
Compositional Planning Using Optimal Option Models

David Silver d.silver@cs.ucl.ac.uk
Kamil Ciosek k.ciosek@cs.ucl.ac.uk

Department of Computer Science, CSML, University College London, Gower Street, London WC1E 6BT.

Abstract
In this paper we introduce a framework for
option model composition. Option models
are temporal abstractions that, like macro-
operators in classical planning, jump directly
from a start state to an end state. Prior work
has focused on constructing option models
from primitive actions, by intra-option model
learning; or on using option models to con-
struct a value function, by inter-option plan-
ning. We present a unified view of intra- and
inter-option model learning, based on a ma-
jor generalisation of the Bellman equation.
Our fundamental operation is the recursive
composition of option models into other op-
tion models. This key idea enables composi-
tional planning over many levels of abstrac-
tion. We illustrate our framework using a
dynamic programming algorithm that simul-
taneously constructs optimal option models
for multiple subgoals, and also searches over
those option models to provide rapid progress
towards other subgoals.

1 Introduction

Classical planning algorithms make extensive use of
temporal abstraction to construct high-level chunks
of useful knowledge (Amarel, 1968; Sacerdoti, 1975;
Korf, 1985; Laird et al., 1986). They are typically
provided with a set of primitive planning operators as
inputs. These are then composed together into macro-
operators: open-loop sequences of planning operators.
Macro-operators jump directly from an initial state to
the outcome state that would result from following the
sequence, without having to execute the intermediate
operators. Macro-operators can themselves be com-
posed together into more abstract operators, allowing
planning to take place at a much more abstract level.

Appearing in Proceedings of the 29 th International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).

Macro-operators can be thought of as building blocks
of knowledge, which can be combined together into
more abstract knowledge. Powered by this knowledge,
the path to the goal can often be found in a small num-
ber of high-level planning operations, even when the
path is composed of thousands of primitive actions.

In Markov Decision Processes (MDPs), the outcome of
an action may be stochastic. An open-loop sequence
does not capture the contingencies that can arise as a
result of each intermediate action. Instead, a closed-
loop policy, which maps states to actions, can respond
to each particular situation as it arises. A closed-loop
policy that is followed for some number of steps, and
stops according to a termination condition that also
depends on the state, is known as an option (Sutton
et al., 1999). An option model describes the distribu-
tion of outcome states that would result from follow-
ing the option (Sutton, 1995). Option models are the
stochastic analogue of macro-operators: they jump di-
rectly from initial state to outcome, without having to
execute the intermediate actions. Option models can
also be composed together into more abstract option
models (Precup et al., 1998). Option models thus pro-
vide basic building blocks for compositional knowledge
in general MDPs.

However, prior work on planning with options has been
restricted to shallow hierarchies. Option models are
either constructed from primitive actions, in an ap-
proach known as intra-option model learning; or they
are used to compute a value function, in an approach
known as inter-option (or SMDP) planning (Sutton
et al., 1999). Although these steps are sometimes com-
bined, they are typically combined in two stages: first
constructing the option models without using them;
and then using the option models without changing
them. In both stages, the planning operators are fixed.

In this paper we focus explicitly on compositional plan-
ning : the multi-level composition of option models.
Each option model is both constructed (intra-option)
and used (inter-option). It is constructed from lower-
level option models, so as to maximise progress to-
wards a given subgoal. It may also be used to com-

Compositional Planning Using Optimal Option Models

pose higher-level option models. As soon as an option
model has been created, it can be used to construct
other option models. As a result, the set of planning
operators improves dynamically, providing longer and
more purposeful jumps as planning proceeds.

Our approach is based on a major generalisation of
the Bellman equation along four dimensions. First, we
provide a recursive relationship between state proba-
bilities as well as between rewards. Second, we com-
pose over options rather than primitive actions. Third,
we generalise from the overall goal of maximising to-
tal reward, to any given subgoal. Fourth, we optimise
over termination conditions as well as policies.

