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Abstract

Much information available on the web is
copied, reused or rephrased. The phe-
nomenon that multiple web sources pick up
certain information is often called trend. A
central problem in the context of web data
mining is to detect those web sources that are
first to publish information which will give
rise to a trend. We present a simple and e�-
cient method for finding trends dominating a
pool of web sources and identifying those web
sources that publish the information relevant
to a trend before others. We validate our ap-
proach on real data collected from influential
technology news feeds.

1. Introduction

Temporal information is a fundamental aspect of many
datasets. Several commercial o↵erings are based on
temporal variation of web sources for data mining1.
The news domain is a prime example for an industry
where time matters. Sources that break a story gain
reputation and economic benefits. We thus consider
the problem of identifying trendsetting news sources
based on temporal correlations found in data.

Our definition of a trend setter is simple. If a single

1See e.g. http://www.google.com/trends/correlate/
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web source publishes content that will later on domi-
nate the content of a pool of other websites, we con-
sider this source as a trend setter; this approach is
similar to causality based graph analyses such as in
(Lozano and Sindhwani., 2010). In order to test the
trendsetting behavior of a web source we first extract
a time series of features from each web source. Then
we learn for each web source a convolution in this fea-
ture space that predicts the content of all other web
sources of interest.

Our contributions are as follows:

• We present an approach that detects the canon-

ical trends (CTs) in a pool of web sources. The
canonical trends capture the information cascades
with the highest impact on that collection of web
sources.

• We propose an unsupervised algorithm that iden-
tifies web sources which predict these trends be-
fore they arise. The features necessary to predict
the trends are automatically learned; they help to
identify information cascades and their temporal
dynamics.

• We evaluate the approach on a dataset of news
items from 96 popular technology newsfeeds, col-
lected over several months, showing that our ap-
proach predicts the temporal evolution of news
items better than classical topic detection.

As an example data set we collected data from the
most influential technology news websites. Bag-of-
Word (BoW) features were extracted for each website.
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We then predict the total information of all websites
at time point t using only the information of one web
source at prior time points t � ⌧ . Our results show
that some news sites can predict the future temporal
dynamics of the tech-news-sphere well, while others
fail to do so. The prediction performance can be in-
terpreted as how much a given news site can be con-
sidered as a trend setter and can be used to rank sites
according to this criterion: The better a news site pre-
dicts the future information of all other news sites, the
more influential the news site is.

2. Related Work

In the following we discuss some alternative ap-
proaches towards analysis of temporal dynamics in web
data graphs. The authors of (Sun et al., 2007) use
the temporal dynamics within a communication net-
work graph to partition the nodes of the graph into
groups. The method first extracts adjacency matrices
of the graph for di↵erent time points and then tries to
compress this time series of connections. This is done
by finding similar connection patterns over time and
group them together. The motivation of this approach
is very di↵erent from ours and a direct comparison of
these two approaches is not possible. But there is a
similarity that is worth noting: If one web source pre-
dicts the content of all other nodes perfectly, we can
focus on this single node only and forget about the
rest of the network. Thus the representation found by
our approach can be seen as an optimal compression
of the graph, too.

Other approaches towards network data graphs evolv-
ing over time investigate the di↵usion of influential
items, so called memes (Leskovec et al., 2009; Yang
& Leskovec, 2010; Gomez Rodriguez et al., 2011). In
(Leskovec et al., 2009; Yang & Leskovec, 2010) the au-
thors focus on di↵usion of n-grams in blogs and news
media. The method proposed in (Yang & Leskovec,
2010) finds those n-grams that are repeated often, i.e.
that account for a large volume of a graph. This objec-
tive is very similar to that of this study. The objective
of our method is to predict the content of a pool of
web sources optimally. This is equivalent to finding
nodes that maximize the variance explained of a pool
of other web sources. Similar to (Yang & Leskovec,
2010) we use a linear model. A decisive advantage
of our approach is that it straightforwardly extends to
non-linear dependencies (see section 5.2). Another im-
portant di↵erence is that in (Yang & Leskovec, 2010)
information transmission is modeled as an indicator
function in, meaning information has been transmit-
ted at a certain time lag or not. In our approach

we do not restrict the analysis to a binary transmis-
sion scheme. Instead we learn a gradual information
transmission model from the data. Another related
approach is (Gomez Rodriguez et al., 2011). Here the
authors analyze the temporal dynamics of information
cascades in a temporally evolving graph, in particular
how n-grams di↵use through a network. The cascades
are represented as time stamps of selected n-grams.
Di↵erent generative models are fitted to the data us-
ing convex optimization. A central assumption is that
the transmission rates can be estimated independently
for each cascade. This assumption is similar to our ap-
proach: We analyze the temporal dynamics of single
web sources independently.

