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Abstract
Online optimization has emerged as powerful
tool in large scale optimization. In this paper,
we introduce efficient online algorithms based on
the alternating directions method (ADM). We in-
troduce a new proof technique for ADM in the
batch setting, which yields the O(1/T ) conver-
gence rate of ADM and forms the basis of regret
analysis in the online setting. We consider two
scenarios in the online setting, based on whether
the solution needs to lie in the feasible set or not.
In both settings, we establish regret bounds for
both the objective function as well as constraint
violation for general and strongly convex func-
tions. Preliminary results are presented to illus-
trate the performance of the proposed algorithms.

1. Introduction
In recent years, online learning (Zinkevich, 2003; Hazan
et al., 2007) and its batch counterpart stochastic gradient
descent (Juditsky et al., 2009) has contributed substantially
to advances in large scale optimization techniques for ma-
chine learning. Online convex optimization has been gen-
eralized to handle time-varying and non-smooth convex
functions (Duchi et al., 2010; Duchi & Singer, 2009; Xiao,
2010). Distributed optimization, where the problem is di-
vided into parts on which progress can be made in parallel,
has also contributed to advances in large scale optimiza-
tion (Boyd et al., 2010; Bertsekas & Tsitsiklis, 1989; Cen-
sor & Zenios, 1998).

Important advances have been made based on the above
ideas in the recent literature. Composite objective mirror
descent (COMID) (Duchi et al., 2010) generalizes mirror
descent (Beck & Teboulle, 2003) to the online setting. CO-
MID also includes certain other proximal splitting methods
such as FOBOS (Duchi & Singer, 2009) as special cases.
Regularized dual averaging (RDA) (Xiao, 2010) general-
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izes dual averaging (Nesterov, 2009) to online and com-
posite optimization, and can be used for distributed opti-
mization (Duchi et al., 2011).

First introduced in (Gabay & Mercier, 1976), the alternat-
ing direction method (ADM) has become popular in recent
years due to its ease of applicability and empirical perfor-
mance in a wide variety of problems, including composite
objectives (Boyd et al., 2010; Eckstein & Bertsekas, 1992;
Lin et al., 2009). The proof of convergence of ADM can be
found in (Eckstein & Bertsekas, 1992; Boyd et al., 2010),
although the rate of convergence rate has not been estab-
lished. For further understanding of ADM, we refer the
readers to the comprehensive review by (Boyd et al., 2010).
An advantage of ADM is that it can handle linear equality
constraints of the form {x, z|Ax+Bz = c}, which makes
distributed optimization by variable splitting in a batch set-
ting straightforward (Boyd et al., 2010). However, in an
online or stochastic gradient descent setting, one obtains
a double-loop algorithm where the inner loop ADM itera-
tions have to be run till convergence after every new data
point or function is revealed. As a result, ADM has not yet
been generalized to the online setting.

In this paper, we consider optimization problems of the fol-
lowing form:

min
x∈X ,z∈Z

T∑
t=1

(ft(x) + g(z)) s.t. Ax + Bz = c , (1)

where the functions ft, g are (non-smooth) convex func-
tions, A ∈ Rm×n1 ,B ∈ Rm×n2 , c ∈ Rm, x ∈ X ∈
Rn1×1, z ∈ Z ∈ Rn2×1, where X and Z are convex sets.
In the sequel, we drop the convex sets X and Z for ease of
exposition, noting that one can consider g and other addi-
tive functions to be the indicators of suitable convex feasi-
ble sets. The problem is studied both in the batch setting,
where ft = f , and in the online setting for time-varying ft.
We introduce a new proof technique for ADM in the batch
setting, which establishes a O(1/T ) convergence rate of
ADM based on variational inequalities (Facchinei & Pang,
2003). Further, the convergence analysis for the batch set-
ting forms the basis of regret analysis in the online setting.
We consider two scenarios in the online setting, based on
whether or not the solution needs to lie in the feasible set
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in every iteration.

