Output Space Search for Structured Prediction

Janardhan Rao Doppa
Alan Fern
Prasad Tadepalli

School of Electrical Engineering and Computer Scienceg@mesState University, Corvallis, OR 97331, USA

Abstract

We consider a framework for structured predic-
tion based on search in the space of complete
structured outputs. Given a structured input, an
output is produced by running a time-bounded
search procedure guided by a learned cost func-
tion, and then returning the least cost output un-
covered during the search. This framework can
be instantiated for a wide range of search spaces
and search procedures, and easily incorporates
arbitrary structured-prediction loss functions. In
this paper, we make two main technical contri-
butions. First, we define the limited-discrepancy
search space over structured outputs, which is
able to leverage powerful classification learning
algorithms to improve the search space quality.
Second, we give a generic cost function learning
approach, where the key idea is to learn a cost
function that attempts to mimic the behavior of
conducting searches guided by the true loss func-
tion. Our experiments on six benchmark domains
demonstrate that using our framework with only
a small amount of search is sufficient for signif-
icantly improving on state-of-the-art structured-
prediction performance.
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tured input, a state-based search strategy (e.g. besifirst
greedy search), guided by a learned cost function, is used
to explore the space of outputs for a specified time bound.
The least cost output uncovered by the search is then re-
turned as the prediction.

The effectiveness of our approach depends critically on:
1) The identification of an effective combination of search
space and search strategy over structured outputs, and 2)
Our ability to learn a cost function for effectively guiding
the search for high quality outputs. The main contribution
of our work is to provide generic solutions to these two
issues. First, we describe the limited-discrepancy search
space, as a generic search space over complete outputs that
can be customized to a particular problem by leveraging
the power of (non-structured) classification learning algo
rithms. Second, we give a generic cost function learn-
ing algorithm that can be instantiated for a wide class of
“ranking-based search strategies.” The key idea is to learn
a cost function that allows for imitating the search behav-
ior of the algorithm when guided by the true loss function.
We also provide experimental results for our approach on a
number of benchmark problems and show that even when
using a relatively small amount of search, the performance
is comparable or better than the state-of-the-art.

2. Comparison to Related Work

1. Introduction A typical approach to structured prediction is to learn & cos

Structured prediction involves learning a predictor treat ¢ fgncnonC(x, y) for scoring a potential structured output
given a structured input. Given such a cost function and

produce complex structured outputs given complex strucs . o :
: . . a new inputx, the output computation involves solving the
tured inputs. As an example, consider the problem of image

scene labeling, where the structured input is an image an%o-called Argmin” problem which s to find the minimum

. : ; . cost output for a given input. For example, the cost function
the structured output is a semantic labeling of the image re- :
is,often represented as a linear model over template fesature

glons. We study anew search baseq approfeu?h 0 structu'r%q bothx andy (Lafferty et al, 2001, Taskar et a].2003
prediction. The approach involves first defining a combi- . )
) Tsochantaridis et gl2004). Unfortunately exactly solving
natorial search space over complete structured outputs th : . . )
. e Argmin problem is often intractable and efficient solu-
allows for traversal of the output space. Next, given a struc, . . L
tions exist only in limited cases such as when the depen-

Appearing inProceedings of the9"" International Conference ~ dency structure among features forms a tree. In such cases,
on Machine LearningEdinburgh, Scotland, UK, 2012. Copyright one might simplify the features to allow for tractable infer
2012 by the author(s)/owner(s). ence or use heuristic optimization methods, which can be
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detrimental to prediction accuracy. In contrast, a po&nti The most closely related framework to ours is the Sam-
advantage of our search-based approach is that it is relgpleRank frameworkWick et al, 2011, which learns a cost
tively insensitive to the dependency structure of the festu  function for guiding a type of Monte-Carlo search in the
used to define the cost function. That is, the search procespace of complete outputs. While it shares with our work
dure only needs to be able to evaluate the cost function ahe idea of explicit search in the output space, there are
specific input-output pairs. Thus, we are free to increasesome significant differences. The SampleRank framework
the complexity of the cost function without considering its is focused on Monte-Carlo search, while our approach can
impact on the inference complexity. Another potential ben-be instantiated for a wide range of search algorithms. This
efit of our approach is that since the search is over completis important since it is well understood in the search litera
outputs, our inference is inherently an anytime procedureture that the most appropriate type of search changes from
meaning that it can be stopped at any time and return thproblem to problem. In addition, the SampleRank frame-
best output discovered so far. work is highly dependent on a hand-designed “proposal
i distribution” for guiding the search or effectively defigin
he search space. Rather, we describe a generic approach
for constructing search spaces that is shown to be effective
across a variety of domains.

