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Abstract

We present a novel approach to the formula-
tion and the resolution of sparse Linear Dis-
criminant Analysis (LDA). Our proposal, is
based on penalized Optimal Scoring. It has
an exact equivalence with penalized LDA,
contrary to the multi-class approaches based
on the regression of class indicator that have
been proposed so far. Sparsity is obtained
thanks to a group-Lasso penalty that selects
the same features in all discriminant direc-
tions. Our experiments demonstrate that
this approach generates extremely parsimo-
nious models without compromising predic-
tion performances. Besides prediction, the
resulting sparse discriminant directions are
also amenable to low-dimensional represen-
tations of data. Our algorithm is highly ef-
ficient for medium to large number of vari-
ables, and is thus particularly well suited to
the analysis of gene expression data.

1. Introduction

Linear Discriminant Analysis (LDA) aims at finding
the “best” separation of a set of observations into
known classes. It is used for two main purposes: to
classify future observations or to describe the essen-
tial differences between classes, either by providing a
visual representation of data, or by revealing the com-
binations of features that discriminate between classes.
An additional widely employed practice is to extract
features by LDA, which is then used as a simple di-
mensionality reduction method taking into account the
discriminant information.

LDA originates from the analysis of the within and be-
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tween groups variances (Fisher, 1936), leading to the
maximization of a separability criterion. It can be re-
lated to the estimation of the conditional probabilities
of classes given the observations (without modelling
their distribution), via a connection with the regres-
sion of class indicators. Finally, it can also be derived
as a plug-in classifier under the assumption of normal
distributions for the classes, with different means but
a common variance matrix.

Sparse LDA refers here to formulations revealing dis-
criminant directions that only involve a few variables.
Besides cases where the sparsity of the true discrim-
inants is assumed, such as most genetic analyses,
sparse classification methods may be motivated by in-
terpretability, robustness of the solution, or computa-
tional restraints for evaluation in prediction.

The most common approach to sparse LDA consists in
performing variable selection in a separate step, before
classification. Variable selection is then usually based
on univariate statistics, which are fast and convenient
to compute, but whose very partial view of the overall
classification problem may lead to dramatic informa-
tion loss. As a result, several approaches have been
devised in the recent years to construct LDA with em-
bedded feature selection capabilities.

Our Group-Lasso Optimal Scoring Solver (GLOSS)
addresses a sparse LDA problem globally, through the
regression approach of LDA. Our analysis formally re-
lates GLOSS to Fisher’s discriminant analysis, and
also enables to derive variants, such that LDA assum-
ing diagonal within-class covariance structure (Bickel
& Levina, 2004). The group-Lasso selects the same
features in all discriminant directions, which provide a
more interpretable low-dimensional representation of
data. Compared to the competing approaches, the
models are extremely parsimonious without compro-
mising prediction performances. Our algorithm effi-
ciently processes medium to large number of variables,
and is thus particularly well suited to the analysis of
gene expression data.
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This paper is organized as follows. Section 2 intro-
duces the basic notations that are necessary for stating
Fisher’s discriminant problem. Section 3 reviews the
main approaches that have been followed to perform
sparse LDA via regression. We then derive a connec-
tion between sparse optimal scoring and sparse LDA
in Section 4. The GLOSS algorithm is described in
Section 5 and experimental results follow in Section 6,
before our final concluding remarks of Section 7.

2. Primary Notations and Definitions

Vectors are denoted by lowercase letters in bold font
and matrices by uppercase letters in bold font. Un-
less otherwise stated, vectors are column vectors and
parentheses are used to build line vectors from comma-
separated lists of scalars, or to build matrices from
comma-separated lists of column vectors.

The data consist of a set of n labeled examples, with
observations xi ∈ Rp comprising p features, and la-
bel yi ∈ {0, 1}K indicating the exclusive assignment
of observation xi to one of the K classes. It will be
convenient to gather the observations in the n×p ma-
trix X = (xᵀ1 , . . . ,x

ᵀ
n)
ᵀ

and the corresponding labels
in the n×K matrix Y = (yᵀ1 , . . . ,y

ᵀ
n)
ᵀ
.