Several of these dimensions have been partially ex-
plored by prior work. First, Sutton et al. (1995, 1999,
Section 5) developed a Bellman expectation equation
for state probabilities, but this work was restricted
to Markov reward processes without actions (Sut-
ton, 1995) or to fixed policies without control (Sut-
ton et al., 1999). We present a Bellman optimality
equation for state probabilities in Markov decision pro-
cesses, including actions and control. Second, Precup
et al. (1998) provided Bellman equations for compos-
ing option models into policies, but not into options.
Our framework constructs both policies and termina-
tion conditions, so that we can compose option models
into other option models – a crucial step for composi-
tional planning. Third, Sutton et al. (1999, Section 7)
defined optimal options with respect to a given sub-
goal and termination condition, and suggested the ex-
istence of a corresponding Bellman optimality equa-
tion. We define this Bellman optimality equation, and
also extend to the case when neither, either, or both
the policy and termination condition are specified. No
prior work has considered the state probabilities as-
sociated with Bellman optimality equations. Without
knowledge of these state probabilities, it is not pos-
sible to jump directly to the outcome of an optimal
option. Our approach to compositional planning is
built directly on this knowledge, so as to build ab-
stract macro-operators that can jump from one state
directly to a distant state.

The Bellman optimality equation gives rise to impor-
tant planning methods such as value iteration. Simi-
larly, we use our generalised Bellman equation to de-
rive a compositional planning algorithm, which simul-
taneously and recursively constructs the optimal op-
tion model for multiple subgoals, including the overall
goal as a special case. We prove that this algorithm
converges to optimal option models for all subgoals,
including the optimal policy.

The options framework is agnostic about the source
of the options, and does not commit to any particu-

lar algorithm for their construction. However, several
other approaches to hierarchical reinforcement learn-
ing have been proposed, based on samples from an
unknown MDP. These architectures, including Diet-
terich’s MAXQ (2000), and Parr and Russell’s HAMs
(1997; 2002), do construct the solution to one subprob-
lem from the solution to other subproblems. However,
these architectures are not directly applicable to com-
positional planning, where the MDP is known rather
than sampled. By focusing on planning with known
models, we develop a sound theoretical framework for
compositional planning, based on the generalised Bell-
man equation. This work can be viewed as a bridge
between the generality of options, and the composi-
tional construction algorithms used by architectures
such as MAXQ.

We illustrate our approach on two well-known bench-
mark problems: hierarchical path planning and the
Tower of Hanoi. Both problems have been extensively
studied using classical planning approaches. In both
problems, planning directly with primitive operators
(e.g. using value iteration) requires computation time
that is exponential in the problem size, whereas algo-
rithms based on compositions of macro-operators (e.g.
Jonsson 2009) can solve these problems in polynomial
time. Unfortunately, classical planning approaches do
not generalise to stochastic planning problems. In con-
trast, our compositional planning algorithm can solve
both deterministic and stochastic variants of these
problems in a polynomial number of iterations.

2 Background

An MDP is defined by a set of n states S, a set of
actions A, action transition matrices P a and action
reward vectors Ra for each action a ∈ A, and a dis-
count factor 0 ≤ γ < 1. Each component of the action
transition matrix P ass′ is the discounted probability of
next state s′ given that action a was selected in state
s, P ass′ = γ Pr(st+1 = s′ | st = s, at = a). Each
component of the action reward vector Ras is the ex-
pected reward given that action a was selected in state
s, Ras = E[rt+1 | st = s, at = a]. The discount factor
can be viewed as a chance of exiting to an absorbing
terminal state with probability 1− γ. The discounted
probability P ass′ can be interpreted as the probability
of reaching state s′ without exiting.

