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Abstract
We consider a framework for structured predic-
tion based on search in the space of complete
structured outputs. Given a structured input, an
output is produced by running a time-bounded
search procedure guided by a learned cost func-
tion, and then returning the least cost output un-
covered during the search. This framework can
be instantiated for a wide range of search spaces
and search procedures, and easily incorporates
arbitrary structured-prediction loss functions. In
this paper, we make two main technical contri-
butions. First, we define the limited-discrepancy
search space over structured outputs, which is
able to leverage powerful classification learning
algorithms to improve the search space quality.
Second, we give a generic cost function learning
approach, where the key idea is to learn a cost
function that attempts to mimic the behavior of
conducting searches guided by the true loss func-
tion. Our experiments on six benchmark domains
demonstrate that using our framework with only
a small amount of search is sufficient for signif-
icantly improving on state-of-the-art structured-
prediction performance.

1. Introduction

Structured prediction involves learning a predictor that can
produce complex structured outputs given complex struc-
tured inputs. As an example, consider the problem of image
scene labeling, where the structured input is an image and
the structured output is a semantic labeling of the image re-
gions. We study a new search-based approach to structured
prediction. The approach involves first defining a combi-
natorial search space over complete structured outputs that
allows for traversal of the output space. Next, given a struc-
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tured input, a state-based search strategy (e.g. best-firstor
greedy search), guided by a learned cost function, is used
to explore the space of outputs for a specified time bound.
The least cost output uncovered by the search is then re-
turned as the prediction.

The effectiveness of our approach depends critically on:
1) The identification of an effective combination of search
space and search strategy over structured outputs, and 2)
Our ability to learn a cost function for effectively guiding
the search for high quality outputs. The main contribution
of our work is to provide generic solutions to these two
issues. First, we describe the limited-discrepancy search
space, as a generic search space over complete outputs that
can be customized to a particular problem by leveraging
the power of (non-structured) classification learning algo-
rithms. Second, we give a generic cost function learn-
ing algorithm that can be instantiated for a wide class of
“ranking-based search strategies.” The key idea is to learn
a cost function that allows for imitating the search behav-
ior of the algorithm when guided by the true loss function.
We also provide experimental results for our approach on a
number of benchmark problems and show that even when
using a relatively small amount of search, the performance
is comparable or better than the state-of-the-art.

2. Comparison to Related Work

A typical approach to structured prediction is to learn a cost
functionC(x,y) for scoring a potential structured outputy

given a structured inputx. Given such a cost function and
a new inputx, the output computation involves solving the
so-called “Argmin” problem which is to find the minimum
cost output for a given input. For example, the cost function
is often represented as a linear model over template features
of bothx andy (Lafferty et al., 2001; Taskar et al., 2003;
Tsochantaridis et al., 2004). Unfortunately exactly solving
the Argmin problem is often intractable and efficient solu-
tions exist only in limited cases such as when the depen-
dency structure among features forms a tree. In such cases,
one might simplify the features to allow for tractable infer-
ence or use heuristic optimization methods, which can be
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detrimental to prediction accuracy. In contrast, a potential
advantage of our search-based approach is that it is rela-
tively insensitive to the dependency structure of the features
used to define the cost function. That is, the search proce-
dure only needs to be able to evaluate the cost function at
specific input-output pairs. Thus, we are free to increase
the complexity of the cost function without considering its
impact on the inference complexity. Another potential ben-
efit of our approach is that since the search is over complete
outputs, our inference is inherently an anytime procedure,
meaning that it can be stopped at any time and return the
best output discovered so far.

One approach to addressing inference complexity is
cascade training (Felzenszwalb & McAllester, 2007;
Weiss & Taskar, 2010; Weiss et al., 2010), where efficient
inference is achieved by performing multiple runs of
inference from a coarse to fine level of abstraction. Such
approaches have shown good success, however, they place
some restrictions on the form of the cost functions to
facilitate “cascading.” Another potential drawback of
cascades and most other approaches is that they either
ignore the loss function of a problem (e.g. by assuming
Hamming loss) or require that the loss function be decom-
posable in a way that supports “loss augmented inference”.
Our approach is sensitive to the loss function and makes
minimal assumptions about it, requiring only that we have
a blackbox that can evaluate it for any potential output.

