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Abstract

In this paper, we formulate the Canonical
Correlation Analysis (CCA) problem on ma-
trix manifolds. This framework provides a
natural way for dealing with matrix con-
straints and tools for building efficient al-
gorithms even in an adaptive setting. Fi-
nally, an adaptive CCA algorithm is proposed
and applied to a change detection problem in
EEG signals.

1. Introduction

Canonical Correlation Analysis (CCA) is a well-known
dimensionality reduction method. Given two views (or
representations) of the same set of objects, it aims at
finding projections for each representation such that
their correlation is maximized in the projection space.
As every popular method in machine learning, since its
first formulation (Hotelling, 1936) CCA has been ex-
tended to a kernel version (Lai & Fyfe, 2000; Akaho,
2001), to online and recursive versions (Vı́a et al.,
2007) and quite recently to a sparse version (Hardoon
& Shawe-Taylor, 2011).

CCA is usually formulated as the Generalized Sin-
gular Value Decomposition (Generalized SVD) of the
cross-covariance matrix (Sun et al., 2009). Besides, it
aims at finding projections that are orthogonal with
respect to the auto-covariance matrices of each view.
As CCA belongs to the class of Latent Variables meth-
ods, it shares close connections with those methods.
Indeed, according to Rosipal & Krämer (2006); Sun
et al. (2009), CCA is a generalization of Orthonormal-
ized Partial Least Squares.
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A wide variety of applications from multimodal deep
learning (Ngiam et al., 2011) to Brain Computer Inter-
face (BCI) (Hakvoort et al., 2011) used CCA for fea-
ture extraction. However, those applications involve
either non-stationary or big datasets. In such con-
texts, an adaptive algorithm for solving CCA would
be useful. Incremental algorithms have been proposed
for CCA and are based on a Recursive Least Squares
algorithm (Vı́a et al., 2007), but they solve a sequence
of rank-one CCA problems and cope with the orthog-
onality constraints using a deflation scheme.

Differential geometry of matrix manifolds provides an
elegant way for dealing with matrix constraints. This
framework has proved competitive for matrix con-
strained optimization problems (Meyer et al., 2011)
and more specifically for eigenproblems (Absil et al.,
2008). In this contribution, we cast the CCA prob-
lem as an optimization problem on matrix manifolds,
and solve it using classical gradient algorithms on less
studied manifolds. As an application, our adaptive
CCA is used to track principal correlations subspaces
of EEG signals over time, in order to detect the exact
time step when abrupt changes occur in those sub-
spaces. In our BCI context, such a change means that
the patient switches from a mental task to another.
For a real-time BCI system, a fast, reliable, low rank
and adaptive algorithm is needed to handle noisy and
non-stationary signals (Millan et al., 2004). Keeping
those needs in mind, we developed an adaptive version
of CCA based on matrix manifolds.

The next section of this paper is devoted to the CCA
algorithm and to its adaptive formulation. Then, we
introduce the basic tools of Riemannian geometry used
in our algorithm and we describe the steps of our CCA
algorithm. Finally, before discussing some extensions
of this work, we present numerical results on a toy
dataset and on BCI data.
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2. Canonical Correlation Analysis

2.1. Background

Assume given two full-rank data matrices X ∈ Rn×T

and Y ∈ Rm×T . The matrices Cxy = X>Y ,
Cx = X>X, Cy = Y >Y are estimates of the cross-
covariance and auto-covariance matrices. We assume
that both views on the data are centered.

Usually, CCA is formulated in terms of Rayleigh Quo-
tient (Hardoon et al., 2004; Bie et al., 2005) involving
the covariance matrices of both views Cx and Cy and
between the views Cxy:

max
u∈Rn,v∈Rm

u>Cxyv√
u>Cxu

√
v>Cyv

. (1)

By extending the Rayleigh Quotient using the trace
operator, multiple projections can be obtained simul-
taneously by solving the following fixed rank p opti-
mization problem (Sun et al., 2009)

max
U ∈ Rn×p

V ∈ Rm×p

tr
(
U>CxyV

)
s.t. U>CxU = Ip, V >CyV = Ip.

