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Abstract

We investigate the problem of modeling sym-
bolic sequences of polyphonic music in a com-
pletely general piano-roll representation. We
introduce a probabilistic model based on dis-
tribution estimators conditioned on a recur-
rent neural network that is able to discover
temporal dependencies in high-dimensional
sequences. Our approach outperforms many
traditional models of polyphonic music on a
variety of realistic datasets. We show how
our musical language model can serve as a
symbolic prior to improve the accuracy of
polyphonic transcription.

1 Introduction

Modeling sequences is an important area of machine
learning since many naturally occurring phenomena
such as music, speech, or human motion are inher-
ently sequential. Complex sequences are non-local in
that the impact of a factor localized in time can be
delayed by an arbitrarily long time-lag. For example,
musical patterns or themes appearing at the beginning
of a piece are often repeated towards the end. Recur-
rent neural networks (RNN) (Rumelhart et al., 1986)
incorporate an internal memory that can, in princi-
ple, summarize the entire sequence history. This prop-
erty makes them well suited to represent long-term de-
pendencies, but it is nevertheless a challenge to train
them efficiently by gradient-based optimization (Ben-
gio et al., 1994). It was recently shown that training
RNNs via Hessian-free (HF) optimization could help
reduce these difficulties (Martens & Sutskever, 2011).

Many sequences of interest are over high-dimensional

Appearing in Proceedings of the 29 th International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).

objects, such as images in video, short-term spectra in
audio music, tuples of notes in musical scores, or words
in text. In these cases, simply predicting the expected
value at the next time step given the observed values
of the previous time steps is not satisfying. With such
high-dimensional objects at each time step, the condi-
tional distribution is very often multi-modal, and we
would strongly prefer our models of such sequences to
predict the conditional distribution of the next time
step given previous time steps. For the case of poly-
phonic music, it is obvious that the occurrence of a par-
ticular note at a particular time modifies considerably
the probability with which other notes may occur at
the same time. In other words, notes appear together
in correlated patterns, or simultaneities, that cannot
be conveniently described by a typical RNN architec-
ture designed for the multiclass classification task, for
example, because enumerating all configurations of the
variable to predict would be very expensive. This dif-
ficulty motivates energy-based models which allow us
to express the negative log-likelihood of a given config-
uration by an arbitrary energy function, among which
the restricted Boltzmann machine (RBM) (Smolensky,
1986) has become notorious.

In this context, we wish to exploit the ability of RBMs
to represent a complicated distribution for each time
step, with parameters that depend on the previous
ones, an idea first put forward with the so-called tem-
poral RBM (Taylor et al., 2007; Sutskever & Hin-
ton, 2007) which is trained via a heuristic procedure.
Combining the desirable characteristics of RNNs and
RBMs has proven to be non-trivial. The recurrent
temporal RBM (RTRBM) (Sutskever et al., 2008) is
a similar model that allows for exact inference and
efficient training by contrastive divergence (CD). De-
spite its simplicity, this model successfully accounts
for several interesting sequences. A similar architec-
ture based on the echo state network was also recently
developed (Schrauwen & Buesing, 2009). In this work,



Modeling Temporal Dependencies in High-Dimensional Sequences

we demonstrate that the RTRBM outperforms many
traditional models of polyphonic music, and we intro-
duce a generalization of the RTRBM, called the RNN-
RBM, that allows more freedom to describe the tem-
poral dependencies involved.