An alternative framework is classifier-based structured
prediction. These algorithms avoid directly solving the
Argmin problem by assuming that structured outputs can
be generated by making a series of discrete decisions. The
approach then attempts to learn arecurrent classifierthat
given a inputx is iteratively applied in order to generate the
series of decisions for producing the target outputy. Sim-
ple training methods (e.g. (Dietterich et al., 1995)) have
shown good success and there are some positive theoret-
ical guarantees (Syed & Schapire, 2010; Ross & Bagnell,
2010). However, recurrent classifiers can be prone
to error propagation (Kääriäinen, 2006; Ross & Bagnell,
2010). Recent work, e.g. SEARN (Hal Dauḿe III et al.,
2009), SMiLe (Ross & Bagnell, 2010), and DAGGER
(Ross et al., 2011), attempts to address this issue using
more sophisticated training techniques and have shown
state-of-the-art structured-prediction results. However, all
these approaches use classifiers to produce structured out-
puts through a single sequence of greedy decisions. Un-
fortunately, in many problems, some decisions are difficult
to predict by a greedy classifier, but are crucial for good
performance. In contrast, our approach leverages recurrent
classifiers to define good quality search spaces over com-
plete outputs, which allows decision making by comparing
multiple complete outputs and choosing the best.

The most closely related framework to ours is the Sam-
pleRank framework (Wick et al., 2011), which learns a cost
function for guiding a type of Monte-Carlo search in the
space of complete outputs. While it shares with our work
the idea of explicit search in the output space, there are
some significant differences. The SampleRank framework
is focused on Monte-Carlo search, while our approach can
be instantiated for a wide range of search algorithms. This
is important since it is well understood in the search litera-
ture that the most appropriate type of search changes from
problem to problem. In addition, the SampleRank frame-
work is highly dependent on a hand-designed “proposal
distribution” for guiding the search or effectively defining
the search space. Rather, we describe a generic approach
for constructing search spaces that is shown to be effective
across a variety of domains.

3. Problem Setup

A structured prediction problem specifies a space of struc-
ture inputsX , a space of structured outputsY, and a non-
negativeloss functionL : X × Y × Y 7→ ℜ+ such that
L(x, y′, y) is the loss associated with labeling a particular
inputx by outputy′ when the true output isy. We are pro-
vided with a training set of input-output pairs drawn from
an unknown target distribution and the goal is to return a
function/predictor from structured inputs to outputs whose
predicted outputs have low expected loss with respect to
the distribution. Since our algorithms will be learning cost
functions over input-output pairs we assume the availabil-
ity of a feature functionΦ : X × Y 7→ ℜn that computes
ann dimensional feature vector for any pair.

Output Space Search.We consider a framework for struc-
tured prediction based on state-based search in the space of
complete structured outputs. The states of the search space
are pairs of inputs and outputs(x, y), representing the pos-
sibility of predictingy as the output forx. A search space
over those states is specified by two functions: 1) Aninitial
state functionI such thatI(x) returns an initial search state
for any inputx, and 2) Asuccessor functionS such that for
any search state(x, y), S((x, y)) returns a set of succes-
sor states{(x, y1), . . . , (x, yk)}, noting that each successor
must involve the same inputx as the parent.

Given a cost functionC, that returns a numeric cost for
any input-output pair (i.e. search state), we compute out-
puts using a search procedure (e.g. greedy search or beam
search) guided by the cost function. In particular, given a
inputx, the search procedure starts at the initial stateI(x)
and traverses the space according to some search strategy
that is typically sensitive toC. After a specified amount of
time, the search halts and the best state(x, y′) according to
C that was traversed is returned withy′ being the predicted
output.
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The effectiveness of our search-based approach depends on
the quality of the search space defined byI and S, the
search strategy, and the quality ofC. In the following sec-
tions, we describe our contributions toward defining effec-
tive search spaces and learning cost functions.

4. Search Spaces Over Complete Outputs

In this section we describe two search spaces over struc-
tured outputs: 1) The Flipbit space, a simple baseline, and
2) The limited-discrepancy search (LDS) space, which is
intended to improve on the baseline. We start by describ-
ing recurrent classifiers, which are used in the definition of
both spaces.