The two main components of LDA are the within-class
and between-class covariance matrices. We consider
centered observations, so that the global sample mean
is null, and S = n−1XᵀX is the sample covariance ma-
trix. The cardinality of class k in the training sample
is nk, and the sample mean for class k is µ̂k. The
between-class sample covariance matrix is

Sb =
1

n

K∑
k=1

nk µ̂kµ̂
ᵀ
k

= n−1XᵀPYX ,

where PY = Y (YᵀY)
−1

Yᵀ projects onto the span of
Y. The within-class sample covariance matrix is

Sw =
1

n

K∑
k=1

∑
{i:yik=1}

(xi − µ̂k) (xi − µ̂k)
ᵀ

= n−1Xᵀ (In −PY) X , (1)

where In is the identity matrix of size n.

The Fisher discriminant was originally defined in bi-
nary classification, as the linear projection that “best”
separates the observations from each class, that is,
maximizing the between-class variance relative to the
within-class variance in the considered projection.
This objective may also be stated as the maximization

of between-class variance subject to unitary within-
class variance, so as to define a unique maximizer.

When considering several projections, there are sev-
eral equivalent formulations of LDA, which may differ
once a penalization scheme is applied. Here, we use
a definition based on subspace projection, where the
discriminant directions maximally separate the class
means subject to orthonormal constraints:

BLDA = argmax
B∈Rp×M

tr(BᵀSbB)

s. t. BᵀSwB = IM ,
(2)

where BLDA = (β1, . . . ,βM ) gathers the M ≤ K − 1
discriminant directions, and tr(·) is the trace operator.
This definition was chosen here for its succinctness, but
it is incomplete with regard to the usual textbook LDA
procedure where the discriminant directions are com-
puted iteratively so as to maximally separate the class
means subject to orthonormality constraints: here, the
discriminant directions are defined up to an orthonor-
mal transformation. Note that this is a notational
problem and that we can recover such an ordering in
the GLOSS procedure proposed here.

3. Sparse LDA

LDA is often used as a data reduction technique, where
the K − 1 discriminant directions summarize the p
original variables. However, all variables intervene in
the definition of these discriminant directions, and this
trait may be troublesome in some applications.

Several modifications of LDA have been proposed
to generate sparse discriminant directions. They
can be categorized according to the LDA formula-
tion that provides the basis to the sparsity induc-
ing extension, that is, either Fisher’s Discriminant
Analysis (variance-based), Gaussian mixture model
(based on the assumption of the normality of classes)
or regression-based. We briefly review here the ap-
proaches belonging to the last category to introduce
the method proposed in this paper.

Fisher (1936) introduced what is now known as
Fisher’s linear discriminant analysis in his analysis of
the famous iris dataset, and discussed its analogy with
the linear regression of the scaled class indicators. This
route was further developed, for more than two classes,
by Breiman & Ihaka (1984) as an inspiration for a
non-linear extension of discriminant analysis using ad-
ditive models. They named their approach optimal
scaling, for it optimizes the scaling of the indicators of
classes together with the discriminant functions. Their
approach later disseminated under the name optimal
scoring (OS) by Hastie et al. (1994), who proposed
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several extensions of LDA, either aiming at construct-
ing more flexible discriminants (Hastie & Tibshirani,
1996) or more conservative ones (Hastie et al., 1995).

Several sparse LDA have been derived using sparsity-
inducing penalties on the OS regression problem
(Leng, 2008; Grosenick et al., 2008; Clemmensen et al.,
2011). These proposals are motivated by the equiva-
lence between penalized OS and penalized LDA, but
since sparsity-inducing penalties are non-quadratic,
they fall beyond the realm of the equivalence stated
by Hastie et al. (1995). Until now, no rigorous link
was derived between sparse OS and sparse LDA.

In this paper, we demonstrate that the equivalence
between penalized OS and penalized LDA is preserved
for the non-quadratic Lasso penalty for binary clas-
sification. However, the connection collapses in the
general multi-class setting. We thus propose GLOSS,
based on the group-Lasso, that preserves the equiva-
lence between sparse OS and sparse LDA in the general
multi-class situation.

4. From Sparse OS to Sparse LDA

We relate here a sparse OS problem, penalized by the
group-Lasso, with a sparse LDA problem. Our deriva-
tion uses a variational formulation of the group-Lasso
to generalize the equivalence drawn by Hastie et al.
(1995) for quadratic penalties.

4.1. A Variational Form of the Group-Lasso

Quadratic variational forms of the Lasso and group-
Lasso have been proposed shortly after the original
Lasso paper of Tibshirani (1996), as a means to ad-
dress optimization issues, but also as an inspiration
for generalizing the Lasso penalty (Grandvalet, 1998;
Grandvalet & Canu, 1999). The algorithms based on
these quadratic variational forms iteratively reweight
a quadratic penalty. They are now often outperformed
by more efficient strategies (Bach et al., 2012).