(2)

Several alternative formulations exist and involve Gen-
eralized Eigenvalue Decompositions of symmetric defi-
nite positive matrix pencils (Golub & Van Loan, 1996):{

CxyC
−1
y C>xyU = CxUΛ2,

C>xyC
−1
x CxyV = CyV Λ2.

However, if the data are non-stationary, the previous
formulations are hard to update, making them unsuit-
able for online or adaptive applications.

Concatenating the two views, the following eigenprob-
lem is often used for the CCA problem (Bie et al.,
2005; Vı́a et al., 2007):

1

2

[
0 Cxy

C>xy 0

] [
u
v

]
= λ

[
Cx 0
0 Cy

] [
u
v

]
.

This formulation, true for rank-one eigenproblem, can-
not be extended to a higher rank without a costly and
numerically unstable deflation procedure (unsuitable
for an adaptive formulation). Indeed, for p > 1 the
constraint U>CxU + V >CyV = Ip implied by the for-
mulation is not equivalent to the constraints of (2).

As the trace operator is invariant to multiplication of
both U and V by elements of O(p), the group of or-
thonormal matrices in Rp×p, we must modify Prob-
lem (2) to enforce uniqueness of the solution. Intro-
ducing the matrix N as a diagonal matrix in Rp×p

with strictly decreasing positive elements (Absil et al.,
2008, p.11), we propose to replace the objective func-
tion of Problem (2) by the Brockett cost function
tr(U>CxyV N). Hence the obtained solution will cor-
respond to the solutions of the previous eigenproblems.

2.2. Adaptive formulation

At each time step t, new samples xt in Rn and yt in Rm

are acquired and all covariance matrices are updated
using a forgetting factor 0 < β < 1:

Ct
x = βCt−1

x + xtx
>
t , Ct

y = βCt−1
y + yty

>
t

Ct
xy = βCt−1

xy + xty
>
t .

This forgetting update is a common tool in subspace
tracking (dos Santos Teixeira & Milidiú, 2010), assim-
ilable to estimation over an exponential window. The
case β = 1 leads to an incremental problem.

The adaptive CCA problem is formulated as
max

U ∈ Rn×p

V ∈ Rm×p

tr
(
U>

(
βCt−1

xy + xty
>
t

)
V N

)
s.t. U>

(
βCt−1

x + xtx
>
t

)
U = Ip,

V >
(
βCt−1

y + yty
>
t

)
V = Ip

(3)

In our adaptive setting, knowing the solution
(Ut−1, Vt−1), we wish to update the solution at a cheap
cost. However, we need our solution (Ut, Vt) to sat-
isfy the Ct

x- and Ct
y-orthogonality conditions. In the

sequel, we present a gradient algorithm, but, in order
to be able to apply this algorithm, we need the initial
point (Ut−1, Vt−1) to satisfy the updated constraints.
Indeed, if we have U>t−1C

t−1
x Ut−1 = Ip the constraint

U>t−1C
t
xUt−1 = Ip may not be satisfied. Hence, our

first task is to find a feasible starting point referred to
as (Ut′ , Vt′). We call this the metric update subprob-
lem. From then, our second task is to maximize the
cost function.

2.2.1. Metric update subproblem

The metric update consists in finding a subspace satis-
fying the new orthogonality constraints while conserv-
ing the span of the previous subspace. The product
by matrices in the general linear group GLp (the set
of all invertible p×p matrices) conserves the span. The
metric problem then aims at finding matrices in GLp

such that:
max

Ou ∈ GLp
Ov ∈ GLp

tr
(
O>u U

>
t−1C

t−1
xy Vt−1OvN

)
s.t. O>u

(
βIp + U>t−1xtx

>
t Ut−1

)
Ou = Ip,

O>v
(
βIp + V >t−1yty

>
t Vt−1

)
Ov = Ip
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Let zx = U>t−1xt and zy = V >t−1yt be the com-
pressed samples, Lt−1 = U>t−1C

t−1
xy Vt−1 be the com-

pressed cross-covariance and Gx = βIp + zxz
>
x and

Gy = βIp + zyz
>
y be the compressed auto-covariance

matrices.