A policy π(s, a) is the probability of selecting action a
given state s, π(s, a) = Pr(at = a | st = s). The
value function, V π(s), is the expected total reward
from state s when following policy π, V π(s) = E[rt+1+
γrt+2 + ... | st = s, π]. The optimal value function
V ∗(s) and optimal action value function Q∗(s, a) are
the maximum achievable value and action value that

Compositional Planning Using Optimal Option Models

can be achieved by any policy, V ∗(s) = max V
π

π(s).

An optimal policy π∗(s, a) is any policy that achieves
the optimal value function.

The optimal value function obeys a recursive rela-
tionship: the Bellman optimality equation, V ∗(s) =
max R

a

a
s +

∑
s′ P

a
ss′V

∗(s′). The optimal value func-

tion is the unique fixed point of this equation, and
can be found by turning the Bellman optimality equa-
tion into an iterative update, Vk+1(s) ← max R

a

a
s +∑

s′ P
a
ss′Vk(s′). This algorithm is called value iteration

(Bellman, 1957).

An option o = 〈π, β〉 is an extended behaviour or
macro-action that combines a policy π(s, a) with a
termination condition β(s) giving the probability that
the option will stop in state s. We assume that options
can be initiated from all states. Primitive actions are
options: they can be represented by a policy that de-
terministically selects that action, and a termination
condition that stops with probability 1. We denote
the set of all policies by Π and the set of all termi-
nation conditions by B. An option model comprises
an option transition matrix P o and an option reward
vector Ro. Each component Ros is the expected total
reward given that option o was executed from state s,
Ros = E[rt+1 +γrt+2 + ...+γτ−1rt+τ | st = s, o], where
τ is the random variable for the duration of option o.
Each component P oss′ is the probability of terminat-
ing in state s′ given that option o was executed from
state s, discounted by the total duration of the option,
P oss′ =

∑∞
τ=1 γ

τPr(τ, st+τ = s′ | st = s, o). This can
be interpreted as the probability of option o terminat-
ing in s′ without exiting.

3 Models

Informally, a model is a stochastic mapping from state
to state, combined with the reward accumulated along
the way. Applying a model to a state results in a distri-
bution over outcome states, and an expected reward.
To compose models together, we apply a second model
to this outcome distribution and expected reward, and
arrive at a new state distribution and reward. We now
formalise these ideas, following Sutton (1995).

We define a rasp (reward and state probabilities),
[r| p], to be a 1 × (1 + n) row vector, where n = |S|,
r is a scalar reward, and p is a 1 × n row vector rep-
resenting a discounted probability distribution p over
states in S. We use ss to denote the deterministic
rasp that is in state s with probability 1, and has a
reward component of zero; we shorten to s when there
is no ambiguity. Rasps are ordered by their reward
components, [r1 | p1] ≤ [r2 | p2] if and only if r1 ≤ r2.

A model is a transformation from rasp to rasp. For-

mally, a model

[
1 0
R P

]
is a 1 + n × 1 + n block

matrix containing an n × 1 reward vector R and an
n × n transition matrix P . This block matrix nota-
tion for models and block vector notation for rasps are
known as homogeneous coordinates (Sutton, 1995). To
compose two models together, we multiply their homo-
geneous coordinates,[

1 0
R1 P1

] [
1 0
R2 P2

]
=

[
1 0

R1+P1R2 P1P2

]
(1)

Similarly, to compose a rasp and a model, we again
multiply their homogeneous coordinates,

[r | p]
[

1 0
R P

]
= [r + pR | pP].

(2)

To aid readability, homogenous matrices and vectors
are denoted by boldface letters, e.g x, M and M for
rasps, models and model sets respectively. Sequences
of compositions are best understood by reading left to
right, e.g. sAB is the model composition that starts
in state s, applies model A and then applies model B.

