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Abstract

We consider two active binary-classification
problems with atypical objectives. In the first,
active search, our goal is to actively uncover
as many members of a given class as possible.
In the second, active surveying, our goal is
to actively query points to ultimately predict
the proportion of a given class. Numerous
real-world problems can be framed in these
terms, and in either case typical model-based
concerns such as generalization error are only
of secondary importance.

We approach these problems via Bayesian de-
cision theory; after choosing natural utility
functions, we derive the optimal policies. We
provide three contributions. In addition to
introducing the active surveying problem, we
extend previous work on active search in two
ways. First, we prove a novel theoretical re-
sult, that less-myopic approximations to the
optimal policy can outperform more-myopic
approximations by any arbitrary degree. We
then derive bounds that for certain models
allow us to reduce (in practice dramatically)
the exponential search space required by a
naive implementation of the optimal policy,
enabling further lookahead while still ensuring
that optimal decisions are always made.

1. Introduction

In many real-world classification scenarios, it can be
much easier to collect input data than to observe asso-
ciated labels, which could require relatively expensive
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human action. For this reason, considerable research in
semi-supervised and active learning has considered how
to construct models exploiting unlabeled data and also
how to intelligently request unknown labels to achieve
a given goal as cheaply as possible.

The bulk of active classification research has considered
obtaining labels to maximize some measure of predic-
tive power or model accuracy. Here, we consider two
distinctly different problems. In the first, which we call
active search, the members of one particular class are
deemed important and are to be located as quickly as
possible. Many real-world problems are of this form;
fraud detection, drug discovery, and product recom-
mendation are just a few examples. In the second task,
which we call active surveying, we seek to determine
the portion of a dataset belonging to a particular class.
Targeted opinion polling is an important and natural
real-world problem of this type.

Typical model-based active classification strategies are
not appropriate for either of these problems. The
consequence of catching a fraudster, discovering a new
cancer drug, or selling a product can be measured in
monetary terms. Learning an accurate model, on the
other hand, is only useful if it can help us locate more
items. Indeed we could make observations that give
very high performance on either task and nonetheless
produce a model that is uncertain or even completely
inaccurate on large swathes of the domain.

Rather than proposing heuristics to adapt typical active
learning algorithms to these problems, we will instead
begin “from the beginning” and analyze these problems
using Bayesian decision theory. We will first define
natural utility functions for each problem and then
derive the optimal policies.

The active search problem has been previously de-
scribed (Garnett et all |2011); here we extend that
preliminary work with two contributions. First, we
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will prove that a myopic approximation to the opti-
mal active search policy can perform arbitrary worse
than an even slightly less-myopic approximation. Our
second contribution is more practical. In the general
case, the optimal search policy requires time that grows
exponentially in the number of unlabeled points. Here
we show how for a certain class of classifiers (including
k-NN), we may identify and discard points that can-
not possibly be optimal with trivial extra computation.
In practice, this can increase the efficiency of the al-
gorithm by orders of magnitude and allow us to use
policies that might not otherwise be possible.

The rest of this paper is arranged as follows. In Sections
and [3] we formally describe the problems at hand. In
Section [d we provide and discuss the Bayesian optimal
policies for these problems. We proceed by proving a
result about the potential benefit of using the optimal
active search policy with increasingly long horizons. In
Section [6] we discuss a branch-and-bound technique to
limit the search space required for the optimal search
policy. Finally, we evaluate our methods empirically.

2. Problem Definition

Suppose we have a finite set of elements X = {z;} and
an identified subset R C X, the members of which we
will call targets. We consider the following problem.
Suppose we do not know which members of X’ belong
to R a priori, but can successively request binary ob-
servations y £ y(z € X), for an unlabeled element
x € X. We wish to actively select a sequence of queries
to maximize a given utility function.

For the active search problem, we define the utility of
a set of observations D £ {(z;,y;)} to be the number
of targets found:

u(D) £ > Vi

This simple expression naturally captures the spirit of
the problem as defined above. For the active surveying
problem, we define the utility of a set of observations to
be the variance in our induced probability distribution
over the cardinality of R:

u(D) £ —var[card R | D].

Again this expression encapsulates the goal of surveying:
polls with smaller margins of error are to be preferred.