One approach to addressing inference complexity
cascade training Felzenszwalb & McAllester 2007
Weiss & Taskar201Q Weiss et al.2010, where efficient
inference is achieved by performing multiple runs of
inference from a coarse to fine level of abstraction. Such

approaches have shown good success, however, they plade Problem Setup

some restrictions on the form of the cost functions to . .
A structured prediction problem specifies a space of struc-

facilitate “cascading.” Another potential drawback of ture inputs’, a space of structured outpts and a non-
cascades and most other approaches is that they either P »asp P

i ; . +
ignore the loss function of a problem (e.g. by assumin negativeloss functionl. : &' x Y ¥+ R+ such that

g rooN ; ; ; ;
Hamming loss) or require that the loss function be decomTL(x’ y',y) is the loss associated with labeling a particular

/ I -
posable in a way that supports “loss augmented inference’l.r.'pum b_y outpu_ty_ when the_: true output ig. _We are pro
Our approach is sensitive to the loss function and make\s/IdeOI with a training Set of input-output pairs drawn from

.- . . o an unknown target distribution and the goal is to return a
minimal assumptions about it, requiring only that we have . ) .
; . function/predictor from structured inputs to outputs wéos
a blackbox that can evaluate it for any potential output.

predicted outputs have low expected loss with respect to
An alternative framework is classifier-based structuredhe distribution. Since our algorithms will be learning tos
prediction. These algorithms avoid directly solving the functions over input-output pairs we assume the availabil-
Argmin problem by assuming that structured outputs carity of a feature function® : X x ) — R™ that computes

be generated by making a series of discrete decisions. Thenn dimensional feature vector for any pair.

approach then attempts to learmegurrent classifierthat
given a inputk is iteratively applied in order to generate the
series of decisions for producing the target outpusim-
ple training methods (e.g.Dfetterich et al, 1995) have
shown good success and there are some positive theor
ical guaranteesSyed & Schapire201Q Ross & Bagnell
2010. However, recurrent classifiers can be prone
to error propagationKaariainen 2006 Ross & Bagnell

Output Space SearchWe consider a framework for struc-
tured prediction based on state-based search in the space of
complete structured outputs. The states of the search space
eat[e pairs of inputs and outputs, y), representing the pos-
Sibility of predictingy as the output for.. A search space
over those states is specified by two functions: 1)itial

state functior! such that/ (x) returns an initial search state

for any inputz, and 2) Asuccessor functiof such that for

2010. Recent work, e.g. SEARNH@al Daure Il et al, .
2009, SMiLe (Ross & Bagnell 2010, and DAGGER any search statér,y), S((z,v)) rgturns a set of succes-
sor state (z,v1), - .., (x,yx)}, noting that each successor

(Ross et al. 2011, attempts to address this issue using . ;
- o . must involve the same inputas the parent.
more sophisticated training techniques and have shown

state-of-the-art structured-prediction results. Howea##  Given a cost functiorC, that returns a numeric cost for
these approaches use classifiers to produce structured oaidy input-output pair (i.e. search state), we compute out-
puts through a single sequence of greedy decisions. Urputs using a search procedure (e.g. greedy search or beam
fortunately, in many problems, some decisions are difficultsearch) guided by the cost function. In particular, given a
to predict by a greedy classifier, but are crucial for goodinput z, the search procedure starts at the initial sigie
performance. In contrast, our approach leverages redurreand traverses the space according to some search strategy
classifiers to define good quality search spaces over conthat is typically sensitive t@'. After a specified amount of
plete outputs, which allows decision making by comparingtime, the search halts and the best state/) according to
multiple complete outputs and choosing the best. C that was traversed is returned withbeing the predicted
output.
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The effectiveness of our search-based approach depends oreating a classification training example for each nede

the quality of the search space defined byand S, the  on the solution path of a structured example with feature

search strategy, and the quality©@f In the following sec-  vector f(n) and label equal to the action followed by the

tions, we describe our contributions toward defining effec-path atn. Our experiments will use recurrent classifiers

tive search spaces and learning cost functions. trained via exact imitation, but more sophisticated meshod
such as SEARN could also be used.