We propose efficient online ADM (OADM) algorithms for
both scenarios which make a single pass through the up-
date equations and avoid a double loop algorithm. In the
online setting, while a single pass through the ADM up-
date equations is not guaranteed to satisfy the linear con-
straints Axt + Bzt = c, we consider two types of regret:
regret in the objective as well as regret in constraint viola-
tion. We establish both types of regret bounds for general
and strongly convex functions. We also present preliminary
experimental results illustrating the performance of the pro-
posed OADM algorithms in comparison with FOBOS and
RDA (Duchi & Singer, 2009; Xiao, 2010).

The key advantage of the OADM algorithms can be sum-
marized as follows: Like COMID and RDA, OADM can
solve online composite optimization problems, matching
the regret bounds for existing methods. The ability to ad-
ditionally handle linear equality constraints of the form
Ax + Bz = c makes non-trivial variable splitting pos-
sible yielding efficient distributed online optimization al-
gorithms based on OADM. Further, the notion of regret
in both the objective as well as constraints may contribute
towards development of suitable analysis tools for online
constrained optimization problems (Mannor & Tsitsiklis,
2006; Mahdavi et al., 2011).

The rest of the paper is organized as follows. In Section
2, we analyze batch ADM and establish its convergence
rate. In Section 3, we introduce the online optimization
problem with linear constraints. The OADM algorithm is
also given in Section 3. In Sections 4 and 5, we present
the regret analysis in two different scenarios based on the
constraints. We discuss connections to related work in Sec-
tion 6, present preliminary experimental results in Section
7, and conclude in Section 8.

2. Analysis for Batch ADM
We consider the batch ADM problem (1) where ft is fixed.
The augmented Lagrangian for (1) is

Lρ(x,y,z)=f(x)+g(z)+〈y,Ax+Bz−c〉+ρ
2
‖Ax+Bz−c‖2, (2)

where z is the primal variable and y is the dual variable,
ρ > 0 is the penalty parameter. Batch ADM executes
the following three steps iteratively till convergence (Boyd
et al., 2010):

xt+1=argmin
x

f(x)+〈yt,Ax+Bzt−c〉+
ρ

2
‖Ax+Bzt−c‖2, (3)

zt+1=argmin
z

g(z)+〈yt,Axt+1+Bz−c〉+
ρ

2
‖Axt+1+Bz−c‖2, (4)

yt+1 = yt + ρ(Axt+1 + Bzt+1 − c) . (5)

At step (t + 1), the equality constraint is not necessar-
ily satisfied in ADM. However, one can show that the
equality constraint is satisfied in the long run such that
limt→∞Axt + Bzt − c → 0. We first analyze the con-
vergence of objective and constraint separately using a new
proof technique, which plays an important role for the re-
gret analysis in the online setting. Then, a joint analysis
of the objective and constraint using a variational inequal-
ity (Facchinei & Pang, 2003) establishes the O(1/T ) con-
vergence rate for ADM.

Without loss of generality, we assume that z0 = 0,y0 = 0.
Denote ‖y∗‖2 = Dy, ‖z∗‖2 = Dz and λBmax as the largest
eigenvalue of BTB.

2.1. Bounds for Objective and Constraints

The following theorem shows that both the cumulative
objective difference w.r.t. the optimal and the cumulative
norms of the constraints, known as the primal and dual
residuals (Boyd et al., 2010), are bounded by constants in-
dependent of the number of iterations T .

Theorem 1 Let the sequences {xt, zt,yt} be generated by
ADM. For any x∗, z∗ satisfying Ax∗ + Bz∗ = c, for any
T , we have
T∑
t=0

[f(xt+1)+g(zt+1)−(f(x∗)+g(z∗))]≤ λ
B
maxD

2
zρ

2
, (6)

T∑
t=0

‖Axt+1+Bzt+1−c‖22+‖Bzt+1−Bzt‖22≤λBmaxD
2
z+
D2

y

ρ2
.(7)

It is easy to verify that the KKT conditions of the aug-
mented lagrangian (2) hold if (7) holds. The convergence
of equality constraint and primal residual implies the con-
vergence of ADM. A result similar to (7) has been shown
in (Boyd et al., 2010), but our proof is different and self-
contained along with (6). Although (6) shows that the ob-
jective value converges to the optimal value, xt+1, zt+1

need not be feasible and the equality constraint is not nec-
essarily satisfied.