4.1. Recurrent Classifiers

A recurrent classifier constructs structured outputs based
on a series of discrete decisions. This is formalized for a
given structured-prediction problem by defining an appro-
priateprimitive search space. It is a 5-tuple〈I, A, s, f, T 〉,
whereI is a function that maps a inputx to an initial search
node,A is a finite set of actions (or operators),s is the suc-
cessor function that maps any search node and action to a
successor search node,f is a feature function from search
nodes to real-valued feature vectors, andT is the terminal
state predicate that maps search nodes to{1, 0} indicating
whether the node is a terminal or not. Each terminal node in
the search space corresponds to acomplete structured out-
put, while non-terminal nodes correspond topartial struc-
tured outputs. Thus, the decision process for constructing
an output corresponds to selecting a sequence of actions
leading from the initial node to a terminal. A recurrent clas-
sifier is a function that maps nodes of the primitive search
space to actions, where typically the mapping is in terms
of a feature functionf(n) that returns a feature vector for
any search node. Thus, given a recurrent classifier, we can
produce a output forx by starting at the initial node of the
primitive space and following its decisions until reachinga
terminal.

As an example, for sequence labeling problems, the initial
state for a given input sequencex is a node containingx
with no labeled elements. The actions correspond to the se-
lection of individual labels, and the successor function adds
the selected label in the next position. Terminal nodes cor-
respond to fully labeled sequences and the feature function
computes a feature vector based on the input and previously
assigned labels.

The most basic approach to learning a recurrent classifier
is via exact imitation. For this, we assume that for any
training input-output pair(x, y) we can efficiently find an
action sequence, orsolution path, for producingy from x.
The exact imitation training approach learns a classifier by

creating a classification training example for each noden
on the solution path of a structured example with feature
vectorf(n) and label equal to the action followed by the
path atn. Our experiments will use recurrent classifiers
trained via exact imitation, but more sophisticated methods
such as SEARN could also be used.

4.2. Flipbit Search Space

The Flipbit search spaceis a simple baseline space over
complete outputs that uses a given recurrent classifierh for
bootstrapping the search. Each search state is represented
by a sequence of actions in the primitive space ending in
a terminal node representing a complete output. The ini-
tial search state corresponds to the actions selected by the
classifier, so thatI(x) is equal to(x, h(x)), whereh(x) is
the output generated by the recurrent classifier. The search
steps generated by the successor function can change the
value of one action at any sequence position of the par-
ent state. In a sequence labeling problem, this corresponds
to initializing to the recurrent classifier output and then
searching over flips of individual labels. The flip-bit space
is often used by local search techniques (without the clas-
sifier initialization) and is similar to the “search space” un-
derlying Gibbs Sampling.

4.3. Limited-Discrepancy Search Space (LDS)

Notice that the Flipbit space only uses the recurrent clas-
sifier when initializing the search. The motivation behind
our LDS space is to more aggressively exploit the recurrent
classifier in order to improve the search space quality. LDS
was originally introduced in the context of problem solv-
ing using heuristic search (Harvey & Ginsberg, 1995). To
put LDS in context, we will describe it in terms of using a
classifier for structured prediction given a primitive search
space. If the learned classifier is accurate, then the num-
ber of incorrect action selections will be relatively small.
However, even a small number of errors can propagate and
cause poor outputs. The key idea behind LDS is to real-
ize that if the classifier response was corrected at the small
number of critical errors, then a much better output would
be produced. LDS conducts a (shallow) search in the space
of possible corrections in the hope of finding a solution bet-
ter than the original.

More formally, given a classifierh and its selected action
sequence of lengthT , a discrepancy is a pair(i, a) where
i ∈ {1, . . . , T} is the index of a decision step anda ∈ A
is an action, which generally is different from the choice
of the classifier at stepi. For any set of discrepanciesD
we leth[D] be a new classifier that selects actions identi-
cally toh, except that it returns actiona at decision stepi if
(i, a) ∈ D. Thus, the discrepancies inD can be viewed as
overriding the preferred choice ofh at particular decisions
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steps, possibly correcting for errors, or introducing new er-
rors. For a structured inputx, we will let h[D](x) denote
the output returned byh[D] for the search space condi-
tioned onx. At one extreme, whenD is empty,h[D](x)
simply corresponds to the output produced by the greedy
classifier. At the other extreme, whenD specifies an ac-
tion at each step,h[D](x) is not influenced byh at all and
is completely specified by the discrepancy set. In practice,
whenh is reasonably accurate, we will be primarily inter-
ested in small discrepancy sets relative to the size of the
decision sequence. In particular, if the error rate of the
classifier on individual decisions is small, then the num-
ber of corrections needed to produce a correct output will
be correspondingly small. The problem is that we do not
know where the corrections should be made and thus LDS
conducts a search over the discrepancy sets, usually from
small to large sets.