Despite a number of similarities between (Leskovec
et al., 2009; Yang & Leskovec, 2010; Gomez Rodriguez
et al., 2011) and our method we emphasize an im-
portant di↵erence: All of the above approaches re-
quire that the relevant items of information are se-
lected prior to the analysis. For example in (Leskovec
et al., 2009; Yang & Leskovec, 2010) the authors an-
alyze a large data set containing millions of n-grams.
But only 1000 information cascades are selected for
the final analysis according to some heuristics. Thus
the result can depend on data selection during pre-
processing. Our approach is di↵erent in that it takes
the full data set and automatically learns the relevant
features. Another crucial di↵erence is that the above
approaches do not model dependencies between infor-
mation cascades. In real data sets it is very likely that
on piece of information is highly correlated with an-
other piece of information. The method proposed here
takes into account the dependencies between features
and models the full multivariate temporal dynamics
between web sources.

3. Canonical Trends

For our approach we extract from each web source
f 2 {1, 2, . . . , F} in our collection of F web sources
the corresponding features x

f

(t) 2 RW at time points
t = {0, 1, . . . , T}. For the sake of simplicity we here
assume regularly sampled time points. In our appli-
cation example we will extract Bag-of-Words features,
see section 6.2.1, but our approach is readily applica-
ble to other feature representations such as n-grams or
collections of hyperlinks. After feature extraction we
store the multivariate feature time series in a sparse
matrix

X

f

= [x
f

(t = 1), . . . , x
f

(t = T )] 2 RW⇥T

. (1)

We are interested not in the dynamics of a single
web source but rather the temporal variation of many
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nodes in the web graph. The joint time series of all
web sources Y

f

can be obtained as the average across
all X

f

Y

f

= 1/(F � 1)
X

f

0 6=f

X

f

0 2 RW⇥T (2)

where f

0 denotes the indices of all web sources except
f . We now represent a canonical trend (CT) y

f

(t) as
a combination w

y

2 RW of features

y

f

(t) = w

>
y

Y

f

(:, t) (3)

In our application example of BoW features we chose
a linear feature combination as the optimal tradeo↵
between a too simplistic modeling of single word oc-
currences2 and a computationally costly n-gram rep-
resentation as e.g. in (Leskovec et al., 2009). If the re-
lationships between single features are more complex,
the linear feature combination w

y

can be replaced by
arbitrary non-linear feature combinations simply by
using appropriate kernel functions (see section 5.2).

4. Canonical Trend Prediction

The aim of our approach is to predict the temporal
variation of the overall trend y

f

(t) using the infor-
mation published in the past N

⌧

hours by a single
news feed X

f

. This means we want to find a tem-
poral convolution w

x

(⌧) that uses the information of
x(t�⌧), ⌧ 2 {1, . . . , N

⌧

} to predict the canonical trend
y

f

(t). The optimal prediction of y
f

(t) based on the
content published in the past N

⌧

hours on a single
web source x

f

(t) can be formulated as

ŷ

f

(t) =
X

⌧

w

x

(⌧)>X
f

(:, t� ⌧). (4)

Neglecting the amplitude of y
f

(t) and ŷ

f

(t), minimiz-
ing the least-squares error of eq. 4 is equivalent to max-
imizing the correlation between y

f

(t) and ŷ

f

(t)

argmax
w

x

(⌧),w

y

Corr(y
f

(t), ŷ
f

(t)). (5)

The optimal w
x

(⌧) and w

y

can be computed simul-
taneously using canonical correlation analysis (CCA)
(Hotelling, 1936). CCA has proven very useful for a
wide variety of applications ranging from signal pro-
cessing (Akaike, 1976) over e�cient computation of
causality measures (Otter, 1991). The mathemati-
cal properties of CCA are as well understood (Jor-
dan, 1875) as its statistical convergence criteria (An-
derson, 1999; Fukumizu et al., 2007). Instead of stan-
dard CCA we use an extension, temporal kernel CCA

2See e.g. http://www.google.com/trends/correlate/.

