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Abstract
As machine learning algorithms enter applica-
tions in industrial settings, there is increased in-
terest in controlling their cpu-time during testing.
The cpu-time consists of the running time of the
algorithm and the extraction time of the features.
The latter can vary drastically when the feature
set is diverse. In this paper, we propose an al-
gorithm, the Greedy Miser, that incorporates the
feature extraction cost during training to explic-
itly minimize the cpu-time during testing. The
algorithm is a straightforward extension of stage-
wise regression and is equally suitable for regres-
sion or multi-class classification. Compared to
prior work, it is significantly more cost-effective
and scales to larger data sets.

1. Introduction
The past decade has witnessed how the field of machine
learning has established itself as a necessary component
in several multi-billion-dollar industries. The applications
range from web-search engines (Zheng et al., 2008), over
product recommendation (Fleck et al., 1996), to email and
web spam filtering (Weinberger et al., 2009). The real-
world industrial setting introduces an interesting new prob-
lem to machine learning research: computational resources
must be budgeted and costs must be strictly accounted for
during test-time. Imagine an algorithm that is executed 10
million times per day. If a new feature improves the accu-
racy by 3%, but also increases the running time by 1s per
execution, that would require the project manager to pur-
chase 58 days of additional cpu time per day.

At its core, this problem is an inherent tradeoff between
accuracy and test-time computation. The test-time compu-
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tation consists of two components: 1. the actual running
time of the algorithm; 2. the time required for feature ex-
traction.

In this paper, we propose a novel algorithm that makes this
trade-off explicit and considers the feature extraction cost
during training in order to minimize cpu usage during test-
time. We first state the (non-continuous) global objective
which explicitly trades off feature cost and accuracy, and
relax it into a continuous loss function. Subsequently, we
derive an update rule that shows the resulting loss lends
itself naturally to greedy optimization with stage-wise re-
gression (Friedman, 2001).

While algorithms such as (Viola & Jones, 2002) directly
attack the problem of fast evaluation for visual object de-
tection, in most machine learning application domains,
such as web-search ranking or email-spam filtering, analy-
sis and algorithms for on-demand feature-cost amortization
are still in their early stages.

Different from previous approaches (Lefakis & Fleuret,
2010; Saberian & Vasconcelos, 2010; Pujara et al., 2011;
Chen et al., 2012), our algorithm does not build cascades
of classifiers. Instead, the cost/accuracy tradeoff is pushed
into the training and selection of the weak classifiers. The
resulting learning algorithm is much simpler than any prior
work, as it is a variant of regular stage-wise regression, and
yet leads to superior test-time performance. We evaluate
our algorithm’s efficacy on two real world data sets from
very different application domains: scene recognition in
images and ranking of web-search documents. Its accuracy
matches that of the unconstrained baseline (with unlimited
resources) while achieving an order of magnitude reduc-
tion of test-time cost. Because of its simplicity, high ac-
curacy and drastic test-time cost-reduction we believe our
approach to be of strong practical value for a wide range of
problems.



The Greedy Miser

2. Related Work
Previous work on cost-sensitive learning appears in the
context of many different applications. Most prominently,
Viola & Jones (2002) greedily train a cascade of weak clas-
sifiers with Adaboost (Schapire, 1999) for visual object
recognition. Cambazoglu et al. (2010) propose a cascade
framework explicitly for web-search ranking. They learn
a set of additive weak classifiers using gradient boosting,
and remove data points during test-time using proximity
scores. Although their algorithm requires almost no extra
training cost, the improvement is typically limited. Lefakis
& Fleuret (2010) and Dundar & Bi (2007) learn a soft-
cascade, which re-weights inputs based on their probability
of passing all stages. Different from our method, they em-
ploy a global probabilistic model, do not explicitly incor-
porate feature extraction costs and are restricted to binary
classification problems. Saberian & Vasconcelos (2010)
also learn classifier cascades. In contrast to prior work,
they learn all cascades levels simultaneously in a greedy
fashion. Unlike our approach, all of these algorithms fo-
cus on learning of cascades and none explicitly focus on
individual feature costs.