More precisely, we will consider sequences of symbolic
music, i.e. represented by the explicit timing, pitch,
velocity and instrumental information typically con-
tained in a score or a MIDI file rather than more
complex, acoustically rich audio signals. Musical mod-
els mostly focus on the basic components of western
music, harmony and rhythm, and are trained to pre-
dict the pattern of notes (simultaneities) to be played
together in the next time interval, given the previ-
ous ones. Two elements characterize the qualitative
performance of a model: temporal dependencies and
chord conditional distributions. While most existing
models output only monophonic notes along with pre-
defined chords or other reduced-dimensionality repre-
sentation (e.g. Mozer, 1994; Eck & Schmidhuber, 2002;
Paiement et al., 2009), we aim to model unconstrained
polyphonic music in the piano-roll representation, i.e.
as a binary matrix specifying precisely which notes oc-
cur at each time step. Despite ignoring dynamics and
other score annotations, this task represents a well-
defined framework to improve machine learning algo-
rithms and is directly applicable to polyphonic tran-
scription.

The objective of polyphonic transcription is to deter-
mine the underlying notes of a polyphonic audio signal
without access to its score. Human experts approach
this difficult problem by giving importance to what
they expect to hear rather than exclusively to what is
present in the actual signal. Most existing transcrip-
tion algorithms are frame-based and rely exclusively
on the audio signal, even though some approaches
employ rudimentary musicological constraints (e.g. Li
& Wang, 2007). It has long been known that, in
the same way that natural language models tremen-
dously improve the performance of speech recogni-
tion systems, musical language models can improve
purely auditive approaches to music information re-
trieval (Cemgil, 2004). However, combining these two
sources of information is not trivial, with the result
that temporal smoothing with an HMM is often the
only post-processing involved in state-of-the-art tran-
scription (Nam et al., 2011). We will show how to en-
rich an arbitrary transcription algorithm (under basic
assumptions) to include the advice of an expert trained
on symbolic sequences. Using our hybrid approach, we
can improve transcription accuracy (Bay et al., 2009)
much more than the popular HMM approach.

The remainder of the paper is organized as follows.
In Sections 2, 3 and 4 we introduce the RBM, the
RTRBM and the RNN-RBM architectures. In Sec-
tion 5 we validate our model on benchmark datasets.
In Section 6 we present our results on musical se-
quences, and we detail our hybrid transcription ap-
proach in Section 7.

2 Restricted Boltzmann machines

An RBM is an energy-based model where the joint
probability of a given configuration of the visible vec-
tor v (inputs) and the hidden vector h is:

P (v, h) = exp(−bTv v − bThh− hTWv)/Z (1)

where bv, bh and W are the model parameters and Z
is the usually intractable partition function. When the
vector v is given, the hidden units hi are conditionally
independent of one another, and vice versa:

P (hi = 1|v) = σ(bh +Wv)i (2)

P (vj = 1|h) = σ(bv +WTh)j (3)

where σ(x) ≡ (1 + e−x)−1 is the element-wise logistic
sigmoid function. The marginalized probability of v is
related to the free-energy F (v) by P (v) ≡ e−F (v)/Z:

F (v) = −bTv v −
∑
i

log(1 + ebh+Wv)i (4)

Inference in RBMs consists of sampling the hi given
v (or the vj given h) according to their conditional
Bernoulli distribution (eq. 2). Sampling v from the
RBM can be performed efficiently by block Gibbs sam-
pling, i.e. by performing k alternating steps of sam-
pling h|v and v|h. The gradient of the negative log-
likelihood of an input vector v(l) involves two opposing
terms, called the positive and negative phase:

∂(− logP (v(l)))

∂Θ
=
∂F (v(l))

∂Θ
− ∂(− logZ)

∂Θ
(5)

where Θ ≡ {bv, bh,W}. The second term can be esti-
mated by a single sample v(l)∗ obtained from a k-step
Gibbs chain starting at v(l):

∂(− logP (v(l)))

∂Θ
' ∂F (v(l))

∂Θ
− ∂F (v(l)∗)

∂Θ
. (6)

resulting in the well-known contrastive divergence
(CDk) algorithm (Hinton, 2002).