4. Search Spaces Over Complete Outputs .
4.2. Flipbit Search Space

In this section we describe two search spaces over struc-

tured outputs: 1) The Flipbit space, a simple baseline, and N€ Flipbit search spaces a simple baseline space over
2) The limited-discrepancy search (LDS) space, which icomplete outputs that uses a given recurrent c!aséjﬂier
intended to improve on the baseline. We start by describPootstrapping the search. Each search state is represented

ing recurrent classifiers, which are used in the definition ofPy @ sequence of actions _in the primitive space e”di”Q i_n
both spaces. a terminal node representing a complete output. The ini-

tial search state corresponds to the actions selected by the
classifier, so thaf(z) is equal to(z, h(x)), whereh(z) is

the output generated by the recurrent classifier. The search
A recurrent classifier constructs structured outputs basesteps generated by the successor function can change the
on a series of discrete decisions. This is formalized for avzalue of one action at any sequence position of the par-
given structured-prediction problem by defining an appro-ent state. In a sequence labeling problem, this corresponds
priateprimitive search spacdtis a 5-tuple(Z, A, s, f,T),  to initializing to the recurrent classifier output and then
wherel is a function that maps a inputto an initial search  searching over flips of individual labels. The flip-bit space
node,A is a finite set of actions (or operators)is the suc-  is often used by local search techniques (without the clas-
cessor function that maps any search node and action tosfier initialization) and is similar to the “search spacei-u
successor search nodgjs a feature function from search derlying Gibbs Sampling.

nodes to real-valued feature vectors, &hi the terminal

state predicate that maps search nodgg 10} indicating  4.3. Limited-Discrepancy Search Space (LDS)

whether the node is a terminal or not. Each terminal nodein | o

the search space corresponds tmmplete structured out- N_the that f[h_e_ F_I|pb|t space only uses the_rec_urrent qlas-
put, while non-terminal nodes correspondpartial struc- sifier when initializing the search. The motivation behind

tured outputs Thus, the decision process for constructing®Ur LDS space is to more aggressively exploit the recurrent

an output corresponds to selecting a sequence of actiorrlassifier in order to improve the search space quality. LDS

leading from the initial node to a terminal. A recurrent elas Was originally introduced in the context of problem solv-

sifier is a function that maps nodes of the primitive searcHnd Using heuristic searctid@rvey & Ginsberg1995. To

space to actions, where typically the mapping is in termdUt LDS in context, we will describe it in terms of using a
of a feature functiory(n) that returns a feature vector for classifier for structured prediction given a primitive ssar
any search node. Thus, given a recurrent classifier, we catP2c€: If the learned classifier is accurate, then the num-

produce a output far by starting at the initial node of the ber of incorrect action selections will be relatively small
primitive space and following its decisions until reaching OWeVer, even a small number of errors can propagate and
terminal. cause poor outputs. The key idea behind LDS is to real-

_ ~ize that if the classifier response was corrected at the small
As an example, for sequence labeling problems, the initishumber of critical errors, then a much better output would
state for a given input sequeneeis a node containing  pe produced. LDS conducts a (shallow) search in the space

with no labeled elements. The actions correspond to the s&f possible corrections in the hope of finding a solution bet-
lection of individual labels, and the successor functiodisad  ter than the original.