The only elements of GLp respecting the constraints
can be written as elements of two instances of the Gen-
eralized orthogonal group defined for a given matrix
G � 0 (positive definite matrix G) as:

OG(p) = {X ∈ GL(p) : X>GX = Ip}.

The metric update problem is now a full SVD problem
on the Generalized orthogonal groups: max

Ou,Ov

tr
(
O>u Lt−1OvN

)
s.t. Ou ∈ OGx

(p), Ov ∈ OGy
(p)

(4)

From the solution of (4), the new subspace matrices
are obtained as

Ut′ = Ut−1Ou, Vt′ = Vt−1Ov,

along with a new compressed covariance matrix

Lt′ = U>t′ C
t−1
xy Vt′ = O>u Lt−1Ov.

2.2.2. Cost function update subproblem

This subproblem consists in finding new subspaces
maximizing the cost while satisfying the updated met-
ric constraints, (eventually) resulting in a change of
span and it is equivalent to Problem 3:

max
U ∈ Rn×p

V ∈ Rm×p

tr
(
U>

(
βCt−1

xy + xty
>
t

)
V N

)
s.t. U>Ct

xU = Ip,
V >Ct

yV = Ip

At the end of the cost function phase, the new sub-
space matrices Ut and Vt are obtained directly as solu-
tions of the subproblem, and so is the new compressed
covariance matrix Lt = U>t C

t
xyVt.

In each subproblem, the matrix constraints define Rie-
mannian matrix manifolds. Hence, each subproblem
corresponds to the maximization of a Brockett cost
function on matrix manifolds. In the case of the metric
update, the manifold is a product of two Generalized
orthogonal groups and in the case of the cost func-
tion update, the manifold is a product of Generalized
Stiefel manifolds.

Figure 1. Insights on Riemannian geometry : the link be-
tween a manifold M, its tangent space TXM at a point X
and the retraction RX that locally maps a displacement ηξ
in TXM to M.

3. Manifold framework

Optimization on Riemannian manifold is currently a
very active research field in machine learning com-
munity (Meyer et al., 2011) and more broadly in the
numerical optimization discipline (Absil et al., 2008).
In a complete Riemannian view, we should express
our optimization problem as a search along a geodesic
curve in the manifold. Such a search being in practice
intractable, we chose to approximate it by a search
along another smooth curve on the manifold. This
smooth curve is defined by a function that transforms
any displacement in the tangent space to a point on
the manifold. Such a function (that also obeys to some
technical conditions, see (Absil et al., 2008)) is called
a retraction. Figure 1 depicts a Riemannian manifold
M and a tangent space at a point X on this mani-
fold. The tangent space is a vector space that locally
approximates the manifold. Then the retraction is a
mapping that locally transforms a search in the man-
ifold into a search in the tangent space.

In this section, we briefly recall our Tangent space and
retraction formulae. The Stiefel manifold St(p, n) is
defined as

St(p, n) = {X ∈ Rn×p : X>X = Ip}.

The orthogonal group O(p) is the Stiefel manifold
St(q, p) with q = p: O(p) = {X ∈ Rp×p : X>X = Ip}.
For a given matrix G � 0, we define the Generalized
Stiefel manifold as:

StG(p, n) = {X ∈ Rn×p : X>GX = Ip}.

This manifold contains the p-dimensional G-
orthonormal subspaces of Rn×n. The Generalized
orthogonal group OG(p) is the Generalized Stiefel
manifold St(q, p) with q = p:

OG(p) = {X ∈ Rp×p : X>GX = Ip}.
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The former CCA optimization problems can be now
seen as optimization problems on matrix manifolds
StCx(p, n) and StCy (p,m):{

max
U ∈ StCx (p, n)
V ∈ StCy (p,m)

tr
(
U>CxyV N

)
(5)

and on manifolds OGx
(p) and OGy

(p) as in Eq. 4.

3.1. Tangent space

The definitions of the tangent space and of the retrac-
tion can be found in (Absil et al., 2008) for the Stiefel
manifold and for the orthogonal group. Deriving the
same calculus for the generalized case, we obtain the
following definitions for the tangent space at a point
X on a Generalized Stiefel manifold:

TXStG(p, n) = {Z ∈ Rn×p : X>GZ + Z>GX = 0}.