To consider the feature cost, Gao & Koller (2011) pub-
lished an algorithm to dynamically extract features during
test-time. Raykar et al. (2010) learn classifier cascades, but
they group features by their costs and restrict classifiers at
each stage to only use a small subset. Pujara et al. (2011)
suggest the use of sampling to derive a cascade of classi-
fiers with increasing cost for email spam filtering. Most re-
cently, Chen et al. (2012) introduce Cronus, which explic-
itly considers the feature extraction cost during training and
constructs a cascade to encourage removal of unpromising
data points early-on. At each stage, they optimize the co-
efficients of the weak classifiers to minimize the classifi-
cation error and trees/features extraction costs. We pursue
a very different (orthogonal) approach and do not optimize
the cascade stages globally. Instead, we strictly incorporate
the feature cost into the weak learners. Moreover, as our al-
gorithm is a variant of stage-wise regression, it can operate
naturally in both regression and multi-class classification
scenarios. (Simultaneous with this publication, Grubb &
Bagnell (2012) also proposed a complementary approach
to incorporate feature cost into gradient boosting.)

3. Notation and Setup
Our training data consist of n input vectors {x1, . . . ,xn}∈
Rd with corresponding labels {y1, . . . , yn} ∈ Y drawn
from an unknown distributionD. Labels can be continuous
(regression) or categorial (binary or multi-class classifica-
tion). We assume that each feature α has an acquisition cost
cα > 0 during its initial retrieval. Once a feature has been
acquired its subsequent retrieval is free (or set to a small

constant).

Further, we are provided an arbitrary continuous loss func-
tion ` and aim to learn a linear predictorHβ(x) = β>h(x)
to minimize the loss function,

min
β
`(β), (1)

within some test-time cost budget, which will be defined in
the following section. One example for ` is the squared-
loss

`sq(β) =
1

2n

n∑
i=1

(Hβ(xi)− yi)2 , (2)

but other losses, for example the multi-class log-
loss (Hastie et al., 2009), are equally suitable. The map-
ping x → h(x) is a non-linear transformation of the in-
put data that allows the linear classifier to produce non-
linear decision boundaries in the original input space. Typ-
ically, the mapping h can be performed implicitly through
the kernel-trick (Schölkopf, 2001) or explicitly through, for
example, the boosting-trick (Friedman, 2001; Rosset et al.,
2004; Chapelle et al., 2010). In this paper we use the lat-
ter approach with limited-depth regression trees (Breiman,
1984). More precisely, h(xi) = [h1(xi), . . . , hT (xi)]

>,
ht ∈ H where H is the set of all possible regression trees
of some limited depth b (e.g. b = 4) and T = |H|. The
resulting feature space is extremely high dimensional and
the weight-vector β is always kept to be correspondingly
sparse. Because regression trees are negation closed (i.e.
for each h ∈ H we also have−h ∈ H) we assume through-
out this paper w.l.o.g. that β ≥ 0.

Finally, we define a binary matrix F ∈ {0, 1}d×T in which
an entry Fαt = 1 if and only if the regression tree ht ∈H
splits on feature α somewhere within its tree.

4. Method
In this section, we formalize the optimization problem of
test-time computational cost, and then intuitively state our
algorithm. We follow the setup introduced in (Chen et al.,
2012), formalizing the test-time computational cost of eval-
uating the classifier H for a given weight-vector β.

Test-time computational cost. There are two factors that
contribute to this cost: The function evaluation cost of all
trees ht with βt > 0 and the feature extraction cost for
all features that are used in these trees. Let e > 0 be the
cost to evaluate one tree ht if all features were previously
extracted. With this notation, both costs can be expressed
in a single function as

c(β) = e‖β‖0 +
d∑

α=1

cα

∥∥∥∥∥
T∑
t=1

Fαtβt

∥∥∥∥∥
0

, (3)
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where the l0-norm for scalars is defined as ‖a‖0 → {0, 1}
with ‖a‖0 = 1 if and only if a 6= 0. The first term captures
the function-evaluation costs and the second term captures
the feature costs of all used features. If we combine (1)
with (3) we obtain our overall optimization problem

min
β
`(β), subject to: c(β) ≤ B, (4)

where B≥ 0 denotes some pre-defined budget that cannot
be exceeded during test-time.

Algorithm. In the remainder of this paper we derive an
algorithm to approximately minimize (4). For better clarity,
we first give an intuitive overview of the resulting method
in this paragraph. Our algorithm is based on stage-wise
regression, which learns an additive classifier Hβ(x) =∑m
t=1 βtht(x) that aims to minimize the loss function (4).1

During iteration t, the greedy Classification and Regression
Tree (CART) algorithm (Breiman, 1984) is used to gener-
ate a new tree ht, which is added to the classifier Hβ.