the selected label in the next position. Terminal nodes cor- _ . . )
respond to fully labeled sequences and the feature functiolflor® formally, given a classifiek and its selected action

computes a feature vector based on the input and previousRFauence of lengtlt', a discrepancy is a pait, a) where
assigned labels. © € {1,...,T}is the index of a decision step ande A

is an action, which generally is different from the choice
The most basic approach to learning a recurrent classifiesf the classifier at step For any set of discrepancigs
is via exact imitation For this, we assume that for any we leth[D] be a new classifier that selects actions identi-
training input-output paifxz, y) we can efficiently find an  cally to h, except that it returns actianat decision stepif
action sequence, aolution path for producingy fromz.  (j a) € D. Thus, the discrepancies D can be viewed as
The exact imitation training approach learns a classifier bysverriding the preferred choice éfat particular decisions

4.1. Recurrent Classifiers
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steps, possibly correcting for errors, or introducing new e the quality of the LDS space. We now relatg) to the
rors. For a structured input, we will let h[D](z) denote  classifier error rate.

the output returned by[D] for the search space condi-
tioned onz. At one extreme, whei® is empty,h[D](z)
simply corresponds to the output produced by the greed

classifier. At the other extreme, whén specifies an ac- . . . .
. : . ing sequence of actions that generateGiven a classifier
tion at each stegy[D](z) is not influenced by: at all and L L

h, we define itsexact imitation erroron (z,y) to bee/T

IS complletely specified by the dlscrepancy sgt. In_ pr.aCtlce\’/vheree is the number of mistakgs makes at nodes along
whenh is reasonably accurate, we will be primarily inter-

. . . : the action sequence @f,y) . Further, given a distribu-

ested in small discrepancy sets relative to the size of th . k
- . ; ion over input-output pairs, we let;(h) denote the ex-
decision sequence. In particular, if the error rate of the

classifier on individual decisions is small, then the num-PECted exactimitation error with respect to examples drawn

ber of corrections needed to produce a correct output wilrrom the distribution. Note that the exact imitation traugi

be correspondingly small. The problem is that we do notapproach aims to learn a classifier that minimizg¢,).

. Iso, | n heex recurrent erroof
know where the corrections should be made and thus LDé so, let €r(h) de ote thes pected recurrent erroof .,
: which is the expectation over randomly drayun ) of the
conducts a search over the discrepancy sets, usually fro ; . .
amming distance between the action sequence produced
small to large sets.

by h when applied tor and the true action sequence for
Search Space Definition.Given a recurrent classifiér,  (x,y). The errore,.(h) is the actual measure of perfor-
we define the corresponding limited-discrepancy searcimance ofh when applied to structured prediction. Recall
space over complete outputs as follows. Each search stateat due to error propagation it is possible thafh) can

in the space is represented(@s D) wherex is a structured  be much worse than.;(k), by as much as a factor @f.
input andD is a discrepancy set. We view a stéte D)  Propositionl shows thatd(h) is related toe.;(h) rather
as equivalent to the input-output stdte h[D](x)). The  than the potentially much larger(h).

initial state function/ simply returns(z, #) which corre-
sponds to the original output of the recurrent classifiee Th
successor functiot$ for a state(x, D) returns the set of
states of the forngz, D’), whereD’ is the same a®, but Proof. For any exampléz, y) the depth ofy in S}, is equal

with an additional discrepancy. In this way, a path throughto the number of imitation errors made byon (z, ). To

the LDS search space starts at the output generated by tge this, simply create a discrepancy Bethat contains a
recurrent classifier and traverses a sequence of outputs théiscrepancy at the position of each imitation error that cor
differ from the original by some number of discrepancies.rects the error. This set is at a depth equal to the number of
Given a reasonably accurdigwe expect that high-quality  imitation errors and the classifigfD] will exactly produce
outputs will be generated at relatively shallow depths ofthe exact action sequence for producingThe result fol-

this search space and hence will be generated quickly.  |ows by noting that the expected number of imitation errors
is equal toe;. O

For simplicity, assume that all decision sequences for the
structured-prediction problem have a fixed len@thand
Yonsider a input-output pair, y), which has a correspond-

Proposition 1. For any classifierh and distribution over
structured input-outputsi(h) = Te.;(h).