An alternative characterization of TXStG(p, n) decom-
poses any element of TXStG(p, n) as the sum of a term
G-orthogonal to X, written X⊥K, and of the product
of X with a skew-symmetric matrix Ω in Sskew(p):

TXStG = {XΩ +X⊥K : Ω> = −Ω,K ∈ R(n−p)×p}.

where Sskew(p) denotes the set of all skew-symmetric
p×p matrices. In the case of the Generalized orthogo-
nal group, the alternative characterization of the tan-
gent tangent space is simplified:

TXOG(p) = {XΩ : Ω> = −Ω}.

3.2. Retraction

One example of retraction for the (Generalized) Stiefel
manifold is the polar retraction:

∀ξ ∈ TXStG(n, p) and X ∈ StG(n, p) :

RX(ζξ) = (X + ζξ)(Ip + ζ2ξ>Gξ)−
1
2

There exists several other retractions that can be ap-
plied for (Generalized) Stiefel manifold. Among them,
the retraction based on QR-decomposition (adapted
to the metric) could also be applied.

Until now, we derived equations and formulae char-
acterizing tangent space and retraction on StG(n, p)
and OG(p). However, in our optimization problems,
the manifold of interest is a product manifold of two
generalized Stiefel manifolds.
In (Ma et al., 2001), the authors proved that the
geodesics in the product manifold are the products
of the geodesics in the factor manifolds. This helpful
property enables us to compute the gradients and the
retractions on each of the factor manifolds separately.

4. Gradient ascend algorithm

This section presents a manifold gradient algorithm
adapted to product of Generalized Stiefel manifolds
and product of Generalized orthogonal groups. First,
we present the formulae for the cost function subprob-
lem. The Generalized orthogonal group being a partic-
ular case of Generalized Stiefel manifold, we shortened
the description of its gradient. Finally, we sum up the
approach in Algorithm 1.

4.1. Gradient ascend on Generalized Stiefel
manifold

At time t′, after the metric update phase, for each
subspace, we can compute compressed samples and
residuals:

zx = U>t′ xt, fx = (Ct
x)−1x− Ut′zx, (6)

zy = V >t′ yt, fy = (Ct
y)−1x− Vt′zy,

using Sherman-Morrison-Woodbury formula to get ef-
ficiently the inverse of matrices. For instance, we have

(Ct
x)−1 = β−1(Ct

x)−1 − β−1 (Ct
x)−1xtx

>
t (Ct

x)−1

β + x>t (Ct
x)−1xt

.

The gradient of the Brockett cost function on the Gen-
eralized Stiefel manifold StCx at U is defined as :

ξU = (Cx)−1CxyV N −
1

2
ULN − 1

2
UNL>,

with L = U>CxyV . Note that the Brockett matrix N
insures that if the gradient is null then the compressed
covariance matrix L is diagonal and U is solution of
the eigenproblem. In the adaptive case, the gradient
becomes

ξU = fxz
>
y N +

1

2
Ut′
(
zxz
>
y N −Nzyz>x

)
. (7)

Defined as the sum of a Ct
x-orthogonal element and of

a skew-symmetric element, ξU belongs to the tangent
space TUSt(p, n) and thus a retraction can be used.

Choosing a polar retraction, the updated matrix Ut+1

for a step length ζU in R is :

Ut+1 = (Ut′ + ζUξU )
(
Ip + ζ2Uξ

>
UCxξU

)−1/2
The right term of the retraction product includes two
rank-one matrices orthogonal to each other, multiple of
the (orthogonal) projectors on Nzy and z̄x, where z̄x ,

zx − z>x Nzy
z>y N2zy

Nzy with z̄>x zy = 0. After some algebra,
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the updated matrix can be computed efficiently as:

Ut+1 = Ut′ − ρxUt′
Nzyz

>
y N

z>y N
2zy
− ρ̄xUt′

z̄xz̄
>
x

z̄>x z̄x
(8)

+ ζU (1− ρx)fxz
>
y N +

ζU
2

(1− ρx)Ut′ z̄xz
>
y N

− ζU
2

(1− ρ̄x)Ut′Nzy z̄
>
x .

with the coefficients ρx and ρ̄x defined as:

ρx = 1−
√

1

1 + αx
, ρ̄x = 1−

√
1

1 + ᾱx
,

where αx, ᾱx are positive coefficients taking into ac-
count the norm of the residuals, the compressed sam-
ples and the squared step length:

αx = (f>x Cxfx +
z̄>x z̄x

4
)(z>y N

2zy)ζ2U ,

ᾱx =
z̄>x z̄x

4
(z>y N

2zy)ζ2U .