Search Space Definition.Given a recurrent classifierh,
we define the corresponding limited-discrepancy search
space over complete outputs as follows. Each search state
in the space is represented as(x,D) wherex is a structured
input andD is a discrepancy set. We view a state(x,D)
as equivalent to the input-output state(x, h[D](x)). The
initial state functionI simply returns(x, ∅) which corre-
sponds to the original output of the recurrent classifier. The
successor functionS for a state(x,D) returns the set of
states of the form(x,D′), whereD′ is the same asD, but
with an additional discrepancy. In this way, a path through
the LDS search space starts at the output generated by the
recurrent classifier and traverses a sequence of outputs that
differ from the original by some number of discrepancies.
Given a reasonably accurateh, we expect that high-quality
outputs will be generated at relatively shallow depths of
this search space and hence will be generated quickly.

4.4. Search Space Quality

Recall that in our experiments we train recurrent classifiers
via exact imitation, which is an extremely simple approach
compared to more elaborate methods such as SEARN. We
now show the desirable property that the “exact imitation
accuracy” optimized by that approach is directly related to
the “quality” of the LDS search space, where quality relates
the expected amount of search needed to uncover the tar-
get output. More formally, given a input-output pair(x, y)
we define theLDS target depthfor an example(x, y) and
classifierh to be the minimum depth of a state in the LDS
space corresponding toy. Given a distribution over input-
output pairs we letd(h) denote the expected LDS target
depth of a classifierh. Intuitively, the depth of a state in
a search space is highly related to the amount of search
time required to uncover the node (exponentially related
for exhaustive search, and at least linearly related for more
greedy search). Thus, we will used(h) as a measure of

the quality of the LDS space. We now related(h) to the
classifier error rate.

For simplicity, assume that all decision sequences for the
structured-prediction problem have a fixed lengthT and
consider a input-output pair(x, y), which has a correspond-
ing sequence of actions that generatey. Given a classifier
h, we define itsexact imitation erroron (x, y) to bee/T
wheree is the number of mistakesh makes at nodes along
the action sequence of(x, y) . Further, given a distribu-
tion over input-output pairs, we letǫei(h) denote the ex-
pected exact imitation error with respect to examples drawn
from the distribution. Note that the exact imitation training
approach aims to learn a classifier that minimizesǫei(h).
Also, let ǫr(h) denote theexpected recurrent errorof h,
which is the expectation over randomly drawn(x, y) of the
Hamming distance between the action sequence produced
by h when applied tox and the true action sequence for
(x, y). The errorǫr(h) is the actual measure of perfor-
mance ofh when applied to structured prediction. Recall
that due to error propagation it is possible thatǫr(h) can
be much worse thanǫei(h), by as much as a factor ofT .
Proposition1 shows thatd(h) is related toǫei(h) rather
than the potentially much largerǫr(h).

Proposition 1. For any classifierh and distribution over
structured input-outputs,d(h) = Tǫei(h).

Proof. For any example(x, y) the depth ofy in Sh is equal
to the number of imitation errors made byh on (x, y). To
see this, simply create a discrepancy setD that contains a
discrepancy at the position of each imitation error that cor-
rects the error. This set is at a depth equal to the number of
imitation errors and the classifierh[D] will exactly produce
the exact action sequence for producingy. The result fol-
lows by noting that the expected number of imitation errors
is equal toǫei.

It is illustrative to compare this result with the Flipbit
space. Letd′(h) be the expected target depth in the Flip-
bit space of a randomly drawn(x, y). It is easy to see that
d′(h) = Tǫr(h) since each search step can only correct a
single error and the expected number of errors of the action
sequence at the initial node isTǫr(h). Since in practice
and in theoryǫr(h) can be substantially larger thanǫei(h),
this shows that the LDS space will often be superior to the
baseline Flipbit space in terms of the expected target depth.
Since this depth relates to the difficulty of search and learn-
ing, we can then expect the LDS space to be advantageous
whenǫr(h) is larger thanǫei(h). In our experiments, we
will see that this is indeed the case.