(tkCCA), that can deal with high dimensional data,
small sample sizes and time delayed non-linear depen-
dencies between data (Bießmann et al., 2010). The
interpretation of w

y

and w

x

(⌧) is straightforward. In
our application example they are the directions in the
BoW feature space that maximize the correlation be-
tween a single feed and all other news feeds (or equiv-
alently – assuming normalized time series – minimize
the prediction error between the two). CCA simulta-
neously optimizes w

y

and w

x

(⌧) such that the correla-
tion between y

f

(t) and ŷ

f

(t) is invariant with respect
to all linear transformations of the data3. This is why
the correlation coe�cient in eq. 5 is called canonical.
The projection w

y

maps the data into their respective
canonical subspace. We thus refer to the time series
y

f

(t) as the canonical trend (CT) in the BoW feature
space.

The correlation coe�cient in eq. 5 is obtained from a
convolved time series. The convolution in eq. 4 sums
over all time lags ⌧ . Often it can give valuable in-
sights in the temporal dynamics between variables if
one computes a time lag dependent correlation coe�-
cient ⇢(⌧)

⇢(⌧) = Corr(w
x

(⌧)>X
f

(:, t� ⌧), w>
y

Y

f

(:, t)). (6)

We will refer to ⇢(⌧) as the canonical correlo-

gram, in complete analogy to a standard cross-
correlogram. The main di↵erence is that standard
cross-correlograms are typically computed between
two univariate signals. The canonical correlogram is
computed between high dimensional multivariate time
series, projected into their canonical subspace. The
canonical correlogram ⇢(⌧) and the coe�cients of the
convolution w

x

(⌧) reflect the temporal dynamics in the
canonical subspace. An illustrative toy data example
is shown in figure 1, for an explanation see section 6.1.

5. Canonical Trend Algorithm

Informally our approach consists of three steps:

1. Extract feature matrix X

f

for each feed

2. Temporal Embedding of single news feed X

f

3. Kernel CCA between X

f

and all other feeds Y
f

In the following we describe steps two and three in
detail. Data collection and feature extraction are de-
scribed in section 6.2.1.

3Or invariant w.r.t. non-linear transformations in the
case of kernel CCA
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5.1. Temporal Embedding

The temporal embedding is done by creating for each
feed f a new representation X̃

f

in which we add copies
of the data in X

f

, shifted back in time by a time lag ⌧

X̃

f

=

2

64
X

f,⌧=�N

⌧

...
X

f,⌧=�1

3

75 2 RWN

⌧

⇥T

. (7)

5.2. Kernel CCA

The temporal embedding operation will increase the
dimensionality of our data by a factor of N

⌧

, the num-
ber of time lags. However using the well known kernel
trick (Aizerman et al., 1964) we can e�ciently compute
CCA in kernel space. A main advantage of this trick is
that computation of non-linear dependencies becomes
a linear problem in kernel space, see e.g. (Fyfe & Lai,
2000). Another crucial advantage of kCCA for the
given problem setting is that it reduces the problem
size substantially: Estimating w

y

and w

x

(⌧) in the in-
put space requires the inversion of covariance matrices
of size (W +WN

⌧

)2, where W denotes the number of
features. In kernel space we only have to deal with
matrices of size (2T )2, where T denotes the number of
samples. For the sake of simplicity we consider linear
kernels here, but non-linear dependencies can be eas-
ily estimated by replacing the linear kernel with other
kernel functions. When using linear kernels the CCA
solution in input space is a linear expansion of data
points

w

x

(⌧) = X

f,⌧

↵, (8)

w

y

= Y

f

�. (9)

The coe�cients ↵ and � the eigenvectors of the gen-
eralized eigenvalue problem


0 K

x

K

y

K

y

K

x

0

� 
↵

�

�
= �


L

x

0
0 L

y

� 
↵

�

�

(10)

where K

x

= X̃

>
f

X̃

f

2 RT⇥T is the linear kernel ma-

trix of X̃
f

andK

y

= Y

>
f

Y

f

2 RT⇥T is the linear kernel
matrix of Y

f

. The eigenvalue � is the canonical corre-
lation on the training data set4, which yields the same
result as eq. 5. The matrices on the right hand side
are computed as L

x

= K

2

x

+ I and L

y

= K

2

y

+ I,
where  is a regularization parameter controlling the
complexity of the solution. For very noisy data  will

4We consider here only the first dimension of the canon-
ical subspace corresponding to the first eigenvalue; multi-
dimensional canonical subspaces can be found by solving
eq. 10 for more than one eigenvalue.