4.4. Search Space Quality
It is illustrative to compare this result with the Flipbit

Recall that in our experiments we train recurrent classifier space. Let// () be the expected target depth in the Flip-
via exact imitation, which is an extremely simple approachpjt space of a randomly draw(x:, y). It is easy to see that
compared to more elaborate methods such as SEARN. We (1) = T, (h) since each search step can only correct a
now show the desirable property that the “exact imitationsingle error and the expected number of errors of the action
accuracy” optimized by that approach is directly related tosequence at the initial node T, (h). Since in practice

the “quality” of the LDS search space, where quality relatesand in theorye, (1) can be substantially larger thag (h),

the expected amount of search needed to uncover the tahis shows that the LDS space will often be superior to the
get output. More formally, given a input-output p&ir,y)  paseline Flipbit space in terms of the expected target depth
we define theDS target depttfor an examplg(z,y) and  since this depth relates to the difficulty of search and learn
classifierh to be the minimum depth of a state in the LDS ing, we can then expect the LDS space to be advantageous

space Corresponding 1o} Given a distribution over input- when 67-(h) is |arge|’ tharkei(h)_ In our experimentS, we
output pairs we leti(h) denote the expected LDS target il see that this is indeed the case.

depth of a classifieh. Intuitively, the depth of a state in

a search space is highly related to the amount of searc . .
time required to uncover the node (exponentially related™" Cost Function Learning

for exhaustive search, and at least linearly related folemor | this section, we describe a generic framework for cost
greedy search). Thus, we will uskh) as a measure of fynction learning that is applicable for a wide range of
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search spaces and search strategies. This approach is ntbe states of the MDP, and the ranking decision is an ac-
tivated by our observation that for a variety of structuredtion. The following theorem can be proved by adapting
prediction problems, we can uncover a high quality outputthe proof of Fern et al, 2006 with minor changes, e.g., no

if we can guide the output-space search by the loss functiodiscounting, and two actions, and applies to stochastic as
with respect to the target outpuyt. Since the target output well as deterministic search procedures.

is not available at testing time, we aim to learn a cost func-Theorem 1. Let # be a finite class of ranking functions.
tion that mimics the search behavior of the loss function onror any target ranking functioh € H, and any set of, =

the training data. With an appropriate choice of hypothesist |, % independent runs of a rank-based search proce-

space of cost functions, good performance on the trainingjre > guided byh drawn from a target distribution over
data translates to good performance on the testing data. inputs, there is d — § probability that everys € H that is

We now precisely define the notion of “guiding the search”consistent with the runs satisfiggh) < L(h) + 2¢Lomax,
with a loss function. If the loss function can be invoked WhereL.. is the maximum possible loss of any output.

arbitrarily by the search procedure, then matching its perahough the theoretical result assumes that the targét cos
formance would require the cost function to approximater tion, is in the hypothesis space, in practice this is not
it arbitrarily closely, which is needlessly complex in most o4 ranteed. To minimize the chances of not being able to
cases. Hence, we resrict ourselves to ranklng-basedsearﬁnd a consistent hypothesis, we will only include a smaller
defined as follows. set of ranking decisions that are sufficient to preserve the
Ranking-based Search.Let P be an anytime search pro- best output of the algorithm at any time step. Since these
cedure that takes an input € X, calls a cost function decisions are specific to every search procedure, we will
C over the pairst¥ x Y some number of times and out- describe our approach on two specific search algorithms:
puts a structured outpug.s; € V. We say thatP is a  greedy search and best-first beam search.

ranking-based search procedure if the results of calis to Greedy Search: In greedy search, at each search step
are only used to compare the relative values for differenpnly the best open (unexpanded) ngg@nd the best out-
pairs(z,y) and(z, y') with a fixed tie breaker. Each such puty; uncovered so far as evaluated by the loss function
comparison with tie-breaking is called a ranking decisionare remembered. At each levelve include decisions that
and is characterized by the tuple, y, v, d), whered isa  ranky; higher than all its siblings, ang higher thany;_, .
binary decision that indicateg is a better output thagp’ Best-first Beam Search:In best-first beam search, at any
for inputz. When requested, it returns the best output, ~ Search step, a set ofb open nodes3; and the best output

encountered thus far as evaluated by the cost function. ~ y; encountered so far are maintained, wheig the beam
hat th . hibit th h width. The best open nodg € B; is expanded, ané;
Note that the above constraints prohibit the search prog computed to be the bestnodes after expansion. The

cedure frqm being se_znsmve to the absolute vglues of theg|evant ranking decisions ensure that all outputBjrare

cost function for particular search statesy) pairs, and o1 aq higher than those i \ B;, v; is ranked higher than

only consider their relative values. Many typical searchevery output in3; \ y; andy? is ranked higher thag:_;.