3. Related Work

Active learning is a mature field with a large associated
body of literature (Settles, 2010)). In the active binary-
classification problem, the chosen objective is usually

related to properties of the associated probabilistic
model. Examples include generalization error (Zhu
et al.,[2003)) and optimality criteria related to the Fisher
information, such as A-optimality (Schein & Ungar)
2007)). One of the simplest active learning techniques
for binary classification is uncertainty sampling (Lewis
& Gale, [1994), which successively requests the label
for the point z* with the greatest posterior variance:
P argminw’Pr(y =1|z,D)— 1/2’.

Both objectives considered in this paper are unusual
in an active-learning context as far as the authors
know. A problem similar to active search that has
been considered is the active discovery of previously
unseen classes (He & Carbonell, |2008]). |Weitzman
(1979) considers an active search problem where there
is no dependence between outcomes and derives the
optimal policy. The problem as defined there can also
be seen as a Bayesian multi-armed bandit, and the
optimal policy can also be recovered via a Gittins index
(Gittins et al., 2011). Here we consider the case where
the “arms” of the bandits are correlated, which is a
so-called restless bandit problem.

There is a long history of statistical research investi-
gating the selection of respondants when conducting a
survey. A particular focus of such research is identify-
ing and correcting selection bias, where certain people
are more likely to be selected for a survey than others
(Berger), 2005)). Here we take a completely different ap-
proach: we actively and intentionally bias our selection
of points to query, choosing those that we believe will
increase our understanding of the class proportion as
much as possible. In the context of polling a social
network, we can reasonably expect that opinions are
in some way correlated under a notion of “similarity”
or “closeness” in the network. For this reason, polling
people with many connections throughout the network
might be more fruitful than polling people who are rel-
atively isolated. We embrace and leverage this notion
of correlated opinions and influence in our design.

4. The Optimal Bayesian Policy

As mentioned previously, our approach to the active
search and surveying problems will be motivated by
Bayesian decision theory. This will require selecting a
classification model that provides the posterior prob-
ability of a point = belonging to R conditioned on
previously observed data D, Pr(y =1 | 2, D). We will
assume that this model is given a priori; the decision
theoretic analysis does not depend on its nature.

Without loss of generality, we will assume that at the
onset we will be allowed a fixed number of queries t.
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In applications where the cost of obtaining a label is
high, it is the total cost of the queries that limits their
number, rather than the quantity of unlabeled points.

We now derive the policy for deciding the locations of
our queries, which will entail successively calculating
the expected utility of each of the remaining unlabeled
points then observing the label for the point that with
maximal expected utility. At time ¢, then, we will
observe the label for the point

*

rf £ argmax ]E[u(Dt) |$¢7Di71]
2, €X\D;i_1

We begin by considering the case when we are allowed
to make exactly one more query and will then address
the general case. Suppose that we have already made
t — 1 observations D;_1. To select our final observation,
we calculate the expected utility of a candidate point
x¢, marginalizing out the unknown value of y;.

For active search, the expected utility is

E[u(Dy) | @, Di—1] = 32, w(Dy) Pr(ye = y | x4, Di—1)
’U,(thl) + Pr(yt =1 | xt7Dt71)~

Because u(D;_1) does not depend on ¢, the optimal
decision x} is therefore the point with the largest poste-
rior probability of being a target. This makes intuitive
sense: with only one evaluation remaining, there is no
possible benefit to explore, and we might as well make
a purely greedy last try.

For active surveying, the expected utility is

Ey U(Dt) Pr(yt =Y | Tt thl)
=E,, |—var[card R | D] | :ct,Dt_l}.

The optimal decision z} is therefore the point with the
smallest expected variance of p(card R | D). This is
a bit more opaque than the active search expression
above, but is still intuitively reasonable.

Given the optimal policy for selecting z;, we now con-
sider the problem of choosing the location of the second-
to-last point ;1. When making our decision in this
case (as well as with any other x; with ¢ < ¢), the
problem becomes more difficult because we must now
contemplate the possible consequences of our choices
and how they will impact our future decisions. The
mechanical manifestation of this remark is that during
the calculation of the expected utility for the two-step
lookahead case, we must integrate out the unknown

location of the final observation x;, as well as its label:

Dt |~Tt 1, Di— 2]:

/// (Dy) Pr(ye—1 | @41, De—2)p(xs | Div)- -

~Pr(y; | x4, Dy—1) dys—1 dog dyz. (1)

Note, however, that the integral over x; can be evalu-
ated trivially because p(z; | Dy_1) is simply 6(z; —a})[T]
where J is the Dirac delta function—that is, given the
value of y;_1, the location of the last choice x; is de-
terministic and known from our discussion above.