The neural autoregressive distribution estimator
(NADE) (Larochelle & Murray, 2011) is a tractable
model inspired by the RBM and specializing (with ty-
ing constraints) an earlier model for the joint distribu-
tion of high-dimensional variables (Bengio & Bengio,
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2000). NADE is similar to a fully visible sigmoid be-
lief network in that the conditional probability distri-
bution of a visible unit vj is expressed as a nonlinear
function of vk,∀k < j. In the following discussion, one
can substitute RBMs with NADEs by replacing equa-
tion (6) with the exact gradient defined in (Larochelle

& Murray, 2011) where the biases are set to b = v
(t)
b ,

c = v
(t)
h . The advantages of a tractable distribution

estimator will become obvious when used as part of
sequential models.
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Figure 1. Mean-field samples of an RBM trained on the
Piano-midi (top) and JSB chorales (bottom) datasets.
Each column is a sample vector of notes, with a chord
label where the analysis is unambiguous.

Figure 1 presents mean-field samples P (vj = 1|h∗),
where h∗ ∼ P (h), drawn from RBMs trained on a di-
verse collection of classical piano music (top) and on
the four-part chorales by J. S. Bach (bottom), along
with chord labels where the analysis is unambiguous.
It is obvious that for the diverse collection, each sample
has some room for additional melody notes with prob-
abilities depending on the harmonic context (grey),
whereas for JSB chorales, the simultaneities are taken
from a more restricted pool and the samples are more
clear-cut. This mechanism makes sense musically and
the fact that RBMs can adapt to various styles will be
useful for the following.

3 The RTRBM

The RTRBM (Sutskever et al., 2008) is a sequence
of conditional RBMs (one at each time step) whose

parameters b
(t)
v , b

(t)
h ,W (t) are time-dependent and de-

pend on the sequence history at time t, denoted A(t) ≡
{v(τ), ĥ(τ)|τ < t} where ĥ(t) is the mean-field value of
h(t). Its graphical structure is depicted in Figure 2(a).
The RTRBM is formally defined by its joint probabil-
ity distribution:

P ({v(t), h(t)}) =

T∏
t=1

P (v(t), h(t)|A(t)) (7)

where P (v(t), h(t)|A(t)) is the joint probability (eq. 1)
of the tth RBM whose parameters are defined below
(eq. 8 and 9).

While all the parameters of the RBMs can depend on
the previous time steps, we will consider the case where
only the biases depend on ĥ(t−1):

b
(t)
h = bh +W ′ĥ(t−1) (8)

b(t)v = bv +W ′′ĥ(t−1) (9)

which gives the RTRBM six parameters:
W, bv, bh,W

′,W ′′, ĥ(0). The general case is derived in
a similar manner.

While the hidden units h(t) are binary during inference
and sampling, it is the mean-field value ĥ(t) that is
transmitted to its successors (see eq. 10). This impor-

tant distinction makes exact inference of the ĥ(t) very
easy and improves the efficiency of training (Sutskever
et al., 2008):

ĥ(t) = σ(Wv(t) + b
(t)
h ) = σ(Wv(t) +W ′ĥ(t−1) + bh)

(10)
is obtained directly from equations (2) and (8). Note
that equation (10) is exactly the defining equation of

a single-layer RNN with hidden units ĥ(t).

4 The RNN-RBM

The RTRBM can be understood as a sequence of con-
ditional RBMs whose parameters are the output of a
deterministic RNN, with the constraint that the hid-
den units must describe the conditional distributions
and convey temporal information. This constraint can
be lifted by combining a full RNN with distinct hidden
units ĥ(t) with the RTRBM graphical model as shown
in Figure 2(b). We call this model the RNN-RBM. The
joint probability distribution of the RNN-RBM is also
given by equation (7), but with ĥ(t) defined arbitrarily,
here as per equation (11).