strategies such as greedy search, best-first search, and bea e ! -t

search satisfy this property. To further reduce the number of constraints considered by
) . the learner, we do the following for both greedy search and

A run of a ranklng-based_ sea_rch IS - a SeqUeNnCeeam search. Ranking constraints for exact imitation were

T,81,01; - .., $n, 0n, Y, Wherez is the input to the predic- — yonerated until reaching, the correct output, and after

tor, y is the output, and; is the internal memory state of . e only generate constraint(s) to raytkhigher than

the pred_|fc’torjus.t before thé" call to /the ranking function.  poqt cost open node(s) as evaluated by the current cost func-

0; is the:"" ranking decisior(z;, y;, y;, di)- tion and continue the search guided by the cost function.

Given a hypothesis spag¢of cost functions, the cost func-

tion learning works as follows. It runs the search procedureg Summary of Overall Approach

P on each training example:, y*) for a maximum time of

Tomae SUbstituting the loss functioh(z, y, y*) for the cost ~ Our approach consists of two main components, a recurrent

function C(z,y). For each run, it records the set of all classifier and a cost function, and we train them sequen-

ranking decision$z;, v, v}, d;). The set of all ranking de- tially. First, we train the recurrent classifier as desatilre

cisions from all the runs is given as input to a binary classi-Sectior4.1 We then use this trained classifier to define one

fier, which finds a cost functiof € #, consistent with the ~ of the two search spaces over complete outputgither

set of all such ranking decisions. The ranking-based seardhlipbit or LDS) for every training input: (see Sectiow).

can be viewed as a Markov Decision Process (MDP), wher&econd, we train the cost function to score outputs for a

the internal states of the search procedure correspond @ven combination of search space over complete outputs

S and a search procedufeas described in Sectidn
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At test time, we use the learned recurrent classifier and costequence labeling problems with the exception of chunk-
function to make predictions as follows. For each test in-ing and POS tagging, where labels of two previous tokens
putz, we define the search space over complete outputs were used. For scene labeling, the labels of neighborhood
using the recurrent classifier and execute the search procpatches were used. In all our experiments, we train the re-
dure P in this search space guided by the cost function forcurrent classifier using exact imitation (see Secddpnia
a specified time bound. We return the best cost ougput Perceptron for 100 iterations with learning rate 1. Predic-
that is uncovered during the search as the predictiom.for tion accuracy is measured with; loss for the chunking
task and Hamming loss for all the remaining tasks.

7. Experiments and Results In all cases, the cost function over input-output pairs is

. . second order, meaning that it is has features over neigh-
Datasets. We evaluate our approach on the following six | ~". . . )
boring label pairs and triples along with features of the

strugtured prediction problems (five ben'chmark SCAUENCE ctured input. We trained the cost function, as desdribe
labeling problems and a 2D image labeling probleni)