4.1.1. A Quadratic Variational Form

We now present a handy convex quadratic varia-
tional form of the group-Lasso. Let B ∈ Rp×M

be a matrix composed of row vectors βj ∈ RM ,

B =
(
β1ᵀ, . . . ,βpᵀ)ᵀ.We consider the following prob-

lem:

min
τ∈Rp

min
B∈Rp×M

J(B) + λ

p∑
j=1

w2
j

∥∥βj
∥∥2
2

τj
(3a)

s. t.
∑

j τj −
∑

j wj

∥∥βj
∥∥
2
≤ 0 (3b)

τj ≥ 0 , j = 1, . . . , p . (3c)

where wj are predefined weights. Here and in what
follows, b/τ is defined by continuation at zero as b/0 =
∞ if b 6= 0 and 0/0 = 0. Note that variants of (3) have
been proposed elsewhere (see e.g. Grandvalet & Canu,
1999; Bach et al., 2012, and references therein).

Lemma 1. The quadratic penalty in βj in (3) acts as
the group-Lasso penalty λ

∑p
j=1 wj

∥∥βj
∥∥
2
.

This equivalence is crucial to the derivation of the link
between sparse OS and sparse LDA; it furthermore
suggests a convenient implementation. We sketch be-
low some properties that are instrumental in the im-
plementation of the active-set described in Section 5.

4.1.2. Useful Properties

The first property states that the quadratic formula-
tion is convex when J is convex, thus providing an easy
control of optimality and convergence.

Lemma 2. If J is convex, Problem (3) is convex.

In what follows, J will be a convex quadratic (hence
smooth) function, in which case a necessary and suffi-
cient optimality condition is that zero belongs to the
subdifferential of the objective function. This condi-
tion results in an equality for the “active” non-zero
vectors βj , and an inequality for the other ones, which
both provide essential building blocks of our algorithm.

Lemma 3. Problem (3) admits at least one solution,
which is unique if J is strictly convex. All critical
points B of the objective function verifying the follow-
ing conditions are global minima.

∀j ∈ S , ∂J(B)

∂βj
+ λwj

∥∥βj
∥∥−1
2
βj = 0 , (4a)

∀j ∈ Sc ,
∥∥∥∥∂J(B)

∂βj

∥∥∥∥
2

≤ λ . (4b)

where S ⊆ {1, . . . , p} denotes the set of non-zero row
vectors βj and Sc(B) is its complement.

Lemma 3 provides a simple appraisal of the support
of the solution, which would not be as easily handled
with the direct analysis of the variational problem (3).

4.2. Penalized Optimal Scoring

In binary classification, the regression of (scaled) class
indicators enables to recover the LDA discriminant di-
rection. For more than two classes, this approach is
impaired by the masking effect (Hastie et al., 1994),
where the scores assigned to a class situated between
two other ones may never dominate. Optimal scoring
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(OS) circumvents the problem by assigning “optimal
scores” to the classes.

Hastie et al. (1995) proposed to incorporate a smooth-
ness prior on the discriminant directions in the OS
problem through a positive-definite penalty matrix Ω,
leading to a problem expressed in compact form as

min
Θ,B

‖YΘ−XB‖2F + λ tr(BᵀΩB) (5)

s. t. ΘᵀYᵀYΘ = IK−1 ,

where Θ are the class scores, B the regression coeffi-
cients, and ‖·‖F is the Frobenius norm.

Hastie et al. (1995) proved that, under the assump-
tion that YᵀY and XᵀX + λΩ are full rank (which
is fulfilled when there are no empty class and Ω is
positive definite), Problem (5) is equivalent to a pe-
nalized LDA problem, where the sample within-class
covariance Sw defined in (1) is replaced in (2) by the
“shrunken” estimate

Σ̂w = n−1 (Xᵀ (In −PY) X + λΩ)

= Sw + n−1λΩ . (6)

Note that Σ̂w has larger eigenvalues than Sw; shrink-
age refers here to the bias of Σ̂w towards Ω. Linear
discriminant classifiers are invariant to the “size” of
Σ̂w, that is, not modified by an overall scaling of Σ̂w.

