com-
plexity.

SVM Rank is reported in Figure 3. We can highlight
that both algorithms have an empirical exponent com-
plexity of about 1 with respects to the number of pair-
wise training examples.

4.2. Real-world problems

We also also carried out experiments on some real-
world datasets. These datasets are essentially related
to DNA microarray analysis (colon,yeast), or comes
from the UCI dataset repository (ionosphere, sonar,
spectf, wpbc), as well as P300 based BCI speller. The
same pre-processing as for the toy dataset has been
applied to these real ones.

We have compared a plain infinite push method that
does not perform embedded variable selection and a ℓ1
SVM Rank to our sparse ℓ1 infinite push. Comparison
criteria are the rate of positive examples ranked on top
and the number of variables used by the scoring func-
tions. Averaged results over 10 iterations have been
reported in Table 1. Results clearly shows that our
ℓ1 infinite push model is the model that achieves the
best compromise between accuracy on top of the list
and variable selection. Indeed, for all datasets, per-
formances on top are statistically equivalent whereas

Data Algo top # var

colon ℓ1 IP 0.41± 0.3 68.20± 25.4
d = 2000 ℓ2 IP 0.36± 0.2 -
(43-19) ℓ1 Rank 0.40± 0.3 572.40± 320.1
yeast ℓ1 IP 0.85± 0.2 25.90± 5.3
d = 79 ℓ2 IP 0.53± 0.4 -
(124-208) ℓ1 Rank 0.86± 0.2 64.20± 2.8

sonar ℓ1 IP 0.44± 0.2 23.70± 6.5
d = 60 ℓ2 IP 0.48± 0.3
(187-208) ℓ1 Rank 0.39± 0.2 59.80± 0.4
wpbc ℓ1 IP 0.18± 0.3 26.00± 12.8
d = 33 ℓ2 IP 0.34± 0.3 -
(174-194) ℓ1 Rank 0.34± 0.1 32.70± 0.7
iono ℓ1 IP 0.64± 0.2 15.00± 5.1
d = 33 ℓ2 IP 0.66± 0.1 -
(245-351) ℓ1 Rank 0.69± 0.1 33.00± 0.0
spectf ℓ1 IP 0.14± 0.1 40.70± 4.4
d = 44 ℓ2 IP 0.10± 0.1 -
(215-269) ℓ1 Rank 0.19± 0.2 43.90± 0.3

BCI ℓ1 IP 0.06± 0.04 71.1± 16
d = 310 ℓ2 IP 0.06± 0.04 -
(288-2592) ℓ1 Rank 0.07± 0.06 272.0± 7.9

Table 1. Performance of sparse ℓ1 infinite push, ℓ2 infinite
push and sparse SVM Rank on real-world datasets. the
column top denotes the average rate of positive examples
ranked on top of the list. The column #var depicts the av-
erage number of variables used in the models. Underlined
performances in the top column highligh methods whose
performances are statistically significantly worse than the
others according to a Wilcoxon signed rank test at the
level of 0.05. Number in parenthesis depicts the number of
training and testing examples.

sparse infinite push uses significantly fewer variables in
most of the cases. A reduction of a factor 20 or 8 can
respectively be achieved with respects to the original
number of variables or the number of variables selected
by SVM Rank.

5. Conclusions

We have shown in this paper that embedded fea-
ture selection based on sparsity-inducing norms can
be extended to loss functions that are themselves non-
differentiable and intrinsically complex. For sparse
SVM infinite push, we have proposed an algorithm
based on alternate direction method of multipliers that
alternatively solves a Lasso (or related) problem and
applies the proximal operator of the infinite push loss.
For computing this proximal operator, we have devised
a novel algorithm based on the projection on ℓ1 − ℓ∞
ball. Our experimental results show that our sparse
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SVM infinite push compares favorably to other ap-
proaches in terms of number of variables used in the
model as well as in term of accuracy of ranking on
top of the list. Future works will focus on algorithms
that scale linearly or sublinearly with m · n and on
theoretical analysis of the methods.
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