To evaluate the two-step expected utility at a point
xy_1, we therefore sample over the unknown value
yt—1 € {0,1}; for each possible value of y;_1, we find
the optimal last observation z} given that fictitious
observation as described above. Note that sampling
over y; is not required in the search case.

We may repeat the procedure described above recur-
sively to calculate the expected ¢-step lookahead utility
of choosing a point for any ¢ < ¢, allowing us to oper-
ate on any horizon. We note that some authors would
equivalently discuss the preceding analysis in terms
of Bellman’s equation and Markov decision processes
(MDPs); our choice of presentation is purely stylisticﬂ

As noted in (Garnett et al., [2011)), the optimal policies
for both of these problems in general requires running
time O((2card X)*). For lookahead more than a few
steps into the future, this procedure can become daunt-
ing due to the sampling required. This is a common
issue in sequential Bayesian decision problems. One
typical way to address this problem is to approximate
exact inference by shortening our horizon (Jones et al.,
1998} |Osborne et al., |2009). For timestep ¢ — m with
m > £, we myopically pretend that there are only ¢ ob-
servations remaining and choose z;_,, by maximizing
the ¢-step lookahead expected utility. We will address
this issue further in Section [l and show how in some
reasonable cases we can restrict the exponential search
space required to find the ¢-step optimal decision.

5. Potential Gain from Looking Ahead

In this section we will discuss the behavior of the /-
step optimal search policy versus the m-step policy, for
£ < m. Let us first consider the behavior of the two-
step policy versus the simple greedy one-step policy.
Notice that the two-step policy allows us to make deci-
sions that do not maximize the posterior probability

!Note that x; depends on the unknown value of y;_1.

2In the MDP form, the potential for computational sav-
ings via dynamic programming is more apparent; however,
the state space is still exponential in t.
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Figure 1: The simple probability model used in the discus-
sion comparing the typical behavior of the optimal policy
versus a greedy policy. The points on the left are known
to have the same label, and the marginal probability of
that label is Pr(y = 1) £ ¢. The label of the solitary point
on the right is independent of the others with probability
Priy=1)26 >e.

of observing a target at the current step. Instead, we
might choose to explore a region where the probability
of immediate reward is lower, but where there is a
chance of discovering more targets overall during the
next two evaluations. We will give a very simple exam-
ple that demonstrates the effect of this tradeoff in the
active search case. Figure [1] shows a three-point space.
The two connected points have the same label; they are
known to either both be targets or both be nontargets,
with marginal probability of their being targets €. The
point on the right is independent of the others and has
probability of being a target § > . Consider being
allowed two label queries with the goal of locating as
many targets as possible. We may calculate the ex-
pected performance of the one- and two-step policies
directly. The one-step policy will always choose the
right point first and then will be compelled to choose
either of the left points, with expected final utility 4.
The expected two-step utility of the left points is each
2¢ + (1 — €)d, and the expected two-step utility of the
right point is € +4. The difference in two-step expected
utility between either left point and the right point is
g(1—9) > 0; therefore one of the left points will always
be chosen, and the two-step policy will outperform the
one-step greedy policy on average for any value of 4.

This example demonstrates the sort of nontrivial de-
cisions that the optimal policy can make—it can be
better to explore a region where labels are expected
to be highly correlated, even when the probability of
being “lucky” and finding many targets is much smaller
than the current most likely single point. A welcome
side effect of this behavior is that when such a decision
is made, we learn about the labels of the points in
the chosen region even if we do not observe a target.
Such evaluations can therefore be advantageous by our
having improved the overall quality of our probabilistic
model, despite this goal not having been specified at
any step during our derivation of the optimal policy.

We can extend the ideas in the above example to prove
that, in the case of active search, increasing our hori-
zon can always improve performance by any arbitrary
degree. Let P 2 (2,2, Pr) be a (discrete) probability
space on ). Given P, we will denote the expected util-
ity of the ¢-step-lookahead policy after ¢ evaluations
with Ep [u(D) | ¢, t, P]. We may prove the following.

Theorem 1. Let {,m € Nt . ¢ < m. For any q > 0,
there exists a P and t such that

Ep [u(D) | m,t,P]
Ep[u(D) | ¢,t,P]

> q;

that is, the m-step active-search policy can outperform
the {-step policy by any arbitrary degree.

Proof. As in the simple example above, the key to the
argument is that /-step lookahead cannot differentiate
between a “clump” of correlated points of size ¢ and
one of size greater than /. To formalize this concept,
define a (k, €)-clump, denoted & ., to be a collection
of k discrete points that all have the same label, with
marginal probability of being all targets €.