The equivalence states that the solutions in B to the
OS problem can be mapped to the solutions of the
corresponding penalized LDA problem. The parame-
ters of this mapping are furthermore computed when
solving the OS optimization problem.

Though non-convex, the OS problem is readily solved
by a decomposition in Θ and B: the optimal B? does
not intervene in the optimality conditions with respect
to Θ and the optimization with respect to B is ob-
tained in a closed form as a linear combination of the
optimal scores Θ? (Hastie et al., 1995). The algorithm
may seem a bit tortuous considering the properties
mentioned above, as it proceeds in four steps:

1. initialize Θ to Θ0 such that Θ0ᵀYᵀYΘ0 = IK−1;

2. compute B = (XᵀX + λΩ)
−1

XᵀYΘ0;

3. set Θ? to be the K − 1 leading eigenvectors of
YᵀX (XᵀX + λΩ)

−1
XᵀY;

4. compute the optimal regression coefficients

B? = (XᵀX + λΩ)
−1

XᵀYΘ? . (7)

Defining Θ0 in Step 1, instead of using directly Θ?

as expressed in Step 3, drastically reduces the compu-
tational burden of the eigenanalysis: the latter is per-
formed on Θ0ᵀYᵀX (XᵀX + λΩ)

−1
XᵀYΘ0, which is

computed as Θ0ᵀYᵀXB, thus avoiding a costly matrix
inversion. Finally, note that (Θ?,B?) are uniquely de-
fined up to sign swaps and column permutations, and
that all critical points are global optima.

4.3. Group-Lasso OS as Penalized LDA

We now have all the necessary ingredients to introduce
our Group-Lasso Optimal Scoring Solver for perform-
ing sparse LDA.

Proposition 1. The Group-Lasso OS problem

B? = argmin
B∈Rp×M

min
Θ∈RK×M

1

2
‖YΘ−XB‖2F + λ

p∑
j=1

∥∥βj
∥∥
2

s. t. ΘᵀYᵀYΘ = IM ,

with M = K − 1, is equivalent to the penalized LDA
problem

BLDA = argmax
B∈Rp×M

tr(BᵀSbB)

s. t. Bᵀ(Sw + n−1λΩ)B = IM ,

that is, BLDA = B? diag
(

(α−1k (1− α2
k)−1/2)

)
, where

αk ∈ (0, 1) is the kth leading eigenvalue of

M = n−1YᵀX (XᵀX + λΩ)
−1

XᵀY ,

with Ω = diag
(∥∥β1?

∥∥−1
2
, . . . ,

∥∥βp?
∥∥−1
2

)
, using again

the convention that
∥∥βj?

∥∥
2
null implies that the jth

row of BLDA is null.

Proof. The proof simply consists in applying the result
of Hastie et al. (1995), which holds for quadratic penal-
ties, to the quadratic variational form of the group-
lasso.

The proposition applies in particular to the Lasso-
based OS approaches to sparse LDA (Grosenick et al.,
2008; Clemmensen et al., 2011) for K = 2, that is, for
binary classification or more generally for a single dis-
criminant direction. Note however that it leads to a
slightly different decision rule if the decision threshold
is chosen a priori according to the Gaussian assump-
tion for the features. For more than one discriminant
direction, the equivalence does not hold any more,
since the Lasso penalty does not result in an equiv-
alent quadratic penalty in the simple form tr(BᵀΩB).
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Algorithm 1 Adaptively Penalized Optimal Scoring

Input: X, Y, B, λ
Initialize: S ←

{
j ∈ {1, . . . , p} :

∥∥βj
∥∥
2
> 0
}

,

Θ0 : Θ0ᵀYᵀYΘ0 = IK−1, convergence ← false
repeat

// Step 1: solve (3) in B assuming S optimal
repeat

Ω← diag(ωS) , with ωj ←
∥∥βj

∥∥−1
2

BS ← (Xᵀ�SX�S + λΩ)
−1

Xᵀ�SYΘ0

until conditions (4) hold for all j ∈ S
// Step 2: identify inactivated variables

for {j ∈ S :
∥∥βj

∥∥
2

= 0} do
if optimality condition (4b) holds then
S ← S\{j}

end if
end for
// Step 3: check for optimality of set S
j? ← argmax

j∈Sc

∥∥∂J/∂βj
∥∥
2

if
∥∥∥∂J/∂βj?