For simplicity, we consider the RBM parameters to be

W, b
(t)
v , b

(t)
h (i.e. only the biases are variable) and a

single-layer RNN (bottom portion of Fig. 2(b)) whose
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Figure 2. Comparison of the graphical structures of (a) the
RTRBM and (b) the single-layer RNN-RBM. Single arrows
represent a deterministic function, double arrows represent
the stochastic hidden-visible connections of an RBM. The
upper half of the RNN-RBM is the RBM stage while the
lower half is a RNN with hidden units ĥ(t). The RBM
biases b

(t)
h , b

(t)
v are a linear function of ĥ(t−1).

hidden units ĥ(t) are only connected to their direct
predecessor ĥ(t−1) and to v(t) by the relation:

ĥ(t) = σ(W2v
(t) +W3ĥ

(t−1) + bĥ). (11)

The RBM portion of the RNN-RBM (upper portion of
Fig. 2(b)) is otherwise exactly the same as its RTRBM
counterpart. This gives the single-layer RNN-RBM
nine parameters: W, bv, bh,W

′,W ′′, ĥ(0),W2,W3, bĥ.

The training algorithm is slightly different than for the
RTRBM since the mean-field values of the h(t) are now
distinct from ĥ(t). An iteration of training is based on
the following general scheme:

1. Propagate the current values of the hidden units
ĥ(t) in the RNN portion of the graph using (11),

2. Calculate the RBM parameters that depend on the
ĥ(t) (eq. 8 and 9) and generate the negative particles
v(t)∗ using k-step block Gibbs sampling,

3. Use CDk to estimate the log-likelihood gradient

(eq. 6) with respect to W , b
(t)
v and b

(t)
h ,

4. Propagate the estimated gradient with respect to

b
(t)
v , b

(t)
h backward through time (BPTT) (Rumel-

hart et al., 1986) to obtain the estimated gradient
with respect to the RNN parameters.

This procedure can be adapted to any RNN architec-
ture and conditional distribution estimator assuming
the RNN provides the estimator’s parameters (step
2) and can be trained based on a stochastic gradi-

ent signal on those parameters (obtained in step 3).
The RNN-NADE, obtained by substituting NADEs for
RBMs, allows for exact gradient computation.

Note that the single-layer RNN-RBM is a generaliza-
tion of the RTRBM and reduces to this simpler model
by setting W2 = W , W3 = W ′ and bĥ = bh in equa-
tions (10) and (11). The RTRBM was not gaining
computationally from sharing these connections, hence
untying them does not make it slower. In practice, the
ability to distinguish between the number of hidden
units h and ĥ allows to scale RBMs to several hundred
hidden units while keeping the RNNs to their (typi-
cally smaller) optimal size, improving performance.

4.1 Initialization strategies

Initialization strategies based on unsupervised pre-
training of each layer have been shown to be important
both for supervised and unsupervised training of deep
architectures (Bengio, 2009). A recurrent network cor-
responds to a very deep architecture when unfolded in
time, and indeed we find that pretraining can clearly
affect the overall performance of both the RTRBM and
the RNN-RBM. To ensure the quality of the learned
weight matrices, we found that initializing the W , bv
and bh parameters from a trained RBM yields less
noisy filters. The hidden-to-bias weights W ′,W ′′ can
then be initialized to small random values, such that
the sequential model will initially behave like indepen-
dent RBMs, eventually departing from that state.

In order to capture better temporal dependencies,
we initialize the W2,W3, bĥ,W

′′, bv, ĥ
(0) parameters of

the RNN-RBM from an RNN trained with the cross-
entropy cost:

L({v(t)}) =
1

T

T∑
t=1

nv∑
j=1

−v(t)j log y
(t)
j −(1−v(t)j ) log(1−y(t)j )

(12)

where y(t) = σ(b
(t)
v ) and equations (9) and (11) hold.

This deterministic objective allows the use of a second-
order optimization method for pretraining of the RNN.
Note that the RTRBM could use this strategy to ini-
tialize W,W ′, bv, bh,W

′′, ĥ(0), but in practice we have
found the initialization from an RBM more important.