Consider applying the m-step lookahead policy for
querying t labels on the space

t
P2 ®@.
i=1

The policy is easy to analyze in this case. After no
evaluations, every point in the domain has the same
expected m-step utility by symmetry. After observing
that point, either a clump of targets will have been dis-
covered (with probability €), or a clump of nontargets.
In the former case, the remaining ¢ — 1 evaluations
will all be spent querying the remaining points in the
selected clump, because they will all have maximal
expected utility for all horizons. In the latter case, a
point in another unobserved clump will be chosen, and
the response to the outcome will be the same. Given
this, we may calculate:

Ep[u(D) | m,t,P] =Y e(1—e) (t—i+1). (2)

i=1

We now augment P with ¢ copies of @5, with 6 > e:

"t (Ue)eUe)

It is trivial to show that the /-step utility of a point in
a @5 is greater than the /-step utility of a point in a
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@, The form for each is of the same form as ([2)), and
their difference may be calculated directly; it is

(1—e)'—(1=8)"+5""((1-0)*~1)—e ' ((1—¢)*~1) > 0.

Despite the fact that the t-clump has more potential
targets, the /-step lookahead policy greedily chooses
the more immediately fruitful /-clump.

With this, we may find an upper bound for Ep [u(D) |
(,t,P]. Consider build a string S (initially empty) as
follows. Sample r from U(0,1). If r < §, append ¢ 1s
to S; otherwise, append a 0. Repeat a k times. At
termination, the probability of a character in .S being a
1 does not depend on k; it is 9¢/s(¢—1)+1. We can simu-
late the ¢-step method by stopping when length(S) > ¢
and taking the first ¢ characters. When we stop, the
expected number of 1s in the first ¢t can obviously not
be greater than the expected number in S, which has
length at most (¢t + ¢ — 1):

t+0)6¢

Ep[u(D) | £,t,P] < 5((;1))“ 3)
The final component of the proof is showing that even
if € < 4, the m-step lookahead expected utility of a
point in one of the t-clumps is greater than the m-
step lookahead expected utility of a point in one of
the f-clumps. One can in fact prove the following,
which generalizes the situation in Figure [1| (consider as
€e—07).

Lemma 1. Let ¢, m,k e NT, L <m <k, and € (0,1)
be given. Then there is a € < § such that the expected
m-step utility of a point in an unobserved @E is greater
than that of a point in an unobserved @6.

Set € < ¢ such that the m-step policy selects the @,
clumps. Notice that the m-step policy will behave iden-
tically as before, except that it can now switch to the
0 5 clumps with fewer than m evaluations remaining
in “unlucky” cases. The right-hand side of (2)) therefore
still serves as a lower bound on its performance in this
new space.

Finally, combining the lower bound in and the
upper bound in , we have

Ep [u(D) | m,t,P]
Ep[u(D) | £,t,P]
- (A=) +et+e—-1))(0(f—1)+1)
ebl(t + 0) ’

which may be made arbitrarily large by taking small
enough ¢ and large enough ¢. O

6. Bounding the Active Search Space

We will now discuss how we may, in certain situations,
reduce the (’)((2 card X )[) search space required by
the /-step optimal active search policy. Our approach
will entail a “branch and bound”-style strategy, where
we will leverage relatively inexpensive-to-calculate in-
equalities to prune suboptimal branches of the search
space from consideration. This will require establish-
ing two inequalities. First, we find a lower bound
on the maximal /-step active search expected utility
among the unlabeled points. Next we find an upper
bound on the /-step expected utility of a given unla-
beled point, as a function of its current probability.
Combining these bounds together will ultimately pro-
vide us with a threshold 8 such that any point x with
Pr(y = 1| z,D) < 0 cannot possibly be the optimal
{-step action. In the below we will assume we start at
timestep 1 and progress to timestep ¢, beginning with
an arbitrary starting set D;.

6.1. A lower bound on maxE[u(Dy) | z1, D]

We will first establish a trivial lower bound on the
maximal /-step expected utility. Let

(',p) £ (arg) max Pr(y =1 z,Dy)
z€X\D1

be the point with the highest posterior probability of
being a target at the first timestep, along with its
probability. Let

u' £ E[u(Dy) | 21 =2/, D1]. (4)

Clearly then v’ is a trivial bound on the maximal
expected f-step utility.