Algorithm 1 Canonical Trend Algorithm

Input: Data {X
f=1

, . . . , X

f=F

} 2 RW⇥T ,
optimal time lag N

⌧

, optimal regularizer 
Loop over all news feeds
for f = 1 to F do

Average over all news feeds except f
Y

f

= 1/(1� F )
P

f

0 6=f

X

f

0

Temporal Embedding (eq. 7)
X̃

f

= [X
f

(:, t�N

⌧

)>, . . . , X
f

(:, t� 1)>]>

Compute Kernels
K

x

= X̃

>
f

X̃

f

K

y

= Y

>
f

Y

f

Cross-validation loop
for fold = 1 to 10 do
Pick Training indices Tr 2 {1, . . . , T}
Pick Test indices Te 2 {1, . . . , T} \ Tr�N

⌧

↵,� = kCCA(K
x

(Tr,Tr),K
y

(Tr,Tr),)
Predict Test data
c

f,fold

= �

>
K

y

(Tr,Te)K
x

(Te,Tr)↵
end for

end for
Rank Feeds according to 1/10

P
fold

c

f,fold

be large and thus the optimal ↵ and � will be a vec-
tor with very similar entries ↵

i

, and the same will
be true for �. This e↵ectively means that eq. 8 and
eq. 9 will reduce to computing the empirical mean of
the data. After optimization of N

⌧

,  and eq. 10 we
can recover the canonical projection w

y

according to
eq. 8 and the canonical convolution w

x

(⌧) according to
eq. 9. We then could compute ŷ

f

(t) according to eq. 4
and the overall trend y

f

(t) using eq. 3. In practice
however this is suboptimal in terms of computational
cost. Instead of recovering w

y

, w

x

(⌧) and computing
y

f

(t), ŷ

f

(t), we can stay in kernel space to evaluate
the models. This yields a substantial computational
speedup once the kernels are computed. The complete
canonical trend detection algorithm is summarized in
algorithm 1.

5.3. Model evaluation for time series

In order to obtain meaningful prediction accuracies we
apply 10-fold cross-validation: we split the available
data into training and test data, estimate ↵ and �

on the training set and compute the prediction accu-
racy in eq. 5 on test data. When performing cross-
validation on time series data special care has to be
taken. In contrast to standard classification settings,
where one can simply randomly pick a certain subset
of the data, the temporal dependencies in time series
data do not allow for such a simple resampling. For
proper cross-validation we split the time series in 10
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blocks of equal length. Due to the temporal embed-
ding (see eq. 7) consecutive blocks will overlap by N

⌧

samples. Thus we discarded the first N
⌧

samples from
the training block adjacent to the test data block. This
ensured that no data point that we tested on was used
for training the KCCA model. We estimated the opti-
mal time lag and regularization parameters using 10-
fold cross-validation (nested within the training data
set) and a grid search over time lags ⌧ 2 {1, 2, . . . , 10}
and  2 {10�5

, 10�4

, . . . , 101}. Optimal regularizers 
were in the range of 10�3 to 10�1, the optimal time
lag was ⌧ = 5 hours.