3.1 Model Sets

Models can represent the outcomes of actions, options
and policies. An option model Oo ∈ O represents
the outcome on termination of a corresponding option
o ∈ O. It combines an option transition matrix with

an option reward vector, Oo =

[
1 0
Ro P o

]
. An ac-

tion model Aa ∈ A represents the outcome of a prim-

itive action a ∈ A, where Aa =

[
1 0
Ra P a

]
. Action

models are option models, A ⊂ O, corresponding to
options that terminate with probability 1. A policy

model Ππ ∈ Π , where Ππ =

[
1 0
V π 0

]
, represents

the outcome of executing policy π forever. Policy mod-
els are also option models, Π ⊂ O, corresponding to
options that terminate with probability 0. Finally, we
define an identity model I corresponding to zero re-

ward and the identity transition matrix, I =

[
1 0
0 I

]
;

this can be viewed as a null model without any dis-
counting. Note that action/option/policy subscripts
may be dropped when there is no ambiguity.

3.2 Value Models

A value model V ∈ V , where V =

[
1 0
V 0

]
, has a

transition matrix of zero (i.e. it always exits) and a
reward vector given by the components of V (s) as its

Compositional Planning Using Optimal Option Models

reward vector (i.e. total reward before exiting). Policy
models are value models, Π ⊂ V , where the reward
vector contains the values V π(s), and the transition
matrix is zero due to infinite discounting.

Value models can be used to express several famil-
iar value functions. A state value function V (s) can
be represented by composition with the corresponding
value model, sV; an action value function can be rep-
resented by sAV; and an inter-option value function
(Sutton et al., 1999) can be represented by sOV.

The true value model G− =

[
1 0
V − 0

]
represents the

overall goal of maximising total reward. It is defined to
have a value function V −(s) that is a lower bound on
the value function of all policies, V −(s) < V π(s),∀s ∈
S, π ∈ Π. This definition ensures that a termination
condition of β(s) = 0 is always optimal, and that pol-
icy models dominate over terminating option models,
with respect to the true value, sΠπG− = sΠπ =
sO〈π,β〉Ππ ≥ sO〈π,β〉G

−,∀s ∈ S, π ∈ Π, β ∈ B.

3.3 Expectation Models

An expectation model Eρ(M) is the expected model
under some distribution ρ(s, ·) over models. For ex-
ample, an action expectation model Eπ(A) averages
all action models Aa ∈ A according to policy π(s, a).
Specifically, each row of Eπ(A) contains the expected
rasp from state s after one action has been executed
by π, Ea∼π(s,·)[sAa | s],

Eπ(A) =


1 0
Ea∼π(s,·)[sAa | s = s1]

...
Ea∼π(s,·)[sAa | s = sn]

 (3)

Composing a model with a deterministic rasp s picks
out the row corresponding to state s,

sEπ(A) = Ea∼π(s,·)[sAa | s] =
∑
a∈A

π(s, a) sAa,∀s ∈ S

(4)
3.4 Maximising Models

A max model max V
V∈W

maximises over a given set of

value models W ⊆ V . Each reward component is the
maximum value of sV from state s.

max V
V∈W

=


1 0

max sV
V∈W,s=s1 0...
max sV

V∈W,s=sn

 (5)

An argmax model argmax MV
M∈M

maximises over the

models in set M, with respect to value model V. Each

row of argmax MV
M∈M

is the rasp sM that maximises

the value sMV from state s.

argmax MV
M∈M

=


1 0
argmax sMV
sM |M∈M,s=s1

...
argmax sMV
sM |M∈M,s=sn

 (6)

Composing an argmax model with a deterministic rasp
s picks out the maximising row,

s argmax MV
M∈M

= argmax sMV,∀s ∈ S
sM |M∈M

(7)

4 Model Equations

We now explore recursive relationships between com-
positions of models. For didactic purposes we be-
gin with compositions of primitive actions into policy
models, and develop a model equation that is analo-
gous to the Bellman equation. We then extend this
approach to compositions of option models into policy
models; to compositions of action models into option
models; and finally to compositions of option models
into other option models. We provide proofs of unique
fixed points in the supplementary material.