4.2 Details of the BPTT algorithm

Suppose we want to minimize the negative log-
likelihood cost C ≡ − logP ({v(t)}). The gradient of
C with respect to the parameters of the conditional
RBMs can be estimated by CD using equations (4)
and (6):

∂C

∂b
(t)
v

' v(t)∗ − v(t) (13)
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∂C

∂W
'

T∑
t=1

σ(Wv(t)∗−b(t)h )v(t)∗T−σ(Wv(t)−b(t)h )v(t)T

(14)
∂C

∂b
(t)
h

' σ(Wv(t)∗ − b(t)h )− σ(Wv(t) − b(t)h ). (15)

The gradient then back-propagates through the
hidden-to-bias parameters (eq. 8 and 9):

∂C

∂W ′
=

T∑
t=1

∂C

∂b
(t)
h

ĥ(t−1)T (16)

∂C

∂W ′′
=

T∑
t=1

∂C

∂b
(t)
v

ĥ(t−1)T (17)

∂C

∂bh
=

T∑
t=1

∂C

∂b
(t)
h

and
∂C

∂bv
=

T∑
t=1

∂C

∂b
(t)
v

. (18)

For the single-layer RNN-RBM, the BPTT recurrence
relation follows from (11):

∂C

∂ĥ(t)
= W3

∂C

∂ĥ(t+1)
ĥ(t+1)(1− ĥ(t+1))

+W ′
∂C

∂b
(t+1)
h

+W ′′
∂C

∂b
(t+1)
v

(19)

for 0 ≤ t < T (ĥ(0) being a parameter of the model)

and ∂C/∂ĥ(T ) = 0. Formulas for the remaining RNN-
RBM parameters are:

∂C

∂bĥ
=

T∑
t=1

∂C

∂ĥ(t)
ĥ(t)(1− ĥ(t)) (20)

∂C

∂W3
=

T∑
t=1

∂C

∂ĥ(t)
ĥ(t)(1− ĥ(t))ĥ(t−1)T (21)

∂C

∂W2
=

T∑
t=1

∂C

∂ĥ(t)
ĥ(t)(1− ĥ(t))v(t)T. (22)

5 Baseline experiments

In this section, we compare the performance of
the RTRBM with the RNN-RBM on two baseline
datasets: bouncing balls videos and motion capture
data (Sutskever et al., 2008). We use the mean frame-
level squared prediction error as a basis of compari-
son. The prediction of the tth conditional RBM is per-
formed by 50 steps of block Gibbs sampling starting
at v(t−1) and hoping to reconstruct v(t) optimally.

The bouncing ball videos dataset1 is based on a simu-
lation of balls bouncing in a box (Sutskever & Hinton,

1www.cs.utoronto.ca/~ilya/code/2008/RTRBM.tar

2007). The generated videos are of length T = 128
and of resolution 15 × 15 pixels in the [0, 1] interval,
which makes binary RBMs (eq. 1) well suited for this
task. With up to 300 hidden units and an initial learn-
ing rate of 0.01, we obtain a squared prediction error
of 2.11 for the RTRBM and 0.96 for the RNN-RBM,
i.e. less than half the error. The receptive fields
(weights) of the first 48 hidden units h(t) (RNN-RBM)
are plotted in Figure 3. Localized edge detectors are
apparent in nearly all the learned filters.

Figure 3. Receptive fields of 48 hidden units of an RNN-
RBM trained on the bouncing balls dataset. Each square
shows the input weights of a hidden unit as an image.

The human motion capture dataset2 is represented by
a sequence of joint angles, translations and rotations
of the base of the spine in an exponential-map parame-
terization (Hsu et al., 2005; Taylor et al., 2007). Since
the data consists of 49 real values per time step, we
use the Gaussian RBM variant (Welling et al., 2005)
for this task. We use up to 450 hidden units and an
initial learning rate of 0.001. The mean squared pre-
diction test error is 20.1 for the RTRBM and reduced
substantially to 16.2 for the RNN-RBM.