2.2. Rate of Convergence of ADM

We now prove the O(1/T ) convergence rate for ADM us-
ing a variational inequality (VI) based on the Lagrangian
given in (2). Let Ω = X × Z × Rm. Any w∗ =
(x∗, z∗,y∗) ∈ Ω solves the original problem in (1) op-
timally if it satisfies the following variational inequal-
ity (Facchinei & Pang, 2003; Nemirovski, 2004):

∀w ∈ Ω , h(w)−h(w∗)+(w−w∗)TF (w∗) ≥ 0 , (8)

where F (w)T = [yTA yTB − (Ax + Bz − c)T ] is
the gradient of the last term of the Lagrangian, and h(w) =
f(x)+g(z). Then, w̃ = (x̃, z̃, ỹ) approximately solves the



Online Alternating Direction Method

problem with accuracy ε if it satisfies

∀w ∈ Ω , h(w̃)− h(w) + (w̃ −w)TF (w̃) ≤ ε . (9)

We show that after T iterations, the average w̄T =
1
T

∑T
t=1 wt, where wt = (xt, zt,yt) are from (3)-(5), sat-

isfies the above inequality with ε = O(1/T ).

Theorem 2 Let w̄T = 1
T

∑T
t=1 wt, where wt =

(xt, zt,yt) from (3)-(5). Then,

∀w ∈ Ω, h(w̄T )−h(w)+(w̄T−w)TF (w̄T ) ≤ O
(

1

T

)
.

3. Online ADM
In this section, we extend the ADM to the online learn-
ing setting. Specifically, we focus on using online ADM
(OADM) to solve the problem in (1). For our analysis, A
and B are assumed to be fixed. At round t, we consider
solving the following regularized optimization problem:

xt+1 = argmin
Ax+Bz=c

ft(x) + g(z) + ηBφ(x,xt) , (10)

where η ≥ 0 is a learning rate and Bregman divergence
Bφ(x,xt) ≥ α

2 ‖x − xt‖22. If the above problem is solved
in every step, standard analysis techniques (Hazan et al.,
2007) can be suitably adopted to obtain sublinear regret
bounds. While (10) can be solved by batch ADM, we es-
sentially obtain a double loop algorithm where the function
ft changes in the outer loop and the inner loop runs ADM
iteratively till convergence so that the constraints are satis-
fied. Note that existing online methods, such as projected
gradient descent and variants (Hazan et al., 2007; Duchi
et al., 2010) do assume a black-box approach for projecting
onto the feasible set, which for linear constraints may re-
quire iterative cyclic projections (Censor & Zenios, 1998).

For our analysis, instead of requiring the equality con-
straints to be satisfied at each time t, we only require the
equality constraints to be satisfied in the long run, with a
notion of regret associated with constraints. In particular,
we consider the following online learning problem:

min
xt,zt

T∑
t=0

ft(xt) + g(zt)− min
Ax+Bz=c

T∑
t=0

ft(x) + g(z)

s.t.

T∑
t=1

‖Axt + Bzt − c‖22 = o(T ) , (11)

so that the cumulative constraint violation is sublinear in T .
The augmented lagrangian function of (10) at time t is

Lt(x,y, z) =ft(x)+g(z)+〈y,Ax+Bz−c〉+ηBφ(x,xt)

+
ρ

2
‖Ax + Bz− c‖2 . (12)

At time t, our algorithm consists of just one pass through
the following three update steps:

xt+1 =argmin
x

ft(x) + 〈yt,Ax + Bzt − c〉

+
ρ

2
‖Ax + Bzt − c‖2 + ηBφ(x,xt) , (13)

zt+1 = argmin
z

g(z) + 〈yt,Axt+1 + Bz− c〉

+
ρ

2
‖Axt+1 + Bz− c‖2 , (14)

yt+1 = yt + ρ(Axt+1 + Bzt+1 − c) . (15)

The x-update (13) has two penalty terms: a quadratic term
and a Bregman divergence. If the Bregman divergence is
not a quadratic function, it may be difficult to solve x ef-
ficiently. A common way is to linearize the objective such
that

xt+1 =argmin
x
〈f ′t(xt)+AT{yt+ρ(Axt+Bzt−c)},x−xt〉

+ ηBφ(x,xt) . (16)

(16) is known as inexact ADM (Boyd et al., 2010) if φ is a
quadratic function. In the sequel, we focus on the algorithm
using (13).