5. Cost Function Learning

In this section, we describe a generic framework for cost
function learning that is applicable for a wide range of
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search spaces and search strategies. This approach is mo-
tivated by our observation that for a variety of structured
prediction problems, we can uncover a high quality output
if we can guide the output-space search by the loss function
with respect to the target outputy∗. Since the target output
is not available at testing time, we aim to learn a cost func-
tion that mimics the search behavior of the loss function on
the training data. With an appropriate choice of hypothesis
space of cost functions, good performance on the training
data translates to good performance on the testing data.

We now precisely define the notion of “guiding the search”
with a loss function. If the loss function can be invoked
arbitrarily by the search procedure, then matching its per-
formance would require the cost function to approximate
it arbitrarily closely, which is needlessly complex in most
cases. Hence, we restrict ourselves to ranking-based search
defined as follows.

Ranking-based Search.Let P be an anytime search pro-
cedure that takes an inputx ∈ X , calls a cost function
C over the pairsX × Y some number of times and out-
puts a structured outputybest ∈ Y. We say thatP is a
ranking-based search procedure if the results of calls toC
are only used to compare the relative values for different
pairs(x, y) and(x, y′) with a fixed tie breaker. Each such
comparison with tie-breaking is called a ranking decision
and is characterized by the tuple(x, y, y′, d), whered is a
binary decision that indicatesy is a better output thany′

for inputx. When requested, it returns the best outputybest
encountered thus far as evaluated by the cost function.

Note that the above constraints prohibit the search pro-
cedure from being sensitive to the absolute values of the
cost function for particular search states (x, y) pairs, and
only consider their relative values. Many typical search
strategies such as greedy search, best-first search, and beam
search satisfy this property.

A run of a ranking-based search is a sequence
x, s1, o1, . . . , sn, on, y, wherex is the input to the predic-
tor, y is the output, andsi is the internal memory state of
the predictor just before theith call to the ranking function.
oi is theith ranking decision(xi, yi, y

′
i
, di).

Given a hypothesis spaceH of cost functions, the cost func-
tion learning works as follows. It runs the search procedure
P on each training example(x, y∗) for a maximum time of
Tmax substituting the loss functionL(x, y, y∗) for the cost
function C(x, y). For each run, it records the set of all
ranking decisions(xi, yi, y

′
i
, di). The set of all ranking de-

cisions from all the runs is given as input to a binary classi-
fier, which finds a cost functionC ∈ H, consistent with the
set of all such ranking decisions. The ranking-based search
can be viewed as a Markov Decision Process (MDP), where
the internal states of the search procedure correspond to

the states of the MDP, and the ranking decision is an ac-
tion. The following theorem can be proved by adapting
the proof of (Fern et al., 2006) with minor changes, e.g., no
discounting, and two actions, and applies to stochastic as
well as deterministic search procedures.

Theorem 1. Let H be a finite class of ranking functions.
For any target ranking functionh ∈ H, and any set ofm =
1

ǫ
ln |H|

δ
independent runs of a rank-based search proce-

dureP guided byh drawn from a target distribution over
inputs, there is a1− δ probability that everŷh ∈ H that is
consistent with the runs satisfiesL(ĥ) ≤ L(h) + 2ǫLmax,
whereLmax is the maximum possible loss of any output.

Although the theoretical result assumes that the target cost
functionh is in the hypothesis space, in practice this is not
guaranteed. To minimize the chances of not being able to
find a consistent hypothesis, we will only include a smaller
set of ranking decisions that are sufficient to preserve the
best output of the algorithm at any time step. Since these
decisions are specific to every search procedure, we will
describe our approach on two specific search algorithms:
greedy search and best-first beam search.
Greedy Search: In greedy search, at each search stepi,
only the best open (unexpanded) nodeyi and the best out-
put y∗

i
uncovered so far as evaluated by the loss function

are remembered. At each leveli, we include decisions that
rankyi higher than all its siblings, andy∗

i
higher thany∗

i−1.
Best-first Beam Search:In best-first beam search, at any
search stepi, a set ofb open nodesBi and the best output
y∗
i

encountered so far are maintained, whereb is the beam
width. The best open nodeyi ∈ Bi is expanded, andBi+1

is computed to be the bestb nodes after expansion. The
relevant ranking decisions ensure that all outputs inBi are
ranked higher than those inCi\Bi, yi is ranked higher than
every output inBi \ yi andy∗

i
is ranked higher thany∗

i−1.