6.2. An upper bound on E[u(Dy) | z1, D]

We now find an upper bound on the ¢-step expected
utility for any arbitrary point z;. Our approach will
require the chosen classification model to meet two
conditions. First, we must have that conditioning on
a new nontarget observation cannot raise the target
probability for any unlabeled point. Second, we must be
able to bound the maximum target probability among
unlabeled points after conditioning on a given number
of additional targets; that is, we assume there is a
function p*(n, D) such that

*(n, D) > Pr(y =1z, DUD, "< n).
p(n,D) 2 max rly=1|z Syep ¥ <n)

(5)
With the p* function in hand, we will define a function
u*(¢,n, D) that represents a bound on the maximum

{-step utility among any unlabeled point after n addi-

y' €D’
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tional target observations. For ¢ = 1, we define
u*(¢ =1,n,D) £ p*(n, D).

That this bound is valid follows immediately from the
analysis of the simple one-step active search case. For
¢ > 1, we may build u* recursively:

u*(6,n,D) £ p*(n,D)(u*(¢ —1,n+1,D) +1) +
(1—p*(n,D))u*(¢ —1,n,D).

With u* now defined, for a given point x, we have

E[U(Dg) | x1 = x,Dl] <
Pry=1|z,D)(v*(¢(—1,1,D) + 1)+
(1-Pr(y=1|2,D))u*(¢-1,0,D). (6)

Combining and @, we may eliminate any point
such that the right-hand side of @ is less than u/,
because it cannot possibly be the optimal action. Of
course, we may apply this pruning technique at all
depths of the search tree, allowing for deeper subopti-
mal subtrees to be found and eliminated as well.

7. Results

We implemented the optimal active search and survey-
ing policies in MATLAB, as well as uncertainty sampling.
Using this implementation, we evaluated the perfor-
mance of our policies on both synthetic and real data.

In our search experiments, we used a simple k-nearest
neighbor classifier. Let NN(z) represent the k-nearest
neighbors of the point z in X', and let L-NN(z) represent
the subset of NN(z) for which we currently have label
observations. We define
/
Pr(y=1]|z,D) % i ZZ/EL'NN(JC) Y . (7)
1+ ZI’GL-I\'N(I) 1

Here the constant v € [0, 1] serves as a “pseudocount,”
which smooths the probabilities on points that have
few labeled neighbors. In our experiments, we fixed
v £ 1/10. This model worked well empirically, and
we may also easily derive the bound on maximum
probabilities in required for pruning the search
space as described above. If we consider a point = with
current probability

Y ta
Pr(y=1|z,D) = 5

then after conditioning on new observations D’ con-
taining at most n more positive observations, we have

Yyt+a+n
Pr(y=1|z,DUD > ,cry <n) < ————.

Note that this bound can be trivially modified
to allow for arbitrary weight functions to be in-
cluded in the model; there n could be replaced with

n(maxIIENN(I) w(z, x’))

7.1. Illustrative example

We begin with a simple example problem that illus-
trates the behavior of the active search and active
surveying approaches versus uncertainty sampling.

Let I £ [0,1] be the unit square. We repeated the
following experiment 100 times. We selected 250 points
uniformly at random from I, which formed our input
space X. Any point landing within Euclidean distance
1/4 of any of the points (0,0), (0,1), (1,0), (1,1) or
(1/2,1/2) (the four corners and the center point) formed
the set of targets R. We picked one point uniformly at
random from R and added it and its label to a training
set. We then used the one-step optimal active search
policy, the one-step optimal active surveying policy,
and uncertainty sampling to select ten more points.

Figure [2] shows kernel density estimates of the points
selected by the algorithms across all experiments. The
difference in behavior is immediate. Uncertainty sam-
pling strongly focuses on the corners, where variance is
typically the highest, the search policy strongly focuses
on the learned locations of the targets, including the
center, and the surveying policy strongly avoids the
corners, which, despite having high variance, are not
terribly informative about the space overall.

7.2. CiteSeer* data

For our next experiment, we created a graph from a
subset of the CiteSeer™ citation network. Papers in the
database were grouped based on their venue of publi-
cation (after extensive data cleaning), and papers from
the 48 venues with the most associated publications
were retained. The graph was defined by having these
papers as its nodes (38079 in total) and undirected
citation relations as its edges. We designated all papers
appearing in NIPS proceedings (2198 in total, 5.2% of
the dataset) as targets. Differentiating these papers is
difficult; many highly related venues are also prevalent.