The same formula holds for the gradient of the right
subspace exchanging the respective roles of each view.
The step lengths ζU and ζV are jointly determined
using standard line-search techniques.

4.2. Gradient ascend on Generalized
Orthogonal Group

Let Gx = βIp+zxz
>
x and Gy = βIp+zyz

>
y be the com-

pressed auto-covariance matrices. Initial points on the
manifold are computed using the following formulae:

Ot
u = (Gx)−1/2 = β−1/2

(
Ip − ρ̃x

zxz
>
x

z>x zx

)
, (9)

ρ̃x = 1−
√

1

1 + α̃x
, α̃x =

z>x zx
β(1 + z>x zx)

,

Ot
v = β−1/2

(
Ip − ρ̃y

zyz
>
y

z>y zy

)
, (10)

ρ̃y = 1−

√
1

1 + α̃y
, α̃y =

z>y zy

β(1 + z>y zy)
,

and at these points, the gradient is written:

ξOu = (Gx)−1LtO
t
vN −

1

2
Ot

uLtN −
1

2
Ot

uNL
>
t , (11)

A polar retraction being too costly in this case, we
apply an oblique version of QR decomposition, where
the projections are made according to Gx. Again, the
same formula holds for the gradient of the right sub-
space exchanging the respective roles of each view.

Algorithm 1 Adaptive CCA algorithm

input: subspace matrices (U, V ), forgetting factor β,
covariance matrices Cx,Cy,Cxy, sample (x, y)

output: updated subspace matrices (U, V )
updated covariance matrices Cx,Cy,Cxy

compute compressed samples zx,zy(Eq. 6)
compute initial matrix Ou,Ov(Eq.9-10)
perform Gradient ascend (Eq. 11)
update U, V
update auto-covariance matrices Cx,Cy

compute zx,zy and residuals fx,fy (Eq. 6)
perform Gradient ascend (Eq. 7)
update U, V (Eq. 8)
update cross-covariance matrix Cxy

5. Numerical results

In the begining of this paper, in preamble to the expla-
nation on CCA, we assumed both views of the data to
be centered. This theoretical requirement being how-
ever rarely met in practice, we used the following for-
mula (dos Santos Teixeira & Milidiú, 2010) in order
to estimate the mean of a given view w(used to center
the current sample): µt

w = t−1
t βµt−1

w + 1
t (wt + µt−1

w ).

5.1. Toy dataset

We compare the performances of our algorithm to
those of the adaptive RLS-CCA algorithm (Vı́a et al.,
2007) with a corrected orthogonalization scheme. The
solutions given by both methods are compared to the
exact solution given by a batch algorithm (solving the
Generalized SVD at every step). The evaluation crite-
ria are the orthonormality errors w.r.t. the metric on
both views

exo(t) = ‖U>t Ct
xUt − Ip‖2F , eyo(t) = ‖V >t Ct

yVt − Ip‖2F ,

the distance between the oblique projectors associated
to each subspace normalized by the rank of the prob-
lem:

exa(t) =
‖Ct

xUtU
>
t − Ct

xU
b
t U

b
t
>‖2F

2p
,

eya(t) =
‖Ct

yVtV
>
t − Ct

xV
b
t V

b
t
>‖2F

2p
,

and the ratio ec between the cost obtained using
the competing algorithms and the cost of the exact
method.

Our simulation protocol generates samples x of size
n = 36 and y of m = 34 living in two different full-
rank subspaces. We are interested in tracking the first
p = 30 principal directions of the correlated subspaces
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Figure 2. Cost and accuracy distance to the batch solution
for the RLS-CCA and our adaptive CCA

with a forgetting factor β = 0.99 during 2000 time
steps. The results are averaged over 50 trials.