5.4. Comparison with other approaches

The relevant contribution of the CT algorithm is that
it maximizes the co-variation of single web sources X

f

and other web sources Y

f

. This is accomplished by a
joint factorization of X̃

f

and Y

f

(see eq. 10). An alter-
native approach for topic detection is latent semantic

analysis (LSA) (Deerwester et al., 1990) in which only
a single matrix of BoW features is factorized. In LSA
the strongest topic v

y,f

2 RW is that subspace in the
BoW space, here the row space of Y

f

, that captures
most variance

argmax
v

y,f

(v>
y,f

Y

f

Y

>
f

v

y,f

), s.t. v>
y,f

v

y,f

= 1. (11)

The strongest topic v

x,f

in the single feed BoW space
X

f

is found analogously. Informally the relationship
between LSA and CT is similar to the relationship be-
tween principal component analysis (PCA) (Pearson,
1901) and CCA: PCA maximizes the variance within

one web source X

f

(or a collection of web sources Y
f

)
while CCA maximizes the co-variation between multi-
ple web sources X

f

and Y

f

. We compared the canon-
ical trend predictions (eq. 5) with the correlation be-
tween v

>
y,f

Y

f

and v

>
x,f

X

f

obtained by LSA on X

f

and
Y

f

separately. As an additional sanity check we also
shu✏ed the data in time and thereby destroyed the
temporal dependencies between X

f

and Y

f

(results
shown in table 1, middle column). All analyses were
performed analogously on this surrogate data set, in
order to show that the prediction accuracies were in-
deed meaningful and not just overfitted.

6. Results

We first illustrate our approach on a toy data set.
Thereafter we present some results on real data ex-
tracted from technology news feeds.

Figure 1. A toy data example (see section 6.1). Right

Panels: News feed X reports on the eruption of Eyjafjalla-
joekull 3 hours before news feed Y. Left Panels: Solution of
Canonical Trend Detection; w

y

(bottom left) has high coef-
ficients for ’Cloud’ and ’Ash’; at a time lag of ⌧ = �3 w

x

(⌧)
(top left) has high coe�cients for ’Volcano’ and ’Airplane’.
Irrelevant words have low weights. Temporal dynamics are
also captured by the correlogram ⇢(⌧) (middle left panel)
in the canonical subspace (see eq. 6): A peak at ⌧ = �3
indicates that news feed X is 3 time samples ahead of Y .

6.1. Canonical Trends: A toy data example

For illustrative purposes we consider an event that has
been reported extensively on. In 2010 a volcano on
Iceland erupted and produced a large ash cloud. Due
to this cloud a lot of flights had to be cancelled for
security reasons, as the ash could damage aircraft tur-
bines. In the course of the events, every news page
on the web reported on the eruption and its conse-
quence. Not every news page used the same words
but the overall trend across all news pages included
words like eruption, volcano, iceland, aircraft, traf-

fic etc. that co-occurred increasingly. We model this
trend in the BoW feature representation time series
of two di↵erent web sources X 2 R3 and Y 2 R3.
The trend is reflected in the di↵erent dimensions of
X with a weighting w

⇤
x

= [0.05, 0.9, 0.4]> correspond-
ing to the words Phone, Volcano, Airplane and anal-
ogously it is reflected in the dimensions of Y with the
weighting w

⇤
y

= [0.9, 0.05, 0.6]> corresponding to the
words Cloud, iPad, Ash. So one BoW dimension did
not carry relevant information (Phone, iPad) and the
other two dimensions did carry relevant information,
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respectively. The toy data was generated from an un-
derlying trend s(t) 2 R1, reflecting the volcano erup-
tion and its consequences on air tra�c, by

X(:, t) = �w

⇤
x

s(t� 3) +
p
1� �✏

x

(t) (12)

Y (:, t) = �w

⇤
y

s(t) +
p

1� �✏

y

(t)

where ✏(t) ⇠ N (0, 1) was noise drawn from a standard
normal distribution in R3 and � = 0.9 was the signal
to noise ratio of the trend. The BoW time series are
shown in the right panels of figure 1. X is generated
from the latent trend variable s(t) with a temporal lag
of �3 temporal units so that X will be ahead of Y by
3 time samples. Note that the dimensions in X were
not related to the dimensions of Y . This is a realistic
setting: In practice this is di�cult to define all possible
trends a priori, even with the help of a semantic dic-
tionary. But the increased co-occurrence of the above
mentioned trend-relevant words, that is the temporal
co-variation in the canonical subspace defined by w

⇤
x

and w

⇤
y

, captures the trend very well.