6 Modeling sequences of polyphonic
music

In this section, we show results with main applica-
tion of interest for this paper: probabilistic modeling
of sequences of polyphonic music. We report our ex-
periments on four datasets of varying complexity con-
verted to our input format.

Piano-midi.de is a classical piano MIDI archive that
was split according to Poliner & Ellis (2007).

Nottingham is a collection of 1200 folk tunes3 with
chords instantiated from the ABC format.

MuseData is an electronic library of orchestral and
piano classical music from CCARH4.

JSB chorales refers to the entire corpus of 382 four-
part harmonized chorales by J. S. Bach with the
split of Allan & Williams (2005).

2people.csail.mit.edu/ehsu/work/sig05stf
3ifdo.ca/~seymour/nottingham/nottingham.html
4www.musedata.org
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Each dataset contains at least 7 hours of polyphonic
music and the total duration is approximately 67
hours. The polyphony (number of simultaneous notes)
varies from 0 to 15 and the average polyphony is 3.9.
We use an input of 88 binary visible units that span
the whole range of piano from A0 to C8 and tempo-
rally aligned on an integer fraction of the beat (quarter
note). Consequently, pieces with different time signa-
tures will not have their measures start at the same
interval. Although it is not strictly necessary, learning
is facilitated if the sequences are transposed in a com-
mon tonality (e.g. C major/minor) as preprocessing.

In addition to the models previously described, we
evaluate the following commonly used methods:

• The simplest baseline model consists in outputting
a Gaussian density centered on the previous frame
µ = v(t−1) and learned covariance Σ.

• N-grams simulate the evolution of note simultane-
ities as an (N − 1)th-order Markov chain. We use
add-p or Gaussian smoothing and back-off.

• Note N-grams model each note independently by
a binary N-gram, possibly with shared parameters
(IID).

• An interesting model for chorales harmonisation
(Allan & Williams, 2005) has been adapted to serve
as a generative model. It can only be evaluated on
the JSB chorales dataset.

• The ‘random fields’ approach of Lavrenko & Pick-
ens (2003) is a type of fully visible sigmoid belief
network with learned connectivity.

• Other common methods include Gaussian mixture
models (GMM), hidden Markov models (HMM) us-
ing GMM indices as their state, and multilayer per-
ceptrons (MLP) with the last n time steps as input.

The log-likelihood (LL) and expected frame-level accu-
racy (ACC) (Bay et al., 2009) of the symbolic models
are presented in Table 1. We estimate the partition
function of each conditional RBM by 100 runs of an-
nealed importance sampling (Salakhutdinov & Mur-
ray, 2008). We make a few key observations:

• The complexity of the dataset, such as the simplistic
chord accompaniment of Nottingham and the redun-
dant style of four-part chorales by a single composer,
in comparison with diverse piano and orchestral mu-
sic, is clearly reflected in the obtained log-likelihoods
and accuracies.

• N-gram models (optimal N∗ = 2) perform reason-
ably well for simple datasets but fail in more realistic
settings due to the increased data sparsity. In this
case, note N-grams (N∗ ∈ [8, 14]) are a better alter-
native albeit ignoring harmonic dependencies. This
inherent trade-off in traditional polyphonic music

models can be addressed robustly by the RNN-based
models, that perform better on a range of datasets.

• The harmonisation model of Allan & Williams
(2005), tailored to the specific style of four-part
chorales, requires annotated harmonic symbols and
yet performs relatively poorly compared to our best
performer. Similarly to the GMM + HMM, this
model is penalized by the limited history of the
HMM and by the difficulty to generalize to new
chord voicings in a principled manner.