4.1 Action-Policy Model Composition

We begin by rewriting the Bellman expectation equa-
tion as a model composition,

V = Eπ(A)V (8)

We call this equation the action-policy model expec-
tation equation. It rewrites the Bellman expectation
equation in homogeneous coordinates. This equation
has fixed point V = Ππ, i.e. composing the action ex-
pectation model Eπ(A) with policy model Ππ results
in the same policy model Ππ.

We also consider the model max AV
A∈A

that maximises

the state-action value sAV from every state s. We
can then rewrite the Bellman optimality equation in
homogeneous coordinates,

V = max AV
A∈A

(9)

We call this equation the action-policy model optimal-
ity equation.

The optimal policy model is the max model max Π
Π∈Π

over all policy models over the set of primitive actions,
s max Π

Π∈Π
= max s

Π∈Π
Π,∀s ∈ S. It is equivalent to the

optimal value function. The optimal policy model V =
max Π

Π∈Π
is a fixed point of the action-policy model

optimality equation.

Compositional Planning Using Optimal Option Models

4.2 Option-Policy Model Composition

We now compose option models into a policy model.
We assume we are given a base set of options Ω ⊆ O
and a corresponding set of option models Ω ⊆ O.
We consider the option expectation model Eπ(O) that
averages the base option models Oo ∈ Ω according to
hierarchical policy π(s, o) = Pr(o | s). Similarly to
Equations 3 and 4, each row of Eπ(O) contains the
expected rasp from state s after one option has been
executed by π,

sEπ(O) = Eo∼π(s,·)[sOo | s] =
∑
o∈Ω

π(s, o) sOo,∀s ∈ S

(10)

This gives the option-policy model expectation equa-
tion, with fixed point V = Ππ,

V = Eπ(O)V (11)

Next, we consider the model max OV
O∈Ω

that maximises

the composed value sOV (the inter-option value func-
tion). This leads to the option-policy model optimality
equation,

V = max OV
O∈Ω

(12)

Given only a base set of option models Ω , which
does not necessarily include all primitive actions, it
is not in general possible to construct all policy mod-
els. Instead, we consider the hierarchical policy model
set {Ππ | supp(π) ⊆ Ω}, which is the set of all policy
models corresponding to hierarchical policies over Ω.
The hierarchically optimal policy model max Π

Ππ | supp(π)⊆Ω

is the max model over this set; it is analogous to a hi-
erarchically optimal value function (Dietterich, 2000),
i.e. the best that can be achieved under the hier-
archical constraints imposed by the choice of base
options.1 The hierarchically optimal policy model
V = max Π

Ππ | supp(π)⊆Ω
is the unique fixed point of the

option-policy model optimality equation. If the base
set includes all primitive actions, A ⊆ Ω , then all
policy models can be represented and the hierarchi-
cally optimal policy model is the optimal policy model,

max Π
Ππ | supp(π)⊆Ω

= max Π
Π∈Π

.

4.3 Action-Option Model Composition

Primitive actions can also be composed together into
option models, to give intra-option model learning.

1Hierarchical optimality is a global optimality condi-
tion. In contrast, recursive optimality (Dietterich, 2000) is
a weaker, local optimality condition that assumes all sub-
options are fixed. Many hierarchical reinforcement learning
algorithms achieve recursive optimality but not hierarchi-
cal optimality.

This requires a mechanism to incorporate option ter-
mination into model compositions.

We represent the termination condition β(s) by a ter-
mination model Eβ(I,M). This is an expectation
model over {I,M} that selects each row from the iden-
tity model I with probability β(s), or from model M
with probability 1− β(s),

sEβ(I,M) = s (β(s)I + (1− β(s))M) ,∀s ∈ S (13)

Composing an action model A with termination model
Eβ(I,M) selects between A (termination) or AM
(continuation). In particular, we consider the compo-
sition of expectation model Eπ(A) with termination
model Eβ(I,M). This gives the action-option model
expectation equation, with fixed point M = O〈π,β〉,

M = Eπ(A)Eβ(I,M) (14)

We now consider the optimality of option models. We
define optimality with respect to a subgoal value model
G that represents the value on termination of the op-
tion, e.g. whether a given subgoal has been achieved.
An optimal option model argmax OG

O∈O
is the argmax

model, with respect to subgoal value model G, over all
options, i.e. it maximises over both policies and ter-
mination conditions. We will consider option models
that maximise over policies or termination conditions
in a subsequent section.