Specifically, CART generates a limited-depth regression
tree ht ∈ H by greedily minimizing an impurity function,
g : H→R+

0 . Typical choices for g are the squared loss (2)
or the label entropy (Hastie et al., 2009). CART minimizes
the impurity function g by recursively splitting the data set
on a single feature per tree-node. We propose an impurity
function which on the one hand approximates the negative
gradient of ` with the squared-loss, such that adding the re-
sulting tree ht minimizes `, and on the other hand penalizes
the initial extraction of features by their cost cα. To capture
this initial extraction cost, we define an auxiliary variable
φα ∈ {0, 1} indicating if feature α has already been ex-
tracted (φα = 0) in previous trees, or not (φα = 1). We
update the vector φ after generating each tree, setting the
corresponding entry for used features α to φα := 0. Our
impurity function in iteration t becomes

g(ht)=
1

2

∑
i

(
− ∂`

∂H(xi)
−ht(xi)

)2

+λ

d∑
α=1

φαcαFαt,

(5)
where λ trades off the loss with the cost.

To combine the trees ht into a final classifier Hβ, our al-
gorithm follows the steps of regular stage-wise regression
with a fixed step-size η > 0. As our algorithm is based on
a greedy optimiser, and is stingy with respect to feature-
extraction, we refer to it as the Greedy Miser (short miser).
Algorithm (1) shows a pseudo-code implementation.

1Here, w.l.o.g. the trees inH are conveniently re-ordered such
that exactly the first m trees have non-zero weight βt.

Algorithm 1 Greedy Miser in pseudo-code
Require: D = {(xi, yi)}ni=1, step-size η, iterations m
H = 0
for t = 1 to m do
ht ← Use CART to greedily minimize (5).
H ← H + ηht.
For each feature α used in ht, set φα ← 0.

end for
Return H

5. Algorithm Derivation
In this section, we derive a connection between (4) and
our miser algorithm by showing that miser approximately
solves a relaxed version of the optimization problem.

5.1. Relaxation

The optimization as stated in eq. (4) is non-continuous, be-
cause of the l0-norm in the cost term—and hard to opti-
mize. We start by introducing minor relaxations to both
terms in (3) to make it better behaved.

Assumptions. Our optimization algorithm (for details
see section 5.2) performs coordinate descent and — start-
ing from β=0 — increments one dimension of β by η>0
in each iteration. Because of the extremely high dimen-
sionality (which is dictated by the number of all possible
regression trees that can be represented within the accu-
racy of the computer) and the comparably tiny number of
iterations (≤ 5000) it is reasonable to assume that one di-
mension is never incremented twice. In other words, the
weight vector β is extremely sparse and (up to re-scaling
by 1

η ) binary: 1
ηβ ∈ {0, 1}T .

Tree-evaluation cost. The l0-norm is often relaxed into
the convex and continuous l1-norm. In our scenario, this
is particularly attractive, because if 1

ηβ is binary, then the
re-scaled l1 norm is identical to the l0 norm—and the re-
laxation is exact. We use this approach for the first term:

e‖β‖0 −→
e

η
‖β‖1. (6)

Feature cost. In the case of the feature cost, the l1 norm
is not a good approximation of the original l0-norm, be-
cause features are re-used many times, in different trees.
Using the l1-norm would imply that features that are used
more often would be penalized more than features that are
only used once. This contradicts our assumption that fea-
tures become free after their initial construction.

We therefore define a new function q, which is a re-scaled

http://www.yourdictionary.com/miser
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and amputated version of the `1-norm:

q(x) =

{ |xη | for |x| ∈ [0, η)

1 for |x| ∈ [η,∞).
(7)

This penalty function q behaves like the regular `1 norm
when |x| is small, but is capped to a constant when x ≥ η.
With this definition, our relaxation of the feature-cost term
becomes:

d∑
α=1

cα

∥∥∥∥∥
T∑
t=1

Fαtβt

∥∥∥∥∥
0

−→
d∑

α=1

cαq

(
T∑
t=1

Fαtβt

)
. (8)

Similar to the previous case, if 1
ηβ is binary, this relax-

ation is exact. This holds because in (8) all arguments
of q are non-negative multiples of η (as Fαt ∈ {0, 1} and
βt ∈ {0, η}) and it is easy to see from the definition of q
that for all k = 0, 1, . . . , we have q(kη) = ‖kη‖0.