Handwriting Recognition (HW). The input is a sequence in Section5, in an online manner via Perceptron updates
) - .with learning rate 0.01 for 500 iterations (i.e., rankingn€o
of binary-segmented handwritten letters and the output is, . . . .
. . Straints were generated on-the-fly in every iteration).
the corresponding character sequejacez]*. This dataset
contains roughly 6600 examples divided into 10 foldsLearners. We report results for several instantiations of
(Taskar et a].2003. We consider two different variants of our framework. First, we consider our framework using
this task as inKlal Daune Il et al,, 2009, in HW Snal | a greedy search procedure for both the LDS and flip-bit
version, we use one fold for training and remaining 9 foldsspaces, denoted hDS-Greedy andFB-Greedy. In both
for testing, and vice-versa kW Lar ge. 2) NETtalk training and testing, the greedy search was run for a number
Stress. The task is to assign one of the 5 stress labels t@f steps equal to the length of the sequence. Using longer
each letter of a word. There are 1000 training words anduns did not impact results significantly. Second, we per-
1000 test words in the standard dataset. We use a slidinigrmed best-first beam search with a beam width of 100 in
window of size 3 for observational feature3) NETtalk both the LDS and flib-bit spaces, denotedS-BST-b100
Phoneme.This is similar to NETtalk Stress except that the and FB-BST-b10Q The best-first search was run for 200
task is to assign one of the 51 phoneme labels to each leexpansions in each case. We tried larger beam widths and
ter of the word.4) Chunking. The goal in this task is to search steps but performance was similar. Third, to see the
syntactically chunk English sentences into meaningful segimpact of adding additional search at test time to a greedily
ments. We consider the full syntactic chunking task and usérained cost function, we also used the cost function learne
the dataset from the CONLL 2000 shared faskhich con- by LDS-Greedy and FB-Greedy in the context of a best-
sists of 8936 sentences of training data and 2012 sentencéisst beam search (beam width = 100) at test time in both
of testing data5) POS tagging.We consider the tagging the LDS and flip-bit space, denoted bpS-BST(greedy)
problem for English language, where the goal is to assigrand FB-BST(greedy) We also report the performance of
the part-of-speech tag for each word in the sentence. Theecurrent classifieRecurrent) and the exact imitation ac-
standard data from Wall Street Journal (WSJ) cofpuss  curacy (| — e.;), Which as described earlier are related to
used in our experiments®) Scene labeling.This dataset the structures of the flip-bit and LDS spaces.

contains 700 images of outdoor scengsgel & Schiele We compare our results with other structured pre-

2007. Each image is divided into patches by placing a reg-iction algorithms  including CRFs _ (Lafferty et al
ular grid of sizel0x 10 and each patch takes one of the 9 Se'ZOOJ) SVM-Struct  (Tsochantaridis et al 2004)’

mantic labelsgky, water, grass, trunks, foliage, field, rocks, SEARN (Hal Daun il etal, 2009 and CASCADES

flowers, sany_j- Simple appearance features like color, “?X.' Weiss & Taskar2010. For these algorithms, we report
ture and position are used to represent each patch. Traini . :
e best published results whenever available. In the

was performed with 600 images and the remaining 100 im- L . .
. remaining cases, we used publicly available code or our
ages were used for testing.

own implementation to generate those results. Ten percent
For all sequence labeling problems, the recurrent classief the training data was used to tune hyper-parameters.
fier labels a sequence using a left-to-right ordering and foCRFs were trained using SEDSVM"™™ was used to
scene labeling problem with an ordering from top-left to train SVMy,...; and the value of parametér was chosen
right-bottom in a row-wise raster form. To train the recur- from {10=#,1073,--- ,10%,10*} based on the validation
rent classifier, the output label of previous token is usedset. Cascades were trained using the implementation
as a feature to predict the label of the current token for alprovided by the authors, which can be used for sequence

http://www.cnts.ua.ac.be/conll2000/chunking/ 3http://leon.bottou.org/projects/sgd
2http:/lwww.cis.upenn.edu/ treebank/ “http://code.google.com/p/structured-cascades/
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Table 1.Prediction accuracy results of different structured prediction algosthm

ALGORITHMS DATASETS
HW Snmal | [ HW Large | Stress | Phonene | Chunk | POS | Scene | abeling

1— e 73.9 83.99 77.97 77.09 88.84 | 92,5 78.61
Recurrent 65.67 74.87 72.82 73.58 88.51 | 92.15 56.64
LDS-Greedy 83.93 92.94 79.12 80.9 94.73 | 96.95 74.75
FB-Greedy 81.83 90.76 78.8 79.79 93.97 | 96.89 68.93
LDS-BST(greedy) 84.14 93.23 79.35 81.04 94.74 | 96.95 76.91
FB-BST(greedy) 81.83 90.76 78.8 79.83 94.05 | 96.89 69.25
LDS-BST-b100 83.28 92.83 79.81 81.57 94.6 96.8 76.63
FB-BST-b100 81.57 90.13 79.27 80.29 93.84 | 96.74 69.11