∥∥∥
2
< λ then

convergence ← true // B is optimal
else
S ← S ∪ {j?}

end if
until convergence
(s,V)←eigenanalyze(Θ0ᵀYᵀX�SB), that is,

Θ0ᵀYᵀX�SBvk = skvk k = 1, . . .K − 1

Θ? ← Θ0V, B? ← BV, α?
k ← n−1/2s

1/2
k

Output: Θ?, B?, α?

5. GLOSS Algorithm

The efficient approaches developed for the Lasso take
advantage of the sparsity of the solution by solving a
series of small linear systems, whose sizes are incre-
mentally increased/decreased (Osborne et al., 2000).
This approach was pursued for the group-Lasso (Roth
& Fischer, 2008) in its standard formulation. We
adapt this algorithmic framework to the variational
form (3), with J(B) = 1/2 ‖YΘ−XB‖2F .

The algorithm starts from a sparse initial guess, say
B = 0, thus defining the set S of “active” variables,
currently identified as non-zero. Then, it iterates the
three steps summarized in Algorithm 1.

5.1. OS Regression Coefficients Updates

Step 1 of Algorithm 1 updates the coefficient matrix
B within the current active set S. The quadratic vari-
ational form of the problem suggests a blockwise op-
timization strategy consisting in solving (K − 1) in-
dependent card(S)-dimensional problems instead of a

single (K − 1) × card(S)-dimensional problem. The
interaction between the (K − 1) problems is relegated
to the common adaptive quadratic penalty Ω. This
decomposition is especially attractive as we then solve
(K − 1) similar systems:

(Xᵀ�SX�S + λΩ)βk = Xᵀ�SYθ
0
k ,

where X�S denotes the columns of X indexed by S
and βk and θ0k denote the kth column of B and Θ0

respectively. These linear systems only differ in the
right-hand-side term, so that a single Cholesky decom-
position is necessary to solve all systems, whereas a
blockwise Newton-Raphson method based on the stan-
dard group-Lasso formulation would result in different
“penalties” Ω for each system.

5.2. Solution Path

Finally, note that our default strategy is to compute
a series of solutions along the regularization path, de-
fined by a series of penalties λ1 = λmax > · · · > λt >
· · · > λT = λmin ≥ 0 such that B?(λmax) = 0, that
is λmax = maxj∈{1,...,p}

∥∥Xᵀj YΘ0
∥∥
2
, where Xj is the

jth column of X. Then, we regularly decrease the
penalty λt+1 = λt/2 and use a warm-start strategy,
where the feasible initial guess for B(λt+1) is initial-
ized with B(λt). The final penalty parameter λmin is
specified in the optimization process when the maxi-
mum number of desired active variables is attained (by
default the minimum of n and p).

5.3. Diagonal LDA Variant

We motivated the group-Lasso penalty by sparsity req-
uisites, but robustness considerations could also drive
its usage, since LDA is known to be unstable when the
number of examples is small compared to the number
of variables. In this context, LDA has been experimen-
tally observed to benefit from unrealistic assumptions
on the form of the estimated within-class covariance
matrix. Indeed, the diagonal approximation that ig-
nores correlations between genes may lead to better
classification in microarray analysis.Bickel & Levina
(2004) shown that this crude approximation provides
a classifier with best worst-case performances than the
LDA decision rule in small sample size regimes, even
if variables are correlated.

The equivalence proof between penalized OS and pe-
nalized LDA of Hastie et al. (1995) reveals that
quadratic penalties in the OS problem are equivalent
to penalties on the within-class covariance matrix in
the LDA formulation. This proof suggests a slight
variant of penalized OS (5) corresponding to penal-
ized LDA with diagonal within-class covariance ma-
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trix, where the least square problems

‖YΘ−XB‖2F = tr(ΘᵀYᵀYΘ− 2ΘᵀXB + nBᵀSB)

are replaced by

tr(ΘᵀYᵀYΘ− 2ΘᵀXB + nBᵀ(Sb + diag( Sw))B)

Note that this variant requires diag( Sw) + Ω − S to
be positive definite.