Continuous cost-term. To simplify the optimization, we
split the budget into two terms B = Bt + Bf—the tree-
evaluation budget and the feature extraction budget—and
re-write (4) with the two penalties (6) and (8) as two indi-
vidual constraints. If we use the Lagrangian formulation,
with Lagrange multiplier λ (up to re-scaling), for the fea-
ture cost constraint and the explicit constraint formulation
for the tree-evaluation cost, we obtain our final optimiza-
tion problem:

min
β

`(β) + λ

d∑
α=1

cαq

(∑
t

Fαtβt

)
(9)

s.t.
1

η
‖β‖1 ≤

Bt
e
.

5.2. Optimization

In this section we describe how miser, our adaptation of
stage-wise regression (Friedman, 2001), finds a (local) so-
lution to the optimization problem in (9).

Solution path. We follow the approach from Rosset et al.
(2004) and find a solution path for (9) for evenly spaced
tree-evaluation budgets, ranging from B′t = 0 to B′t =Bt.
Along the path we iteratively increment B′t by η. We re-
peatedly solve the intermediate optimization problem by
warm-starting (9) with the previous solution and allowing
the weight vector to change by η,

min
δ≥0

L(β+δ)︷ ︸︸ ︷
`(β + δ) + λ

d∑
α=1

cαq

(∑
t

Fαt(βt + δt)

)
, (10)

s.t. ‖δ‖1 ≤ η.

Each iteration, we update the weight vector β := β + δ.

Taylor approximation. The Taylor expansion of L is de-
fined as

L(β + δ) = L(β) + 〈∇L(β), δ〉+O(δ2). (11)

If η is sufficiently small2, and because |δ| ≤ η, we can use
the dominating linear term in (11) to approximate the opti-
mization in (10) as

min
δ≥0
〈∇L(β), δ〉, s.t. ‖δ‖1 ≤ η. (12)

Coordinate descent. The optimization (12) can be re-
duced to identifying the direction of steepest descent. Let
∇L(β)t denote the gradient w.r.t. the tth dimension, and
let us define

t∗ = argmin
t
∇L(β)t, (13)

to be the gradient dimension of steepest descent. Because
H is negation closed, we have ∇L(β)t∗ = −‖∇L(β)‖∞.
(If ∇L(β)t∗ = 0 we are done, so we focus on the case
when it is <0.) With Hölder’s inequality we can derive the
following lower bound of the inner product in (12),

〈∇L(β), δ〉 ≥ −|〈∇L(β), δ〉|
≥ −‖∇L(β)‖∞‖δ‖1
≥ η∇L(β)t∗ . (14)

We can now construct a vector δ∗ for which (14) holds as
equality, which implies that it must be the optimal solution
to (12). This is the case if we set δ∗t∗ = η and δ∗6=t∗ = 0.
Consequently, we can find the solution path with steepest
coordinate descent under step-size η.

Gradient derivation. The gradient ∇L(β)t consists of
two parts, the gradient of the loss ` and the gradient of the
feature-cost term. For the latter, we need the gradient of
q (
∑
t Fαtβt), which, according to its definition in (7), is

not well-defined if
∑
t Fαtβt = η. As our optimization al-

gorithm can only increase βt, we derive this gradient from
the right, yielding

∇q
(∑

t

Fαtβt

)
=

{ 1
ηFαt |

∑
t Fαtβt| < η

0 |∑t Fαtβt| ≥ η.
(15)

Note that the condition |∑t Fαtβt|<η is true if and only if
feature α is not used in any trees with βt>0. Let us define
φα = {0, 1} with φα = 1 iff feature |∑t Fαtβt|<η. We
can then express the gradient of L (with a slight abuse of
notation) as

∇L(β)t :=
∂`

∂βt
+
λ

η

d∑
α=1

cαφαFαt. (16)

2Please note that we see this as a true approximation, and do
not expect η to be infinitesimally small—which would cause the
number of steps (and therefore trees) to become too large for prac-
tical use.

http://en.wikipedia.org/wiki/Taylor_series
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Applying the chain rule, we can decompose the first term in
(16), ∂`

∂βt
, into two parts: the derivatives w.r.t. the current

prediction Hβ(xi), and the partial derivatives of Hβ(xi)
w.r.t. βt. This results in

∇L(β)t=
n∑
i=1

∂`

∂Hβ(xi)

∂Hβ(xi)

∂βt
+
λ

η

d∑
α=1

cαφαFαt.