For our results presented here, we computed what Fouss
et al. (2007) calls “graph principal component analysis,’
which is equivalent to performing principal component
analysis on card V' vectors (one corresponding to each
node) embedded in R(2dV)=1 that are separated by a
graph metric called commute timeﬂ The first 20 graph

)

3The commute time between nodes v and v’ is the ex-
pected time a simple random walk beginning at v takes to
hit v" and return.
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Figure 2: Kernel density estimates of the distribution of points chosen by@ uncertainty sampling, @ one-step optimal
active search, and |(c)} one-step optimal active surveying for the simple two-dimensional demonstrative example. Darker

blue indicates more probability mass.
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Figure 3: Cumulative number of targets found during 1000
steps of several active querying schemes on the CiteSeer™
data. The dashed red line shows the expected performance
of random sampling.

principal components formed our set X', and our model
was as in (7)) with & £ 50.

Again, we selected a single point at random from R to
form an initial training set, then ran 500 steps of the
one-, two-, and three-step active search policies with

the goal of finding as many NIPS papers as possible.

This experiment was repeated ten times.

On average, the one-step algorithm found 167 NIPS
papers; the two-step algorithm found 180, and the
three-step algorithm found 187. Random search would
be expected to find only 29 papers given the same
number of evaluations. Figure [3] shows the cumulative
number of targets found by each of the methods. The
three-step lookahead procedure was able to find 8.5%
of the targets after scanning only 1.3% of the data, 6.5
times better than expected by random search.

To test active surveying, we selected 75 evaluations
(starting again with a single training point from R)
using three different approaches: random search, un-
certainty sampling, and the one-step optimal active-
surveying policy. To estimate the class proportion, we
subsampled the remaining unlabeled points, selecting
5% each time, and averaged the inferred means and
variances of p(card R | D) from five such samples.

After each evaluation of each method, we estimated
the mean and variance of card R given the training
data collected thus far, as described above. We evalu-
ated each method’s performance by approximating the
posterior over the class proportion card R/card ¥ with a
beta distribution whose parameters («, 3) were selected
via moment-matching to the mean and variance of the
induced posterior distribution over this quantity. We
then computed the likelihood of the true unknown class
proportion under this beta distribution. Figure[d]shows
the progression of these likelihoods for each method
over the course of the experiment. After a period of
time where all methods have similar performance, the
optimal policy begins to significantly outperform the
other two methods, which behave nearly identically.
There is clear utility to our active-surveying approach,
even when the number of samples taken is very small.

7.3. The effect of search-space pruning

Finally, we measured the effect of our branch-and-
bound method described in Section [0l With the same
data and experimental setup as in the CiteSeer* ex-
periment, we measured the time required by one itera-
tion of the optimal /-step lookahead search policy, for
2 < ¢ < 4, both with and without the advantage of our
pruning method. These times were measured given 100
random starting configurations, chosen as before.
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Figure 4: Likelihood of the true class proportion under the
moment-matched beta distribution fit to the predictions
made after each of the first 75 evaluations made by each
method in the CiteSeer® experiment.

Table 1: The average time (in seconds) taken for one it-
eration of the ¢-step lookahead optimal search policy on
the CiteSeer™ data, for 1 < £ < 4. Some times are approxi-
mate. For reference, the one-step policy took an average of
2.24 x 1073 s per iteration.

{=2 {=3 =4
pruning 0.228s 15.0s 7458
no pruning 166s  ~146days ~30500 years
speedup 731 8.42 x 10° 1.29 x 10°

The results are summarized in Table[Il The effect of
our pruning strategy in this case is dramatic, enabling
us to extend our search horizon far beyond what the
realm of possibility would have been otherwise.

8. Conclusion

We have presented the Bayesian optimal policy to two
atypical active-learning problems related to binary clas-
sification, which we call active search and active sur-
veying. The former focuses on actively seeking out
members of a set of identified targets as quickly as pos-
sible, and the latter focuses on predicting the portion
of the dataset belonging to an identified class. Our
approach was to define sensible utility functions for
these problems and then to derive the optimal Bayesian
policy for each of them. The optimal policy for each
takes the same form, but in practice the behavior of
each can be dramatically different due to the sharply
contrasting underlying utility functions.

In addition to introducing the active surveying prob-
lem, we have extended previous preliminary work on
active search in two ways. We first proved a theoretical

result showing that the potential advantage of farther
lookahead horizons is unbounded. We then presented a
branch-and-bound method for pruning the exponential
search space required for active search in certain cases,
which we showed can improve the computational per-
formance of the optimal policy by orders of magnitude.
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