To further reduce the number of constraints considered by
the learner, we do the following for both greedy search and
beam search. Ranking constraints for exact imitation were
generated until reachingy∗, the correct output, and after
that we only generate constraint(s) to ranky∗ higher than
best cost open node(s) as evaluated by the current cost func-
tion and continue the search guided by the cost function.

6. Summary of Overall Approach

Our approach consists of two main components, a recurrent
classifier and a cost function, and we train them sequen-
tially. First, we train the recurrent classifier as described in
Section4.1. We then use this trained classifier to define one
of the two search spaces over complete outputsS (either
Flipbit or LDS) for every training inputx (see Section4).
Second, we train the cost function to score outputs for a
given combination of search space over complete outputs
S and a search procedureP as described in Section5.
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At test time, we use the learned recurrent classifier and cost
function to make predictions as follows. For each test in-
putx, we define the search space over complete outputsS
using the recurrent classifier and execute the search proce-
dureP in this search space guided by the cost function for
a specified time bound. We return the best cost outputy
that is uncovered during the search as the prediction forx.

7. Experiments and Results

Datasets. We evaluate our approach on the following six
structured prediction problems (five benchmark sequence
labeling problems and a 2D image labeling problem):1)
Handwriting Recognition (HW). The input is a sequence
of binary-segmented handwritten letters and the output is
the corresponding character sequence[a−z]+. This dataset
contains roughly 6600 examples divided into 10 folds
(Taskar et al., 2003). We consider two different variants of
this task as in (Hal Dauḿe III et al., 2009), in HW-Small
version, we use one fold for training and remaining 9 folds
for testing, and vice-versa inHW-Large. 2) NETtalk
Stress. The task is to assign one of the 5 stress labels to
each letter of a word. There are 1000 training words and
1000 test words in the standard dataset. We use a sliding
window of size 3 for observational features.3) NETtalk
Phoneme.This is similar to NETtalk Stress except that the
task is to assign one of the 51 phoneme labels to each let-
ter of the word.4) Chunking. The goal in this task is to
syntactically chunk English sentences into meaningful seg-
ments. We consider the full syntactic chunking task and use
the dataset from the CONLL 2000 shared task1, which con-
sists of 8936 sentences of training data and 2012 sentences
of testing data.5) POS tagging.We consider the tagging
problem for English language, where the goal is to assign
the part-of-speech tag for each word in the sentence. The
standard data from Wall Street Journal (WSJ) corpus2 was
used in our experiments.6) Scene labeling.This dataset
contains 700 images of outdoor scenes (Vogel & Schiele,
2007). Each image is divided into patches by placing a reg-
ular grid of size10×10 and each patch takes one of the 9 se-
mantic labels (sky, water, grass, trunks, foliage, field, rocks,
flowers, sand). Simple appearance features like color, tex-
ture and position are used to represent each patch. Training
was performed with 600 images and the remaining 100 im-
ages were used for testing.

For all sequence labeling problems, the recurrent classi-
fier labels a sequence using a left-to-right ordering and for
scene labeling problem with an ordering from top-left to
right-bottom in a row-wise raster form. To train the recur-
rent classifier, the output label of previous token is used
as a feature to predict the label of the current token for all

1http://www.cnts.ua.ac.be/conll2000/chunking/
2http://www.cis.upenn.edu/ treebank/

sequence labeling problems with the exception of chunk-
ing and POS tagging, where labels of two previous tokens
were used. For scene labeling, the labels of neighborhood
patches were used. In all our experiments, we train the re-
current classifier using exact imitation (see Section4) via
Perceptron for 100 iterations with learning rate 1. Predic-
tion accuracy is measured withF1 loss for the chunking
task and Hamming loss for all the remaining tasks.

In all cases, the cost function over input-output pairs is
second order, meaning that it is has features over neigh-
boring label pairs and triples along with features of the
structured input. We trained the cost function, as described
in Section5, in an online manner via Perceptron updates
with learning rate 0.01 for 500 iterations (i.e., ranking con-
straints were generated on-the-fly in every iteration).