(17)

AsHβ(xi)=β>h(xi) is linear, we have ∂Hβ(xi)
∂βt

=ht(xi).
If we define ri = − ∂`

∂Hβ(xi)
, which we can easily compute

for every xi, we can re-phrase (17) as

∇L(β)t=
n∑
i=1

−riht(xi) +
λ

η

d∑
α=1

cαφαFαt. (18)

The Greedy Miser. For simplicity, we restrict H to only
normalized regression-trees (i.e.

∑
i h

2
t (xi) = 1), which

allows us to add two constant terms 1
2

∑
i h

2
t (xi) and r2i

to (18) without affecting the outcome of the minimization
in (13), as both are independent of t. This completes the
binomial equation and we obtain a quadratic form:

ht=argmin
ht∈H

1

2

n∑
i

(ri − ht(xi))2+λ′
d∑

α=1

cαφαFαt,

(19)

with λ′ = λ
η . Note that (19) is exactly what miser mini-

mizes in (5), which concludes our derivation.

Meta-parameters. The meta-parameters of miser are sur-
prisingly intuitive. The maximum number of iterations, m,
is tightly linked to the tree-evaluation budget Bt. The op-
timal solution of (12) must satisfy the equality ‖δ∗‖1 = η
(unless ∇L= 0, in which case a local minimum has been
reached and the algorithm would terminate). As ‖β‖1 is
exactly increased by η in each iteration, it can be expressed
in terms of the number of iterationsm of the algorithm, and
we obtain 1

η‖β‖1 = m. Consequently, in order to satisfy
the l1 constraint in (9), we must limit to the number of iter-
ations to m ≤ Bt

e . The parameter λ′ corresponds directly
to the feature-budget Bf . The algorithm is not particularly
sensitive to the exact step-size η, and throughout this paper
we set it to η=0.1.

6. Results
We conduct experiments on two benchmark tasks from
very different domains: the Yahoo Learning to Rank Chal-
lenge data set (Chapelle & Chang, 2011) and the scene
recognition data set from Lazebnik et al. (2006).

Yahoo Learning to Rank. The Yahoo data set contains
document/query pairs with label values from {0, 1, 2, 3, 4},

where 0 means the document is irrelevant to the query, and
4 means highly relevant. In total, it has 473134, 71083,
165660, training, validation, and testing pairs. As this is a
regression task, we use the squared-loss as our loss function
`. Although the data set is representative for a web-search
ranking training data set, in a real world test setting, there
are many more irrelevant data points. Usually, for each
query, only a few documents are relevant, and the other
hundreds of thousands are completely irrelevant. There-
fore, we follow the convention of Chen et al. (2012) and
replicate each irrelevant data point (label value is 0) 10
times.

Each feature in the data set has an acquisition cost.
The feature costs are discrete values in the set
{1, 5, 10, 20, 50, 100, 150}. The unit of these costs is ap-
proximately the time to evaluate a feature. The cheapest
features (cost value is 1) are those that can be acquired by
looking up a table (such as the statistics of a given docu-
ment), whereas the most expensive ones (such as BM25F-
SD described in Broder et al. (2010)), typically involve
term proximity scoring.

To evaluate the performance on this task, we follow the typ-
ical convention and use Normalized Discounted Cumula-
tive Gain (NDCG@5) (Järvelin & Kekäläinen, 2002), as it
places stronger emphasis on retrieving relevant documents
within a large set of irrelevant documents.

Loss/cost trade-off. Figure 1 (left) shows the traces
(dashed lines) of the NDCG@5/cost generated by repeat-
edly adding trees to the predictor until 3000 trees in total
— essentially depicting the results under increasing tree-
evaluation budgets Bt. The different traces are obtained
under varying values of the feature-cost trade-off parameter
λ. The baseline, stage-wise regression (Friedman, 2001), is
equivalent to miser with λ = 0 and is essentially building
trees without any cost consideration. The red circles indi-
cate the iteration with the highest NDCG@5 value on the
validation data set. The graph shows, that under increased
λ (the solid red line), the NDCG@5 ranking accuracy of
miser drops very gradually, while the test-time cost is re-
duced drastically (compared to λ=0).