Operationally, in round t, the algorithm presents a solution
{xt, zt} as well as yt. Then, nature reveals function ft and
we encounter two types of losses. The first type is the tradi-
tional loss measured by ft(xt) + g(zt). The second type is
the residual of constraint violation, i.e., ‖Axt+Bzt−c‖2.
The goal is to establish sublinear regret bounds for both the
objective and the constraint violation, which we do in Sec-
tion 4. We consider another scenario, where in round t, we
use a solution {x̂t, zt} based on zt such that Ax̂+Bzt = c.
While (x̂t, zt) satisfies the constraint by design, the goal is
to establish sublinear regret of the objective ft(x̂t) + g(zt)
as well as the constraint violation for the true (xt, zt). For
the second scenario, we use η = 0 in (13) and present the
results in Section 5. As the updates include the primal and
dual variables, in line with batch ADM, we use a stronger
regret Rc(T ) =

∑T
t=1R

c
t for constraint violation based on

both primal and dual residuals, where

Rct =‖Axt+1 + Bzt+1− c‖22 +‖Bzt+1 −Bzt‖22 . (17)

Before getting into the regret analysis, we discuss some ex-
ample problems which can be solved using OADM. Like
FOBOS and RDA, OADM can deal with machine learn-
ing methods where ft is a loss function and g is a regu-
larizer, e.g. `1 or mixed norm, or an indicator function
of a convex set. Examples include generalized lasso and
group lasso (Boyd et al., 2010; Tibshirani, 1996; Xiao,
2010). OADM can also solve linear programs, e.g. MAP
LP relaxation (Meshi & Globerson, 2011) and LP decod-
ing (Barman et al., 2012), and non-smooth optimization,
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e.g. robust PCA (Lin et al., 2009) where ft is nuclear norm
and g is `1 norm. Another promising scenario for OADM
is consensus optimization (Boyd et al., 2010) where dis-
tributed local variables are updated separately and reach a
global consensus in the long run. More examples can be
found in (Boyd et al., 2010).

In the sequel, we need the following assumptions:

(1) The norm of subgradient of ft(x) is bounded by Gf .

(2) We assume g(z0) = 0 and g(z) ≥ 0.

(3) x0 = 0,y0 = 0, z0 = 0. For any x∗, z∗ satisfying
Ax∗ + Bz∗ = c, Bφ(x∗,0) = D2

x, ‖z∗‖2 = Dz.

(4) For any t, ft(xt+1)+g(zt+1)−(ft(z
∗)+g(z∗)) ≥ −F ,

which is true if the functions are lower bounded or Lips-
chitz continuous in the convex set (Mahdavi et al., 2011).

4. Regret Analysis of OADM
As discussed in Section 3, we consider two types of regret
in OADM. The first type is the regret of the objective based
on variable splitting, i.e.,

R1(T )=

T∑
t=0

ft(xt)+g(zt)− min
Ax+Bz=c

T∑
t=0

ft(x)+g(z) . (18)

Aside from using splitting variables, R1 is the standard re-
gret in the online learning setting. The second is the regret
of the constraint violation Rc defined in (17).

4.1. General Convex Functions

The following establishes the regret bounds for OADM.

Theorem 3 Let the sequences {xt, zt,yt} be generated by
OADM and assumptions (1)-(4) hold. For any x∗, z∗ satis-
fying Ax∗ + Bz∗ = c, setting η =

Gf

√
T

Dx

√
2α

and ρ =
√
T ,

we have

R1(T ) ≤ λBmaxD
2
z

√
T/2 +

√
2GfDx

√
T/
√
α ,

Rc(T ) ≤ λBmaxD
2
z +
√

2DxGf/
√
α+ 2F

√
T .