Learners. We report results for several instantiations of
our framework. First, we consider our framework using
a greedy search procedure for both the LDS and flip-bit
spaces, denoted byLDS-Greedy andFB-Greedy. In both
training and testing, the greedy search was run for a number
of steps equal to the length of the sequence. Using longer
runs did not impact results significantly. Second, we per-
formed best-first beam search with a beam width of 100 in
both the LDS and flib-bit spaces, denotedLDS-BST-b100
andFB-BST-b100. The best-first search was run for 200
expansions in each case. We tried larger beam widths and
search steps but performance was similar. Third, to see the
impact of adding additional search at test time to a greedily
trained cost function, we also used the cost function learned
by LDS-Greedy and FB-Greedy in the context of a best-
first beam search (beam width = 100) at test time in both
the LDS and flip-bit space, denoted byLDS-BST(greedy)
andFB-BST(greedy). We also report the performance of
recurrent classifier (Recurrent) and the exact imitation ac-
curacy (1 − ǫei), which as described earlier are related to
the structures of the flip-bit and LDS spaces.

We compare our results with other structured pre-
diction algorithms including CRFs (Lafferty et al.,
2001), SVM-Struct (Tsochantaridis et al., 2004),
SEARN (Hal Dauḿe III et al., 2009) and CASCADES
(Weiss & Taskar, 2010). For these algorithms, we report
the best published results whenever available. In the
remaining cases, we used publicly available code or our
own implementation to generate those results. Ten percent
of the training data was used to tune hyper-parameters.
CRFs were trained using SGD3. SVMhmm was used to
train SVMstruct and the value of parameterC was chosen
from

{

10−4, 10−3, · · · , 103, 104
}

based on the validation
set. Cascades were trained using the implementation4

provided by the authors, which can be used for sequence

3http://leon.bottou.org/projects/sgd
4http://code.google.com/p/structured-cascades/
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Table 1.Prediction accuracy results of different structured prediction algorithms.
ALGORITHMS DATASETS

HW-Small HW-Large Stress Phoneme Chunk POS Scene labeling

1− ǫei 73.9 83.99 77.97 77.09 88.84 92.5 78.61
Recurrent 65.67 74.87 72.82 73.58 88.51 92.15 56.64

LDS-Greedy 83.93 92.94 79.12 80.9 94.73 96.95 74.75
FB-Greedy 81.83 90.76 78.8 79.79 93.97 96.89 68.93

LDS-BST(greedy) 84.14 93.23 79.35 81.04 94.74 96.95 76.91
FB-BST(greedy) 81.83 90.76 78.8 79.83 94.05 96.89 69.25
LDS-BST-b100 83.28 92.83 79.81 81.57 94.6 96.8 76.63
FB-BST-b100 81.57 90.13 79.27 80.29 93.84 96.74 69.11

CRF 80.03 86.89 78.52 78.91 94.77 96.84 -
SVM-Struct 80.36 87.51 77.99 78.3 93.64 96.81 -

SEARN 82.12B 90.58B 76.15 77.26 94.44B 95.83 62.31
CASCADES 69.62 87.95 77.18 69.77 - 96.82 -

labeling problems with Hamming loss. For SEARN we
report the best published results with a linear classifier
(i.e., linear SVMs instead of Perceptron) as indicated by
B in the table and otherwise ran our own implementation
of SEARN with optimal approximation as described in
(Hal Dauḿe III et al., 2009) and optimized the interpola-
tion parameterβ over the validation set. Note that we do
not compare our results to SampleRank due to the fact that
its performance is highly dependent on the hand-designed
proposal distribution, which varies from one domain to
another.

Comparison to State-of-the-Art. Table1 shows the pre-
diction accuracies of the different algorithms (’-’ indicates
that we were not able to generate results for those cases).
Across all benchmarks we see that even the most ba-
sic instantiations of our framework, LDS-Greedy and FB-
Greedy, produce results that are comparable or significantly
better than the state-of-the-art. This is particularly interest-
ing, since these results are achieved using a relatively small
amount of search and the simplest search method and re-
sults tend to be the same or better for our other instanti-
ations. A likely reason that we are outperforming CRFs
and SVM-Struct is that we use second-order features, while
those approaches use first-order features, since exact infer-
ence with higher order features is too costly, especially dur-
ing training. As stated earlier, one of the advantages of our
approach is that we can use higher-order features with neg-
ligible overhead.