CRF 80.03 86.89 78.52 78.91 94.77 | 96.84 -

SVM-Struct 80.36 87.51 77.99 78.3 93.64 | 96.81 -
SEARN 82.1% 90.58 76.15 77.26 94.44F | 95.83 62.31

CASCADES 69.62 87.95 77.18 69.77 - 96.82 -

labeling problems with Hamming loss. For SEARN we Talk datasets. Our results with a third order cost function
report the best published results with a linear classifieimproved in both cases and are better than Cascades for
(i.e., linear SVMs instead of Perceptron) as indicated bythe handwriting task (86.59 fddW Snal | and 95.04 for
5'in the table and otherwise ran our own implementationHW Lar ge).

of SEARN with optimal approximation as described in Finally, the improvement in the scene labeling domain is

S:?l Z?grri]eelt!gto?;riaggv;?ddat?gr?r;lazte?\lglz tIE;etr\E)v(()al?j-o the most significant, where SEARN achieves an accuracy
b : f 62.31 versus 74.75 for LDS-Greedy. In this domain,

not compare our results to SampleRank due to the fact thal

: o ; ost prior work has considered the simpler task of classi-
its performance is highly dependent on the hand-designed . o . )

C . . . ing entire images into one of a set of discrete classes, but
proposal distribution, which varies from one domain to :
another to the best of our knowledge no one has considered a struc-

tured prediction approach for patch classification. Thg onl
Comparison to State-of-the-Art. Table 1 shows the pre- reported result for patch classification that we are aware of
diction accuracies of the different algorithms (-’ indiea  (Vogel & Schiele 2007) obtain an accuracy of 71.7 (ver-
that we were not able to generate results for those casesus our best performance of 76.91) with non-linear SVMs
Across all benchmarks we see that even the most barained i.i.d. on patches using more sophisticated feature
sic instantiations of our framework, LDS-Greedy and FB-than ours.

Greedy, produce results that are comparable oragmf;cantlAdding More Search. We see that LDS-BST(greedy)

better than the state-of-the-art. This is particularlgiast- and FB-BST(greedy) are generally the same or better than

ing, since these results are achieved using a relativelyt sm i ) . . : i
amount of search and the simplest search method and ?]ép S-Greedy and FB-Greedy, with the biggest improve

. .ment in the challenging scene labeling domain, improvin
sults tend to be the same or better for our other instantiz ging st 9 P 9
. . - from 74.75 to 76.91. This shows that it can be an effec-

ations. A likely reason that we are outperforming CRFs,. : . .

. . tive strategy to train using greedy search and then insert
and SVM-Struct is that we use second-order features, whil o )

. . . at cost function into a more elaborate search at test time

those approaches use first-order features, since exact inf

ence with higher order features is too costly, especially duefor further improvement. We see similar results for LDS-
. VIth ig : Y. €sP BST-b100 and FB-BST-b100 where the cost function was
ing training. As stated earlier, one of the advantages of ou

- : . lrained using best-first beam search. There was significant
approach is that we can use higher-order features with N mprovement for the NET-Talk datasets and scene labelin
ligible overhead. P . 9

compared to LDS-BST and FB-BST. This illustrates that
To see whether our approach can benefit from further inthe approach can effectively train using the more complex
creasing the feature order, we generated results for our agearch strategy of best-first beam search. It is interegting
proach and Cascades using third-order features (not showrote that LDS-BST(greedy) and LDS-BST-b100 perform
in table) for the NET-Talk and handwriting domains. Cas-similarly. Both methods use the same best-first search pro-
cades improved over the results with second-order costedure at test time, but differ in that one trains with greedy
function for the handwriting dataset (81.87 fd Snal | search and the other with best-first search. This shows that
and 93.76 forHW Lar ge), but degraded for the NET- based on these results there is not a clear advantage to train
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Anytime curve for scene labeling task

80 _— state-of-the-art performance, validating the effectasnof
our framework. Future work includes studying robust train-
ing approaches to mitigate error propagation when the cost

75 | 6000000000000000000000O0]
o

g w0} o0 1 function is non-realizable and addressing scalabilityéss
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