6. Experimental Results

This section presents some experimental results com-
paring our proposed algorithm, GLOSS, to two other
sparse linear classifiers recently proposed to perform
sparse LDA, namely the Penalized LDA (PLDA) of
Witten & Tibshirani (2011), which applies a Lasso
penalty in Fisher’s LDA framework, and the Sparse
Linear Discriminant Analysis (SLDA) of Clemmensen
et al. (2011), which applies an elastic net penalty to
the OS problem. The latter was used with a single
tuning coefficient, without any quadratic term in the
penalty, so that the elastic net reduces to the Lasso.
The two competitors where implemented with the code
publicly available from the authors in R and MATLAB
respectively (Witten, 2011; Clemmensen, 2008). All
results have been computed using the same training,
validation and test sets. Note that they differ signifi-
cantly from the ones of Witten & Tibshirani (2011) in
Simulation 4 for which there was a typo in their paper.

6.1. Simulated Data

We first compare the three techniques in the simu-
lation study of Witten & Tibshirani (2011), which
considers four setups with 1200 examples equally dis-
tributed between classes. They are split in a training
set of size n = 100, a validation set of size 100, and
a test set of size 1000. We are in the small sample
regime, with p = 500 variables, out of which 100 differ
between classes. Independent variables are generated
for all simulations except for simulation 2 where they
are slightly correlated. In simulation 2 and 3, classes
are optimally separated by a single projection of the
original variables, while the two other scenarios re-
quire three discriminant directions. The Bayes’ error
was estimated to be respectively 1.7%, 6.7%, 7.3% and
30.0%. We follow all the other details of the simulation
protocol of Witten & Tibshirani (2011).

Note that this protocol is detrimental to GLOSS as
each relevant variable only affects a single class mean
out of K. The setup is favorable to PLDA in the sense
that most within-class covariance matrix are diagonal.
We thus tested the diagonal GLOSS variant discussed
in Section 5.3.

Table 1. Simulation results: averages, with standard errors
computed over 25 repetitions, of the test error rate, the
number of selected variables and the number of discrimi-
nant directions selected on the validation set.

Err. (%) # Var. # Dir.
Sim. 1: K = 4, mean shift, ind. features
PLDA 12.6 (0.1) 411.7 (3.7) 3.0 (0.0)
SLDA 31.9 (0.1) 228.0 (0.2) 3.0 (0.0)
GLOSS 19.9 (0.1) 106.4 (1.3) 3.0 (0.0)
GLOSS-D 11.2 (0.1) 251.1 (4.1) 3.0 (0.0)
Sim. 2: K = 2, mean shift, dependent features
PLDA 9.0 (0.4) 337.6 (5.7) 1.0 (0.0)
SLDA 19.3 (0.1) 99.0 (0.0) 1.0 (0.0)
GLOSS 15.4 (0.1) 39.8 (0.8) 1.0 (0.0)
GLOSS-D 9.0 (0.0) 203.5 (4.0) 1.0 (0.0)
Sim. 3: K = 4, 1D mean shift, ind. features
PLDA 13.8 (0.6) 161.5 (3.7) 1.0 (0.0)
SLDA 57.8 (0.2) 152.6 (2.0) 1.9 (0.0)
GLOSS 31.2 (0.1) 123.8 (1.8) 1.0 (0.0)
GLOSS-D 18.5 (0.1) 357.5 (2.8) 1.0 (0.0)
Sim. 4: K = 4, mean shift, ind. features
PLDA 60.3 (0.1) 336.0 (5.8) 3.0 (0.0)
SLDA 65.9 (0.1) 208.8 (1.6) 2.7 (0.0)
GLOSS 60.7 (0.2) 74.3 (2.2) 2.7 (0.0)
GLOSS-D 58.8 (0.1) 162.7 (4.9) 2.9 (0.0)

The results are summarized in Table 1. Overall, the
best predictions are performed by PLDA and GLOS-D
that both benefit of the knowledge of the true within-
class covariance structure. Then, among SLDA and
GLOSS that both ignore this structure, our proposal
has a clear edge. The error rates are far away from the
Bayes’ error rates, but the sample size is small with re-
gard to the number of relevant variables. Regarding
sparsity, the clear overall winner is GLOSS, followed
far away by SLDA, which is the only method that do
not succeed in uncovering a low-dimensional represen-
tation in Simulation 3. The adequacy of the selected
features was assessed by the True Positive Rate (TPR)
and the False Positive Rate (FPR). PLDA has the best
TPR but a terrible FPR, except in simulation 3 where
it dominates all the other methods. GLOSS has by far
the best FPR with overall TPR slightly below SLDA.