To see whether our approach can benefit from further in-
creasing the feature order, we generated results for our ap-
proach and Cascades using third-order features (not shown
in table) for the NET-Talk and handwriting domains. Cas-
cades improved over the results with second-order cost
function for the handwriting dataset (81.87 forHW-Small
and 93.76 forHW-Large), but degraded for the NET-

Talk datasets. Our results with a third order cost function
improved in both cases and are better than Cascades for
the handwriting task (86.59 forHW-Small and 95.04 for
HW-Large).

Finally, the improvement in the scene labeling domain is
the most significant, where SEARN achieves an accuracy
of 62.31 versus 74.75 for LDS-Greedy. In this domain,
most prior work has considered the simpler task of classi-
fying entire images into one of a set of discrete classes, but
to the best of our knowledge no one has considered a struc-
tured prediction approach for patch classification. The only
reported result for patch classification that we are aware of
(Vogel & Schiele, 2007) obtain an accuracy of 71.7 (ver-
sus our best performance of 76.91) with non-linear SVMs
trained i.i.d. on patches using more sophisticated features
than ours.

Adding More Search. We see that LDS-BST(greedy)
and FB-BST(greedy) are generally the same or better than
LDS-Greedy and FB-Greedy, with the biggest improve-
ment in the challenging scene labeling domain, improving
from 74.75 to 76.91. This shows that it can be an effec-
tive strategy to train using greedy search and then insert
that cost function into a more elaborate search at test time
for further improvement. We see similar results for LDS-
BST-b100 and FB-BST-b100 where the cost function was
trained using best-first beam search. There was significant
improvement for the NET-Talk datasets and scene labeling
compared to LDS-BST and FB-BST. This illustrates that
the approach can effectively train using the more complex
search strategy of best-first beam search. It is interestingto
note that LDS-BST(greedy) and LDS-BST-b100 perform
similarly. Both methods use the same best-first search pro-
cedure at test time, but differ in that one trains with greedy
search and the other with best-first search. This shows that
based on these results there is not a clear advantage to train-
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Figure 1.Anytime curves for scene labeling task comparing LDS-
Greedy and FB-Greedy.

ing in the context of best-first search, though there are ben-
efits at test time. This is a point that deserves further inves-
tigation in future work.

LDS space vs. Flipbit space.We see that generally the in-
stances of our method that use the LDS space outperforms
the corresponding instances that use the Flipbit space. In-
terestingly, if there is a large difference between the exact
imitation accuracy1− ǫei and the recurrent classifier accu-
racy (e.g., Handwriting and Scene labeling), then the LDS
space is significantly better than the flip-bit space. This
is particularly true in our most complex problem of scene
labeling where this difference is quite large, as is the gap
between LDS and Flipbit.

Further, we compared the anytime curves between LDS-
Greedy and FB-Greedy, which show the accuracy achieved
by a method versus an inference time bound at prediction
time. Generally we found that LDS-Greedy was compara-
ble or better than the FB-Greedy curve and especially so for
the Handwriting and Scene Labeling problems. Figure1
shows the anytime curves for the Scene Labeling problem.
We see that LDS-Greedy is dominant and improves accu-
racy much more quickly than FB-Greedy. For example, a
10 second time bound for LDS-Greedy achieves the same
accuracy as FB-Greedy using 90 seconds. These results
show the benefit of using the LDS space and empirically
confirm our observations in Section4 that the quality of
the LDS and Flipbit spaces are related to the exact imita-
tion and recurrent errors respectively.

8. Summary and Future Work

We studied a general framework for structured prediction
based on search in the space of complete outputs. We
showed how powerful classifiers can be leveraged to de-
fine an effective search space over complete outputs, and
gave a generic cost function learning approach to score
the outputs for any given combination of search space and
search strategy. Our experimental results showed that a
very small amount of search is needed to improve upon the

state-of-the-art performance, validating the effectiveness of
our framework. Future work includes studying robust train-
ing approaches to mitigate error propagation when the cost
function is non-realizable and addressing scalability issues.
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