This canonical subspace is robustly found by the
canonical trend detection algorithm. The optimal con-
volution w

x

(⌧) and the projection w

y

are plotted on
the left of figure 1. They clearly reflect the structure
of w⇤

x

and w

⇤
y

that gave rise to the trend in the BoW
space. In the case of w⇤

x

, the canonical trend detection
yields a convolution, rather than a simple projection.
The additional temporal dimension indicates the tem-
poral dependency structure in the canonical subspace.
At a time lag of �3 temporal units, the web source X

predicts the web source Y best. So the optimal BoW
features for X, corresponding to w

⇤
x

, are found at a
time lag of �3. The canonical correlogram (see eq. 6)
for our toy data example is plotted in the middle panel
on the left and shows a strong peak at ⌧ = �3, indicat-
ing that X published the relevant information 3 time
units before Y .

6.2. Trend setter detection in News feeds

6.2.1. Data Collection

We collected data from 96 news feeds5during the year
of 2011. Bag-of-Word (BoW) features were extracted
using standard natural language processing tools6. Af-
ter removal of stop words and stemming our BoW dic-
tionary contained W ⇡ 105 words. The time series of
each word was tf-idf normalized. The feature time se-
ries were then stored in sparse matrices X

f

2 RW⇥T

where f = {1, . . . , F = 96} denotes news feed and
t = {1, . . . , T} denotes the time in hours. Time stamps

5http://beta.wunderfacts.com/
6http://www.nltk.org/

Figure 2. Top panel: Canonical trends y
f

(t) in arbitrary
units (a.u., each trend y

f

(t) was normalized to
P

t

y
f

(t)2 =
1) during the first three weeks of October 2011 (median
over all feeds in red and 25th/75th percentiles in gray).
Note the weekly oscillations, 5 peaks for each working
day and a trough for the weekends. Steve Jobs’ death
marks a strong peak in the first week of October. Bottom

panel: The prediction ŷ
f

(t) obtained from the news feed
http://businessinsider.com showed the highest prediction
accuracy of this trend.

of all news web sources were set to CET. For the sake
of comprehensibility in the results presented here we
focus on the month of October in 2011. In this month
a clearly detectable trend were reports of Steve Jobs’
death.

6.2.2. Canonical Trends in News feeds

As we obtain a canonical projection w

y

for each pool
of web sources Y

f

, the canonical trends that are pre-
dicted by each news feed X

f

could potentially di↵er.
In practice however, the canonical trends are very sim-
ilar. Figure 2 shows in the top panel the median and
25th/75th percentiles of all canonical trends in Oc-
tober 2011. The percentiles are very close to the me-
dian trend, indicating a large similarity of the di↵erent
canonical trends. Reports on Steve Jobs’ death mark
a pronounced peak in the first week reflected in all
canonical trends. Also note that the trends clearly re-
flect the weekly publishing activity on the news feeds,
five peaks each week and a trough reflecting the week-
end. Our results show that the temporal dynamics in
the canonical subspace can be easily interpreted and
authentically reflect the impact of relevant information
cascades in large web graphs.
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Figure 3. Top panel: Canonical convolution w
x

(⌧)
corresponding to the best predicting news feed
http://businessinsider.com (see fig. 2); plotted are
normalized weights of the top three words. Words con-
stituting the trend in fig. 2, bottom, were associated with
Steve Jobs or Apple. Bottom panel: The canonical cor-
relogram ⇢(⌧) (see eq. 6) for the top predictor reflects the
temporal dynamics between the single feed and all others.
A peak at ⌧ = �5hrs indicates an increased prediction
accuracy of all other feeds five hours in advance.

6.2.3. Canonical Trend Prediction

We investigated how well we can predict the trends in
a pool of web sources from a single web source. Table 1
shows the prediction accuracy as canonical correlation
(see eq. 5) for the ten best predictors, i.e. the trend
setter news feeds, summarized as 25th/50th/75th per-
centiles across cross validation folds. Using the in-
formation published at t � ⌧, ⌧ = {1, . . . , 5}, mean-
ing five to one hours before all other feeds, the listed
news feeds could predict the overall trend at time
t with high accuracy. For instance the web site
http://businessinsider.com predicted the content of all
other news websites in the data set in more than 50%
of the cases tested with a correlation coe�cient of
0.8. The trend prediction ŷ