Note the bounds are achieved without any explicit assump-
tions on A,B, c.1 The subgradient of ft is required to
be bounded, but the subgradient of g is not necessarily
bounded. Thus, the bounds hold for the case that g is an in-
dicator function of a convex set. In addition to the O(

√
T )

regret bound, OADM achieves the O(
√
T ) bound for the

constraint violation, which is not existent in the start-of-
the-art online learning algorithms (Duchi et al., 2010;
Duchi & Singer, 2009; Xiao, 2010), since they do not ex-
plicitly handle linear constraints of the form Axt+Bz = c.

1We do assume that Ax+Bz = c is feasible.

The bound for Rc could be reduced to a constant if addi-
tional assumptions on B and the subgradient of g are satis-
fied.

4.2. Strongly Convex Functions

We assume both ft(x) and g are strongly convex. Specifi-
cally, we assume ft(x) is β1-strongly convex with respect
to a differentiable function φ, i.e.,

ft(x
∗)≥ft(x)+〈f ′t(x),x∗−x〉+β1Bφ(x∗,xt+1) , (19)

where β1 > 0, and g is a β2-strongly convex function, i.e.,

g(z∗)≥g(z)+〈g′(z), z∗−z〉+ β2

2
‖z∗−zt+1‖22 , (20)

where β2 > 0. Then, logarithmic regret bounds can be
established.

Theorem 4 Let assumptions (1)-(4) hold. Assume ft(x)
and g are strongly convex given in (19) and (20). For any
x∗, z∗ satisfying Ax∗ + Bz∗ = c, setting ηt = β1t, ρt =
β2t/λ

B
max, we have

R1(T ) ≤ G2
f log (T + 1)/(2αβ1) + β2D

2
z/2 + β1D

2
x ,

Rc(T )≤2FλBmax log(T + 1)/β2+λBmaxD
2
z+2β1λ

B
maxD

2
x/β2 .

To guarantee logarithmic regret bounds for both objec-
tive and constraints, OADM requires both ft and g to be
strongly convex. FOBOS, COMID, and RDA only require
g to be strongly convex although they do not consider linear
constraints explicitly.

5. Regret Analysis of OADM with η = 0

We analyze the regret bound when η = 0. In this case,
OADM has the same updates as ADM. For the analysis,
we consider zt to be the key primal variable, and compute
x̂t using zt so that Ax̂t +Bzt = c. Since (x̂t, zt) satisfies
the constraints by design, we consider the following regret:

R2(T )=

T∑
t=0

ft(x̂t)+g(zt)− min
Ax+Bz=c

T∑
t=0

ft(x)+g(z) . (21)

where Ax̂t+Bzt = c. A common case we often encounter
is when A = I,B = −I, c = 0, thus x̂t = zt. While
{x̂t, zt} satisfies the equality constraint, (xt, zt) need not
satisfy Axt + Bzt − c = 0. Thus, in addition to R2(T ),
we also consider bounds for Rc as defined in (17).

To guarantee that Ax̂t+Bzt = c,A ∈ Rm×n1 is feasible,
it implicitly requires the assumption m ≤ n1. On the other
hand, to establish a bound forR2, A should be full-column
rank, i.e., rank(A) = n1. Therefore, we assume that A is
a square and full rank matrix, i.e., A is invertible. Let λAmin

be the smallest eigenvalue of AAT , then λAmin > 0.
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5.1. General Convex Functions

The following theorem shows the regret bounds.

Theorem 5 Let η = 0 in OADM and assumptions (1)-(4)
and A is invertible hold. For any x∗, z∗ satisfying Ax∗ +

Bz∗ = c, setting ρ =
Gf

√
T

Dz

√
λA
minλ

B
max

, we have

R2(T ) ≤ GfDz

√
λBmaxT/λ

A
min ,

Rc(T ) ≤ λBmaxD
2
z + 2FDz

√
λAminλ

B
maxT/Gf .