Figure 2 shows the cost and accuracy errors with ran-
dom feasible initializations. The error on the obtained
cost stabilizes at 62% of the batch cost for our algo-
rithm, whereas the LRR-CCA stabilizes at 27% of the
batch cost algorithm. In both cases, the accuracy er-
rors are in the same range and the orthogonality errors
are acceptable (∼ 10−13). As our adaptive algorithm
only performs one gradient step for every sample, com-
parison with the updated batch is far from being op-
timal. But it achieves correct results, compatible with
our change detection application for BCI.

5.2. BCI Competition III dataset V

We tested our method on the dataset V of the BCI
Competition III (Millan et al., 2004; Blankertz et al.,
2004). It contains data from three subjects during 4
non-feedback sessions. The subjects were asked to per-
form a mental task during about 15 seconds and then
switch to a randomly chosen task. There are three
tasks : imagination of repetitive left hand movements,
or imagination of repetitive right hand movements or
generation of words beginning with the same random
letter. The goal is to predict the current mental task
of the subject every 0.5 seconds.

In this study, we apply our adaptive CCA algorithm
for change detection and we focus on detecting the
change in mental task of the subjects. Some pre-
computed features were provided for the competition.
Those 96 features consists of power spectral density
(PSD) in the band [8− 30] Hz of the 8 centro-parietal

channels, spatially filtered by a surface Laplacian. We
will calculate the correlation between the features of
left and right electrodes, respectively xt and yt, letting
unused the features of the central electrodes.

The three mental tasks performed by the subjects in-
volve different regions of the brain. Hence, the corre-
lation of the signals measured over those regions will
be different for two different mental tasks. So, the cor-
relation matrix between the right and left electrodes
should give us information about the current mental
state of the brain. By tracking the changes in the
principal subspaces of this matrix, we should be able
to detect if the subject switched from one mental task
to another.

The cross-covariance and auto-covariance matrices
were initialized on the 100 first samples (≈ 6s) of each
session. This choice is a compromise between an accu-
rate estimation of the covariance matrices and the need
for the criterion to be stable before the first change.
The forgetting factor β was set to 0.98 such that it
avoids numerical problem and gives a sufficient adapt-
ability to the algorithm. Finally, the rank of the de-
composition was set to p = 4 subspaces. This choice
is a trade-off between summing up most of the views
correlation and keeping a low rank representation for
a fast optimization.

In (dos Santos Teixeira & Milidiú, 2010), a criterion in-
volving the reconstruction error on the current sample
has been used for anomaly detection. We adapted this
criterion to our context and used it in order to detect
the change in mental task of the subjects. Let nx =
ny = 36, the number of features in both views xt and
yt. For a given sample, we calculate the residuals rtx
and rty of the projection of the current views on the pre-

vious subspaces. rtx = ((Ct−1
x )−1−Ut−1U

>
t−1)xt, r

t
y =

((Ct−1
y )−1 − Vt−1V >t−1)yt

Finally, we average the norms of the residuals on both
views (with respect to their metric) leading to the per-

formance measure ct = 1
2 (

rtx
>Ct−1

x rtx
nx

+
rty
>Ct−1

y rty
ny

).

For the test session, we need to determine a threshold τ
above which a change is detected. For a given subject,
τ is defined as the minimum of the criterion c evaluated
over the change points in the three training sessions.
The course of the reconstruction criterion c over time is
shown for each subject during each session in Figure 3.
The vertical red dashed lines show the time step when
the subject is asked to switch from a mental task to
another. For every subject, the horizontal black dotted
lines show the threshold τ .