• In accordance with earlier results (Martens &
Sutskever, 2011), the use of HF significantly helps
the density estimation and prediction performance
of RNNs (eq. 12) which would otherwise perform
worse than simpler MLPs. This motivates our strat-
egy of pretraining the RNN layer of an RNN-RBM
via HF.

• In addition to the distinct recurrent hidden units
ĥ(t) that convey temporal information more freely,
and the fact that suitable learning rates can be spec-
ified differently for the RNN and the RBM parts,
pretraining the W2, W3 and bĥ parameters can have
the most impact on the RNN-RBM prediction per-
formance. Figure 4 clearly demonstrates the impor-
tance of pretraining and finetuning the RNN and
the additional advantage of using HF.

• Although frame-level NADEs are slightly less pow-
erful than RBMs, their desirable properties make
the combined RNN-NADE model the most robust
distribution estimator. We believe this is due to
their tractable distribution, for two reasons. First,
CD may not be ideally suited for conditional RBMs
with slowly-mixing Gibbs chains (Mnih et al., 2011),
a non-issue for exact-gradient models. Secondly, the
joint sequential model, and not only the RNN por-
tion, can benefit from second-order optimization as
can be seen from the last two rows of Table 1.

Piano-midi.de Nottingham MuseData JSB chorales
20

25
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35

72

77
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ra
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Baseline

SGD

SGD-finetuned
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HF-finetuned

Figure 4. Effect of SGD and HF pretraining on the RNN-
RBM symbolic prediction performance. All strategies ex-
cept the baseline involve pretraining.
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Table 1. Log-likelihood and expected accuracy for various musical models in the symbolic prediction task. The double
line separates frame-level models (above) and models with a temporal component (below).

Model Piano-midi.de Nottingham MuseData JSB chorales
LL ACC % LL ACC % LL ACC % LL ACC %

Random -61.00 3.35 -61.00 4.53 -61.00 3.74 -61.00 4.42
1-Gram (Add-p) -27.64 4.85 -5.94 22.76 -19.03 6.67 -12.22 16.80
1-Gram (Gaussian) -10.79 6.04 -5.30 21.31 -10.15 7.87 -7.56 17.41
Note 1-Gram -11.05 5.80 -10.25 19.87 -11.51 7.72 -11.06 15.25
Note 1-Gram (IID) -12.90 2.51 -16.24 3.56 -14.06 2.82 -15.93 3.51
GMM -15.84 5.08 -7.87 22.62 -12.20 7.37 -11.90 15.84
RBM -10.17 5.63 -5.25 5.81 -9.56 8.19 -7.43 4.47
NADE -10.28 5.82 -5.48 22.67 -10.06 7.65 -7.19 17.88

Previous + Gaussian -12.48 25.50 -8.41 55.69 -12.90 25.93 -19.00 18.36
N-Gram (Add-p) -46.04 7.42 -6.50 63.45 -35.22 10.47 -29.98 24.20
N-Gram (Gaussian) -12.22 10.01 -3.16 65.97 -10.59 16.15 -9.74 28.79
Note N-Gram -7.50 26.80 -4.54 62.49 -7.91 26.35 -10.26 20.34
GMM + HMM -15.30 7.91 -6.17 59.27 -11.17 13.93 -11.89 19.24
(Allan & Williams, 2005) – – – – – – -9.24 16.32
(Lavrenko & Pickens, 2003) -9.05 18.37 -5.44 55.34 -9.87 18.39 -8.78 22.93
MLP -8.13 20.29 -4.38 63.46 -7.94 25.68 -8.70 30.41
RNN -8.37 19.33 -4.46 62.93 -8.13 23.25 -8.71 28.46
RNN (HF) -7.66 23.34 -3.89 66.64 -7.19 30.49 -8.58 29.41
RTRBM -7.36 22.99 -2.62 75.01 -6.35 30.85 -6.35 30.17
RNN-RBM -7.09 28.92 -2.39 75.40 -6.01 34.02 -6.27 33.12
RNN-NADE -7.48 20.69 -2.91 64.95 -6.74 24.91 -5.83 32.11
RNN-NADE (HF) -7.05 23.42 -2.31 71.50 -5.60 32.60 -5.56 32.50

We evaluate our models qualitatively by generating
sample sequences, provided on the authors’ website5,
and discussed here. While note correlations are ob-
viously neglected in the simpler models (sequence 2),
RBM-based models learned basic harmony rules (se-
quence 3), melody lines (sequences 4, 8) and local
temporal coherence (sequence 5). However, long-term
structure and musical meter remain elusive.