6.2. Gene Expression Data

We now compare GLOSS to PLDA and SLDA on three
genomic datasets. The Nakayama dataset contains
105 examples of 22,283 gene expressions for categoriz-
ing 10 soft tissue tumors. It was reduced to the 86 ex-
amples belonging to the 5 dominant categories (Witten
& Tibshirani, 2011). The Ramaswamy dataset con-
tains 198 examples of 16,063 gene expressions for cat-
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Table 2. Gene expression results: averages over 10 train-
ing/test sets splits, with standard deviations, of the test
error rates and the number of selected variables.

Err. (%) # Var.

Nakayama: n = 86, p = 22, 283, K = 5
PLDA 20.95 (1.3) 10,478.7 (2,116.3)
SLDA 25.71 (1.7) 252.5 (3.1)
GLOSS 20.48 (1.4) 129.0 (18.6)
Ramaswamy: n = 198, p = 16, 063, K = 14
PLDA 38.36 (6.0) 14,873.5 (720.3)
SLDA — —
GLOSS 20.61 (6.9) 372.4 (122.1)
Sun: n = 180, p = 54, 613, K = 4
PLDA 33.78 (5.9) 21,634.8 (7,443.2)
SLDA 36.22 (6.5) 384.4 (16.5)
GLOSS 31.77 (4.5) 93.0 (93.6)

egorizing 14 classes of cancer. Finally, the Sun dataset
contains 180 examples of 54,613 gene expressions for
categorizing 4 classes of tumors.

Each dataset was split into a training set and a test
set with respectively 75% and 25% of the examples.
The tuning parameter is performed by 10-fold cross-
validation and the test performances are then evalu-
ated. The process is repeated 10 times, with random
choices of training and test set split.

We present the test error rates and the number of se-
lected variables in Table 2. The three methods have
comparable prediction performances on the Nakayama
and Sun data, but GLOSS performs better on the Ra-
maswamy data, where the SparseLDA package failed
to return a solution, due to numerical problems in the
LARS-EN implementation. Regarding the number of
selected variables, GLOSS is again much sparser than
its competitors.

Finally, Figure 1 displays the projection of the ob-
servations for the Nakayama and Sun datasets in the
first canonical planes estimated by GLOSS and SLDA.
For the Nakayama dataset, groups 1 and 2 are well-
separated from the other ones in both representations,
but GLOSS is more discriminant in the meta-cluster
gathering groups 3 to 5. For the Sun dataset, SLDA
suffers from a high colinearity of its first canonical
variables that renders the second one almost non-
informative. As a result, group 1 is better separated
in the first canonical plane with GLOSS.

7. Conclusions and Further Works

We described GLOSS, an efficient algorithm that per-
forms sparse LDA based on the regression of class in-
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Figure 1. 2D-representations of Nakayama and Sun
datasets based on the two first discriminant vectors
provided by GLOSS and SLDA. The big squares represent

dicators. Our proposal is equivalent to a penalized
LDA problem. This is up to our knowledge the first
approach that enjoys this property in the multi-class
setting. This relationship is also amenable to accom-
modate interesting constraints on the equivalent pe-
nalized LDA problem, such as imposing a diagonal
structure of the within-class covariance matrix.

Computationally, GLOSS is based on an efficient ac-
tive set strategy that is amenable to the processing
of problems with a large number of variables. The
inner optimization problem decouples the p× (K−1)-
dimensional problem into (K − 1) independent p-
dimensional problems. The interaction between the
(K − 1) problems is relegated to the computation of
the common adaptive quadratic penalty. The algo-
rithm presented here is highly efficient in medium to
high dimensional setups, which makes it a good can-
didate for the analysis of gene expression data.

Our experimental results confirm the relevance of the
approach, which behaves well compared to its com-
petitors, either regarding its prediction abilities or its
interpretability (sparsity). Employing the same fea-
tures in all discriminant directions enables to generate
models that are globally extremely parsimonious, with
good prediction abilities. The resulting sparse discrim-
inant directions also allow for visual inspection of data
from the low-dimensional representations that can be
produced.
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The approach has many potential extensions that have
not yet been implemented. A first line of development
is to consider a broader class of penalties. For ex-
ample, plain quadratic penalties can also be added to
the group-penalty to encode priors about the within-
class covariance structure, in the spirit of the Penalized
Discriminant Analysis of Hastie et al. (1995). Also,
besides the group-Lasso, our framework can be cus-
tomized to any penalty that is uniformly spread within
groups, and many composite or hierarchical penalties
that have been proposed for structured data meet this
condition.
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