We observe in Figure 3 that the criterion ct rapidly



Adaptive CCA Based On Matrix Manifolds

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

subject 1 session 1

time sample

re
c
o
n
s
tr

u
c
ti
o
n
 e

rr
o
r

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

subject 1 session 2

time sample

re
c
o
n
s
tr

u
c
ti
o
n
 e

rr
o
r

0 500 1000 1500 2000 2500 3000 3500
0

0.1

0.2

0.3

0.4

0.5

subject 1 session 3

time sample

re
c
o
n
s
tr

u
c
ti
o
n
 e

rr
o
r

0 500 1000 1500 2000 2500 3000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

subject 2 session 1

time sample

re
c
o
n
s
tr

u
c
ti
o
n
 e

rr
o
r

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

subject 2 session 2

time sample

re
c
o
n
s
tr

u
c
ti
o
n
 e

rr
o
r

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

subject 2 session 3

time sample

re
c
o
n
s
tr

u
c
ti
o
n
 e

rr
o
r

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

subject 3 session 1

time sample

re
c
o
n
s
tr

u
c
ti
o
n
 e

rr
o
r

0 500 1000 1500 2000 2500 3000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

subject 3 session 2

time sample

re
c
o
n
s
tr

u
c
ti
o
n
 e

rr
o
r

0 500 1000 1500 2000 2500 3000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

subject 3 session 3

time sample

re
c
o
n
s
tr

u
c
ti
o
n
 e

rr
o
r

Figure 3. Application of the adaptive CCA to the training data of the subjects.

rises at the exact moment of the change and that
the criterion oscillates in the next few samples after a
change. So we decided to adopt the following decision
rule for the test data : if the criterion is greater than
the threshold τ and if it was not previously (within
5 samples = 312ms) greater than the threshold τ , a
change is detected. Obviously, this is a naive rule and
it could be improved by using more complex hypoth-
esis test on the distribution of the criterion. However,
as we want to highlight the effect of the CCA, this sim-
ple thresholding heuristic is clearly sufficient as made
clear by Table 1.

In order to evaluate the performance of our adap-
tive CCA method, we compare the AUC of the
adaptive CCA to a state-of-the-art change detection
method (Desobry et al., 2005). This method referred
to as KCD in Table 1 is applied on the 96 precom-
puted PSD features with 100 samples sliding windows.
The parameters (σ of the Gaussian kernel, ν of the
One-class SVM) algorithm were validated on the three
training sessions in order to give the best AUC. As a
comparison, we show the evolution of the KCD cri-
terion in Figure 4. The CCA algorithm surpris-
ingly outperforms the KCD algorithm. However, the
AUC results may be explained by the strong a priori
knowledge included in this approach by studying the
correlation EEG signals between left and right hemi-
spheres. Indeed this simple algorithm applied to fea-
tures adapted to the problem outperforms a complex
method applied on out of the box features.
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Figure 4. KCD criterion on the first session for subject 1 .

Our simple heuristic on the residuals of the adaptive
CCA gives interesting results. It is notably able to
detect changes without any delay and may be a good
feature extraction for more robust change detection al-
gorithm. Moreover, sensor and feature selection could
also enhance the obtained results. Finally, using some
stronger a priori on BCI data, this adaptive CCA ap-
proach could be extended to classify the task after the
change is detected.

6. Conclusion and perspectives

We proposed an adaptive formulation of the classi-
cal CCA algorithm based on matrix manifolds. The
Riemannian framework enabled us to build a fast and
adaptive two-steps gradient algorithm. Moreover, we
proposed an approach for change detection in the cor-
relation of two time series. This simple approach was
tested on a BCI dataset and gave promising results for
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Table 1. Performance of the CCA for change detection on
the BCI competition test dataset.

Subject 1 Subject 2 Subject 3

threshold 0.0533 0.0409 0.0591

True Positives 7 10 8
False Positives 3 0 1
False Negatives 1 1 3
True Negatives 3493 3461 3476

#samples 3504 3472 3488

AUC (CCA) 100 100 99.99
AUC (KCD) 81.12 68.63 58.35

detecting changes in mental tasks.

We are currently exploring several extensions of this
work. Our algorithm is based on a simple gradient
and using the same manifold framework, a Newton
method could be derived and should improve the dis-
tance to the batch solution. This paper focused on an
adaptive formulation of the problem, its extension in
an online learning framework (Warmuth & Kuzmin,
2006) should provide regret bounds for both views.
Finally, Approximate Joint Singular Value Decompo-
sition (AJSVD) (Congedo et al., 2011) is an exten-
sion of CCA handling the correlations between multi-
ple views. To our knowledge, it has not been studied
in an adaptive settings which would be of interest to
BCI application.
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