f

(t) of the top trendset-
ter http://businessinsider.com is shown in the bottom
panel of figure 2. The time course clearly captures
the temporal variation of the overall trend, depicted
above in the top panel of fig. 2. In the top panel
of figure 3 the time lag dependent features of w

x

(⌧)
are depicted. The words to which the canonical trend

25th/50th/95th

Percentile Median

Website CT CTshu✏ed LSA

businessinsider 0.74/0.80/0.81 0.05 0.74
arstechnica 0.54/0.67/0.72 0.03 0.60
engadget 0.60/0.67/0.73 0.04 0.67
techcrunch 0.47/0.64/0.70 0.13 0.63
mashable 0.53/0.63/0.70 0.08 0.57
venturebeat 0.57/0.62/0.70 0.09 0.52
techdirt 0.39/0.61/0.70 0.08 0.55
theregister 0.47/0.56/0.67 0.15 0.58
forbes 0.48/0.55/0.69 0.07 0.47
guardian 0.47/0.53/0.58 0.08 0.56

Table 1. Top ten trend setter news feeds and their predic-
tion accuracies, normalized as canonical correlation. Left
column shows results of Canonical Trend (CT ) algorithm,
middle column results of CT on shu✏ed data (CTshu✏ed)
and right column the predictions obtained by LSA on X

f

and Y
f

separately (see sec 5.4).

detection algorithm assigned high weights were asso-
ciated with Steve Jobs or Apple. The corresponding
canonical correlogram ⇢(⌧) has a pronounced peak at
⌧ = �5hrs.

It is important to note that the temporal dynamics of
single features in w

x

(⌧) can be di↵erent than those
of ⇢(⌧). One reason for this is that w

x

(⌧) is non-
separable, meaning that it does not factorize into a
single temporal component and one component that
describes the dependencies in the BoW feature space.
So in order to get the full picture of the temporal dy-
namics between X

f

and Y

f

one has to look at the
time courses of all features in w

x

(⌧). However we can
identify relevant features from w

x

(⌧) by picking those
with the highest absolute weights, summed over time
lags. And we can extract the overall temporal dynam-
ics from the canonical subspace from ⇢(⌧).

We compared the predictions from the canonical trend
algorithm to predictions obtained with a standard
topic detection method (LSA, see section 5.4). The
results are shown in table 1, right column. In the LSA
setting, we extracted topics from the BoW time se-
ries of single news feeds and the average BoW time
series separately. Predictions of the strongest topics
in all news feeds based on the strongest topics in a
single feed are lower than the CT predictions. This
suggests that canonical trends found in a single web
source generalize better to a pool of web sources. This
is expected from the di↵erent objective functions of
CT (see eq. 5) and LSA (see eq. 11).
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7. Conclusion and Outlook

We presented a simple, e�cient and purely data driven
method for detecting news trends and trend setters
in web data. By making use of the kernel trick we
can e�ciently exploit the full multivariate structure
of temporal dependencies in the canonical subspace of
web graph features such as the BoW representation.
Both the detected trends and the features learned by
the algorithm authentically reflect the true impact of
information cascades in temporally evolving graphs.
Future work includes more empirical evaluations to
study temporal correlation not only from BoW fea-
tures but also from auxiliary data, such as frequency
of retweets along the lines of (Lerman & Hogg, 2010),
which predict popularity of content based on early user
interest. Another useful feature representation could
be named entities along the lines of (Gabrilovich et al.,
2004). Independent of the feature representation em-
ployed it is important to note that the CT algorithm
is unsupervised. The objective of the CT algorithm,
maximal co-variation (eq. 5), does not necessarily yield
the most interesting trends. Some information that is
highly relevant might not be reflected as the main os-
cillation in all news feeds. However the criterion used
in our approach, maximal variance explained, is use-
ful if one is interested in the web sources that have
the strongest overall impact. For more detailed anal-
yses the trend of interest could be manually defined
(for instance by picking only a few words of interest).
Future research will also have to investigate temporal
interactions between multidimensional canonical trend
subspaces. Moreover we here assumed that the tem-
poral dependencies between web sources are station-
ary in the analysis period. In general this might not
be the case. Web source dependencies can be highly
non-stationary. These non-stationarities have to be in-
vestigated using appropriate methods, as for instance
(von Bünau et al., 2009).
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