Comparison with prior work. In addition to stage-wise
regression, we also compare against Stage-wise regression
feature subsets, Early Exit (Cambazoglu et al., 2010) and
Cronus (Chen et al., 2012). Stage-wise regression feature
subsets is a natural extension to stage-wise regression. We
group all features according to the feature cost, and gradu-
ally use more expensive feature groups. The curve is gen-
erated by only using features whose cost≤ 1, 20, 100, 200.
Early Exit, proposed by Cambazoglu et al. (2010), trains
trees identical to stage-wise regression—however, it re-
duces the average test-time cost by removing unpromising
documents early-on during test-time. Among all methods
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Figure 1. The NDCG@5 and the test-time cost of various classifier settings. Left: The comparison of the original Stage-wise regression
(λ = 0) and miser under various feature-cost/accuracy trade-off settings (λ) on the full Yahoo set. The dashed lines represent the
NDCG@5 as trees are added to the classifier. The red circles indicate the best scoring iteration on the validation data set. Right:
Comparisons with prior work on test-time optimized cascades on the small Yahoo set. The cost-efficiency curve of miser is consistently
above prior work, reducing the cost, at similar ranking accuracy, by a factor of 10.

of early-exit the authors suggested, we plot the best per-
forming one (Early Exit Using Proximity Threshold). We
introduce an early exit every 10 trees (300 in total), and
at the ith early-exit, we remove all test-inputs that have
a score of at least (300−i)s

299 lower than the fifth best input
(where s is a parameter regulating the pruning aggressive-
ness). The overall improvement over stage-wise regression
is limited because the cost is dominated by the feature ac-
quisition, rather than tree computation. It is worth point-
ing out that the cascade-based approaches of Early-Exits
and Cronus are actually complementary to miser and fu-
ture work should combined them.

Since Cronus does not scale to the full data set, we use
the subset of the Yahoo data from Chen et al. (2012) of
141397, 146769, 184968, training, validation and testing
points respectively. In comparison to Cronus, which re-
quires O(mn) memory, miser requires no significant oper-
ational memory besides the data and scales easily to mil-
lions of data points. Figure 1 (right) depicts the trade-
off curves, of miser and competing algorithms, between
the test-time cost and generalization error. We generate
the curves by varying the feature-cost trade-off λ (or the
pruning parameter s for Early-Exits). For each setting we
choose the iteration that has the best validation NDCG@5
score. The graph shows that all algorithms manage to
match the unconstrained cost-results of stage-wise regres-
sion. However, the trade-off curve of miser stays consis-
tently above that of Cronus and Early Exits, leading to bet-
ter ranking accuracy at lower test-time cost. In fact, miser
can almost match the ranking accuracy of stage-wise re-
gression with 1/10 of the cost, whereas Cronus reduces the
cost only to 1/4 and Early-Exits to 1/2.
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Figure 2. Features (grouped by cost c) used in miser with vari-
ous λ (the number of features in each cost group is indicated in
parentheses in the legend). Most cheap features (c = 1) are ex-
tracted constantly in different λ settings, whereas expensive fea-
tures (c≥ 5) are extracted more often when λ is small. The most
expensive (and invaluable) feature c = 200 is always extracted.

Feature extraction. To investigate what effect the feature-
cost trade-off parameter λ has on the classifier’s feature
choices, Figure 2 visualizes what type of features are ex-
tracted by miser as λ increases. For this visualization, we
group features by cost and show what fraction of features in
each group are extracted. The legend in the right indicates
the cost of a feature group and the number of features that
fall into it (in the parentheses). We plot the feature fraction
at the best performing iteration based on the validation set.
With λ=0, miser does not consider the feature cost when
building trees, and thus extracts a variety of expensive fea-
tures. As λ increases, it extracts fewer expensive features
and re-uses more cheap features (cα = 1). It is interesting
to point out that across all different miser settings, a few
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Figure 3. Accuracy as a function of cpu-cost during test-time. The
curve is generated by gradually increasing λ. Miser champi-
ons the accuracy/cost tradeoff and obtains similar accuracy as the
SVM with multiple kernels with only half its test-time cost.

expensive features (cost≥150) are always extracted within
early iterations. This highlights a great advantage of miser
over some other cascade algorithms (Raykar et al., 2010),
which learn cascades with pre-assigned feature costs and
cannot extract good but expensive features until the very
end.