Without requiring an additional Bregman divergence, R2

achieves the
√
T bound as R1. While R1 depends on xt

which may not stay in the feasible set, R2 is defined on
x̂t which always satisfies the equality constraint. The cor-
responding algorithm requires finding x̂t in each iteration
such that Ax̂t = c−Bzt, which involves solving a linear
system. The algorithm will be efficient in some settings,
e.g., consensus optimization where A = I.

5.2. Strongly Convex Functions

The following theorem establishes the logarithmic regret
bound under the assumption g is β-strongly convex given
in (20).

Theorem 6 Let η = 0 in OADM. Assume that g(z) is β2-
strongly convex, A is invertible, and assumptions (1)-(4)
hold. Setting ρt = β2t/λ

B
max, we have

R2(T ) ≤
G2
fλ

B
max

2λAminβ2
(log(T + 1)) + β2D

2
z , (22)

Rc(T ) ≤ λBmaxD
2
z + 2FλBmax log(T + 1)/β2 . (23)

Unlike Theorem 4, Theorem 6 shows that OADM can
achieve the logarithmic regret bound without requiring ft
to be strongly convex, which is in line with other online
learning algorithms for composite objectives.

6. Connections to Related Work
In this section, we assume η = 0,A = I,B = −I, c = 0,
thus x = z. The three steps of OADM reduce to

xt+1 =argmin
x

ft(x)+〈yt,x−zt〉+
ρ

2
‖x−zt‖2 , (24)

zt+1 =argmin
z

g(z)+〈yt,xt+1−z〉+
ρ

2
‖xt+1−z‖2, (25)

yt+1 =yt + ρ(xt+1 − zt+1) . (26)

Let f ′t(xt+1) ∈ ∂ft(x), g′(zt+1) ∈ ∂g(z). The first order
optimality conditions for (24) and (25) give

f ′t(xt+1) + yt + ρ(xt+1 − zt) = 0 ,

g′(zt+1)− yt − ρ(xt+1 − zt+1) = 0 .

Adding them together yields

zt+1 = zt −
1

ρ
(f ′t(xt+1) + g′(zt+1)) . (27)

OADM can be considered as taking the implicit subgradi-
ent of ft and g at the yet to be determined xt+1 and zt+1.
FOBOS has the following update (Duchi & Singer, 2009):

zt+1 = zt −
1

ρ
(f ′t(zt) + g′(zt+1)) .

FOBOS takes the explicit subgradient of ft at current zt.

As a matter of fact, FOBOS can be considered as an inexact
OADM, which linearizes the objective of (24) at zt :

xt+1 = argmin
x
〈f ′t(zt) + yt,x− zt〉+

τ

2
‖x− zt‖2 .

It has the following closed-form solution:

xt+1 = zt −
1

τ
(f ′t(zt) + yt) . (28)

(25) is equivalent to the following scaled form :

zt+1 = argminz g(z) +
ρ

2
‖xt+1 − z +

1

ρ
yt‖2 . (29)

Let ρ = τ and zt+ 1
2

= xt+1 + 1
τ yt, we get FOBOS (Duchi

& Singer, 2009). Furthermore, if g(z) is an indicator func-
tion of a convex set Ω, substituting (28) into (29), we have

zt+1 = argminz∈Ω

ρ

2
‖zt −

1

τ
f ′t(zt)− z‖2

= Pz∈Ω

[
zt −

1

τ
f ′t(zt)

]
.

We recover the projected gradient descent (Hazan et al.,
2007).

7. Experimental Results
In this section, we use OADM to solve the generalized
lasso problems (Boyd et al., 2010), including lasso (Tib-
shirani, 1996) and total variation (TV)(Rudin et al., 1992).
We present simulation results to show the convergence of
objective as well as constraints in OADM. We also com-
pare it with batch ADM and other two online learning al-
gorithms: FOBOS and regularized dual averaging (RDA)
in selecting sparse dimension in lasso and recovering data
in total variation.