7 Polyphonic transcription

Multiple fundamental frequency (f0) estimation, or
polyphonic transcription, consists in estimating the
audible note pitches in the signal at 10 ms intervals
without tracking note contours. We combine our poly-
phonic sequence models with the acoustic model of
Nam et al. (2011) in order to demonstrate a practi-
cal application of the sequence models. Their model
was adapted for multiple instruments, and it can be
generalized to any method that can score hypothetical
combinations of f0 for a given time frame.

At each time frame, the Nam et al. (2011) algorithm
outputs independent probabilities that each note is
present and reports every note with probability p ≥
0.5. To incorporate our symbolic model prediction
Ps(v

(t)|A(t)), we consider the k most promising f0
candidates (k = 7) from the acoustic model Pa(v(t))

5www-etud.iro.umontreal.ca/~boulanni/icml2012

and jointly evaluate all combinations of M candidates
∀M ≤ k by the following cost function:

C = − logPa(v(t))− α logPs(v
(t)|Ã(t)) (23)

where Ã(t) is the approximate sequence history con-
structed from the f0 estimated so far in at least half
the audio frames corresponding to each past symbolic
time step6. This corresponds to a product of experts
where the hyperparameter α is the confidence coeffi-
cient of our symbolic predictor. If our algorithm is run
on audio signals without preprocessing, tempo track-
ing must be performed first. Since the symbolic models
describe only fixed tonality pieces, a first audio-only
pass is needed to transpose the estimated f0 in the
correct tonality. Once the optimal f0 estimates have
been determined, HMM smoothing can still filter out
spurious results and enhance onset accuracies.

Digital audio has been generated for the four datasets
and we report in Figure 5 the frame-level transcrip-
tion accuracy of the Nam et al. (2011) algorithm, ei-
ther alone, after HMM smoothing, or using our best
performing model as a symbolic prior. We observe an
improvement in absolute accuracy between 1.3% and
10% over the HMM approach. It can be seen easily

6This can create a ‘snowball’ effect where accurate base-
line transcriptions form accurate Ã(t) estimates, resulting
in more relevant symbolic predictions Ps(v(t)|Ã(t)), which
in turn improve the final transcription.
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that an HMM with emission probabilities Pa(v(t)) is
equivalent to equation (23) with a note 2-gram sym-
bolic model, one time step per audio frame and α = 1.
It is therefore unsurprising that the advantage of our
search algorithm decreases when the note N-gram al-
ready performs well, e.g. for Piano-midi.de (Table 1).
However, the HMM allows for a global search of the
most likely f0 (the Viterbi path), whereas our algo-
rithm requires a greedy chronological search, a limita-
tion we are currently working to address.
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Figure 5. Frame-level transcription accuracy of the Nam
et al. (2011) model either alone, after HMM smoothing or
with our best performing model as a symbolic prior.

8 Conclusions

We presented an RNN-based model that can learn
harmonic and rhythmic probabilistic rules from poly-
phonic music scores of varying complexity, substan-
tially better than popular methods in music informa-
tion retrieval. We showed that different strategies re-
lated to the description of temporal dependencies can
improve prediction accuracy of such models. While
longer-term musical structure remains elusive in our
unconstrained representation, our model can immedi-
ately serve as a symbolic prior for polyphonic tran-
scription, clearly improving the state of the art in this
area.
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