Scene Recognition. The Scene-15 data set (Lazebnik et al.,
2006) is from a very different data domain. It contains 4485
images from 15 scene classes and the task is to classify im-
ages according to scene. Figure 4 shows one example im-
age for each scene category. We follow the procedure used
by Lazebnik et al. (2006); Li et al. (2010), randomly sam-
pling 100 images from each class, resulting in 1500 training
images. From the remaining 2985 images, we randomly
sample 20 images from each class as validation, and leave
the rest 2685 for test.

We use a diverse set of visual descriptors varying in compu-
tation time and accuracy: GIST, spatial HOG, Local Binary
Pattern, self-similarity, texton histogram, geometric texton,
geometric texton, geometric color, and Object Bank (Li
et al., 2010). The authors from Object Bank apply 177 ob-
ject detectors to each image, where each object detector
works independently of each other. We treat each object
detector as an independent descriptor and end up with a to-
tal of 184 different visual descriptors.

We split the training data 30/70 and use the smaller subset
to construct a kernel and train 15 one-vs-all SVMs for each
descriptor. We use the predictions of these SVMs on the
larger subset as the features of miser (totaling d=184×15=
2760 features.) As loss function `, we use the multi-class
log-loss (Hastie et al., 2009) and maintain 15 tree-ensemble
classifiers H1, . . . ,H15, one for each class. During each

suburbanbedroom industrial kitchen living room

coast forest highway inside city mountain

open country street tall building office store

Figure 4. Sample images of the Scene 15 classification task.

iteration, we construct 15 regression trees (depth 3) and
update all classifiers. For a given image, each classifier’s
(normalized) output represents the probability of this data
point belonging to one class.

We compute the feature-extraction-cost as the cpu-time re-
quired for the computation for the visual descriptor, the
kernel construction and the SVM evaluation. Each visual
descriptor is used by 15 one-vs-all features. The moment
any one of these features is used, we set the feature extrac-
tion cost of all other features that are based on the same vi-
sual descriptor to only the SVM evaluation time (e.g. if the
first HOG-based feature is used, the cost of all other HOG-
based features is reduced to the time required to evaluate
the SVM). Figure 3 summarizes the results on the Scene-15
data set. As baseline we use stage-wise regression (Fried-
man, 2001) and an SVM with the averaged kernel of all de-
scriptors. We also apply stage-wise regression with Early
Exits. As this is multi-class classification instead of re-
gression we introduce an early exit every 10 trees (300 in
total), and we remove test-inputs whose maximum class-
likelihood is greater than a threshold s. We generate the
curve of early exit by gradually increasing the value for s.
The last baseline is original vision features with `1 regular-
ization, and we notice that its accuracy never exceeds 0.74,
and therefore we do not plot it. The miser curve is gen-
erated by varying loss/feature-cost trade-off λ. For each
setting we choose the iteration that has the best validation
accuracy, and all results are obtained by averaging over 10
randomly generated training/testing splits.

Both, multiple-kernel SVM and stage-wise regression
achieve high accuracy, but their need to extract all features
significantly increases their cost. Early Exit has only lim-
ited improvement due to the inability to select a few expen-
sive but important features in early iterations. As before,
miser champions the cost/accuracy trade-off and its accu-
racy drops gently with increasing λ.

All experiments (on both data sets) were conducted on a
desktop with dual 6-core Intel i7 cpus with 2.66GHz. The
training time for miser requires comparable amount of time
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as stage-wise regression (about 80 minutes for the full Ya-
hoo data set and 12 minutes for Scene-15.)

7. Conclusion
Accounting for the operational cost of machine learning al-
gorithms is a crucial problem that appears throughout cur-
rent and potential applications of machine learning. We be-
lieve that understanding and controlling this trade-off will
become a fundamental part of machine-learning research in
the near future. This paper introduces a natural extension
to stage-wise regression (Friedman, 2001), which incorpo-
rates feature cost during training. The resulting algorithm,
the Greedy Miser, is simple to implement, naturally scales
to large data sets and outperforms previously most cost-
effective classifiers.

Future work includes combining our approach with Early
Exits (Cambazoglu et al., 2010) or cascade based learning
methods such as (Chen et al., 2012).
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