7.1. Generalized Lasso

The generalized lasso problem is formulated as follows:

min
x

1

N

N∑
t=1

‖atx− bt‖22 + λ|Dx|1 , (30)
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Figure 1. The convergence of sparsity, objective value and constraints in OADM with q = 0.5, ρ = 1, η = t.

where at ∈ R1×n,x ∈ Rn×1,D ∈ Rm×n and bt is a
scalar. If D = I, (30) yields the lasso. If D is an up-
per bidiagonal matrix with diagonal 1 and off-diagonal−1,
(30) becomes the total variation. The ADM form of (30) is:

min
Dx=z

1

N

N∑
t=1

‖atx− bt‖22 + λ|z|1 , (31)

where z ∈ Rm×1. The three updates of OADM are:

xt+1 = (aTt at + ρDTD + η)−1v , (32)
zt+1 = Sλ/ρ(x + u) , (33)
ut+1 = ut + xt+1 − zt+1 , (34)

where u = y/ρ, v = aTt bt + ρbtD
T (z − u) + ηx, and

Sλ/ρ denotes the shrinkage operation.

For lasso, the x-update is

xt+1 = (v − (η + ρ+ ata
T
t )−1aTt (atv))/(η + ρ) .

For total variation, we set η = 0 so that

xt+1 = (Qv − (ρ+ atQaTt )−1QaTt (atQv))/ρ ,

where Q = (DTD)−1.

In both cases, the three updates (32)-(34) can be done in
O(n) flops (Golub & Loan, 1996). In contrast, in batch
ADM, the complexity of x-update could be as high as
O(n3) or O(n2) by caching factorizations (Boyd et al.,
2010). Here, we do not run them in parallel.

FOBOS and RDA cannot directly solve the TV term. We
first reformulate the total variation in the lasso form such
that

min
y

1

N

N∑
t=1

‖atD−1y − b‖22 + λ|y|1 , (35)

where y = Dx. FOBOS and RDA can solve the above
lasso problem and get y. x can be recovered by using x =
D−1y.

7.2. Simulation

Our experiments follow the lasso and total variation exam-
ples in Boyd’s website,2 although we modified the codes
to accommodate our setup. We first randomly generated
A with N examples of dimensionality n. A is then nor-
malized along the column. Then, a true x0 is randomly
generated with certain sparsity pattern for lasso and TV. b
is calculated by adding gaussian noise to Ax0/N . In all
experiments, N = 100, which facilitates the matrix inverse
in ADM and will be gone through cyclically in the three on-
line learning algorithms. For lasso, we keep the number of
nonzeros (NNZs) k = 100 in x and try different combina-
tion of parameters from n = [1000, 5000], ρ = [0.1, 1, 10]
and q = [0.1, 0.5] for λ = q×|AT b/N |∞. All experiments
are implemented in Matlab.

Convergence: We go through the examples 100 times us-
ing OADM. Figure 1(a) shows that NNZs converge to some
value close to the actual k = 100 before t = 2000. Fig-
ure 1(b) shows the convergence of objective value. In Fig-
ure 1(c), the dashed lines are the stopping criteria used in
ADM (Boyd et al., 2010). It shows that the equality con-
straint (top) and primal residual (bottom) are satisfied in
the online setting. While the objective converges fast, the
equality constraints relatively take more time to be satis-
fied.

Sparsity: We compare NNZs found by batch ADM and
three online learning algorithms, including OADM, FO-
BOS, and RDA. We set η = 1000 for OADM and γ = 1 for
RDA. For FOBOS, we use a time varying parameter ρt =
ρ/
√
t. For online learning algorithms, we go through theN

examples 100 times. We run the experiment 20 times and
the average results are plotted. Due to the limited space,
we only show the results for N = 100, n = 1000, q = 0.5
in Fig. 2. While ADM and RDA tend to give the sparsest
results, OADM seems more conservative and converges to
reasonably sparse solutions. Fig.2 shows OADM is closest
to the actual NNZs 100. The NNZs in FOBOS is large and
oscillates in a big range, which has also been observed in
(Xiao, 2010).

2http://www.stanford.edu/˜boyd/papers/
admm/

http://www.stanford.edu/~boyd/papers/admm/
http://www.stanford.edu/~boyd/papers/admm/
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(a) ρ = 0.1.
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(b) ρ = 1.
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(c) ρ = 10.

Figure 2. The NNZs found by OADM, ADM, FOBOS and RDA with q = 0.5. OADM is closest to the actual NNZs.

Total Variation: We compare the patterns found by the
four algorithms. For all algorithms, N = 100, n =
1000, λ = 0.001 and ρ is chosen through cross valida-
tion. In RDA, γ = 100. Recall that η = 0 in OADM.
While we use a fixed ρ for OADM and RDA, FOBOS uses
ρt = ρ/

√
t. Figure 3 shows the three different patterns and

results found by the algorithms. ADM seems to follow the
pattern with obvious oscillation. OADM is smoother and
generally follows the trend of the patterns. For the first two
examples, FOBOS works well and the patterns found by
RDA tend to be flat. In the last example, both FOBOS and
RDA oscillate.

8. Conclusions
In this paper, we propose an efficient online learning algo-
rithm named online ADM (OADM). New proof techniques
have been developed to analyze the convergence of ADM,
which shows that ADM has a O(1/T ) convergence rate.
Using the proof technique, we establish the regret bounds
for the objective and constraint violation for general and
strongly convex functions in OADM. Finally, we illustrate
the efficacy of OADM in solving lasso and total variation.
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A. Proof of Rate of Convergence of ADM
Proof: We start by noting that the VI corresponding to the
update of xt+1 in (3) is given by: ∀x ∈ X

f(x)−f(xt+1)+〈x−xt+1,A
T {yt+ρ(Axt+1+Bzt−c)}〉≥0 .

Using (5), ∀x ∈ X

f(xt+1)− f(x) + 〈xt+1 − x,ATyt+1〉
≤ ρ〈Ax−Axt+1,Bzt −Bzt+1〉 , (36)

The VI corresponding to the update of zt+1 in (4) is given
by: ∀z ∈ Z ,

g(z)−g(zt+1)+〈z−zt+1,B
T {yt+ρ(Axt+1+Bzt+1−c)}〉≥0 .

Using (5), ∀x ∈ X

g(zt+1)− g(z) + 〈zt+1 − z,BTyt+1〉 ≤ 0 , (37)

Adding (36) and (37) and denoting h(w) = f(x) + g(z),
we have ∀w ∈ Ω

h(wt+1)−h(w)+〈wt+1−w,F (wt+1)〉 (38)

≤ ρ〈Ax−Axt+1,Bzt−Bzt+1〉+
1

ρ
〈y−yt+1,yt+1−yt〉 .

The first term can be rewritten as

2〈Ax−Axt+1,Bzt −Bzt+1〉 (39)
= 2〈Ax− c− (Axt+1 − c),Bzt −Bzt+1〉
= ‖Ax + Bzt − c‖2 − ‖Ax + Bzt+1 − c‖2

+ ‖Axt+1 + Bzt+1 − c‖2 − ‖Axt+1 + Bzt − c‖2 .

The second term in (38) is equivalent to

2〈y − yt+1,yt+1 − yt〉 (40)

= ‖y − yt‖2 − ‖y − yt+1‖2 − ‖yt − yt+1‖2 .

Substituting (39) and (40) into (38) and summing over t,

T∑
t=1

[h(wt)− h(w) + 〈wt −w, F (wt)〉] ≤ L , (41)

where the constant L = ρ
2‖Ax − c‖22 + 1

2ρ‖y‖
2. Re-

call that h(w̃) is a convex function of w̃. Further, from
the definition of F (w̃), 〈w̃ − w, F (w̃)〉 is a convex func-
tion of w̃. Dividing both sides of (41) by T , recalling that
w̄T = 1

T

∑T
t=1 wt, and using Jensen’s inequality, we have

h(w̄T )− h(w) + 〈w̄T −w, F (w̄T )〉

≤ 1

T

T∑
t=1

h(wt)− h(w) +
1

T

T∑
t=1

〈wt −w, F (wt)〉

≤ L

T
= O

(
1

T

)
,

which establishes convergence rate for ADM.