We represent optimal termination by an argmax model
over B ∈ {I,M}, which maximises the binary choice
between termination, represented by identity model I,
and continuation, represented by model M. For ex-
ample, argmax ABG

AB | B∈{I,M}
either selects row s from action

model A or from the composed model AM, depending
on whether sAG (termination) or sAMG (continua-
tion) gives more reward from state s. We only optimise
over deterministic termination conditions, because an
optimal deterministic termination condition must exist
(analogous to optimal policies). We can now define the
option-option model optimality equation, for which any
optimal option model argmax OG

O∈O
is a fixed point,

M = argmax ABG
AB | A∈A,B∈{I,M}

(15)

4.4 Option-Option Model Composition

We now present the most general case in which op-
tion models are composed into other option models.
This combines intra-option model learning with inter-
option model learning, a key step towards our goal
of compositional planning. As in option-policy model
composition, we assume that we are given a base set Ω

Compositional Planning Using Optimal Option Models

Option Model Equation Fixed point

〈π, 0〉 V = Eπ(A)V Ππ

〈∗, 0〉 V = max AV
A∈A

max Π
Ππ | π∈Π

〈π, β〉 M = Eπ(A)Eβ(I,M) O〈π,β〉

〈∗, β〉 M = argmax AB̄G
AB̄ | A∈A,B̄=Eβ(I,M)

argmax OG
O〈π,β〉 | π∈Π,β=β

〈π, ∗〉 M = argmax ĀBG
ĀB | Ā=Eπ(A),B∈{I,M}

argmax OG
O〈π,β〉 | π=π,β∈B

〈∗, ∗〉 M = argmax ABG
AB | A∈A,B∈{I,M}

argmax OG
O〈π,β〉 | π∈Π,β∈B

Table 1. Summary of model equations and fixed points,
when composing primitive action models A ∈ A. The op-
tion column indicates whether the policy π and termina-
tion condition β are free to be optimised (∗), or are given.

of options, and a corresponding set Ω of option models
to compose together. As in action-option model com-
position, we consider termination conditions as well
as policies. Combining these ideas together gives the
option-option model expectation equation,

M = Eπ(O)Eβ(I,M) (16)

with fixed point M = O〈π,β〉, and the option-option
model optimality equation,

M = argmax OBG
OB | O∈Ω,B∈{I,M}

(17)

It is not in general possible to construct all option
models, due to limitations of the base set Ω . In-
stead, we consider the hierarchical option model set{
O〈π,β〉 | supp(π) ⊆ Ω,β ∈ B

}
, which is the set of

option models O〈π,β〉 where π is restricted to op-
tions in Ω. The hierarchically optimal option model,

argmax OG
O〈π,β〉 | supp(π)⊆Ω,β∈B

, is the argmax model over this

set, with respect to subgoal value model G. A hier-
archically optimal option model is a fixed point of the
option-option model optimality equation.

4.5 Optimal β- and π-Option Models

There are in fact two dimensions of optimality for op-
tion models: optimality of the policy π and optimality
of the termination condition β. The previous sections
dealt with jointly optimal option models, which max-
imise over both policies and termination conditions.
We now consider option models that optimise just one
of these two dimensions.

An optimal β-option model argmax OG
O〈π,β〉 | π∈Π,β=β

is the

argmax model over the set of options with termina-
tion condition β, i.e. it maximises over policies for a
given termination condition β. Similarly, an optimal
π-option model argmax OG

O〈π,β〉 | π=π,β∈B
is the argmax model

Opt. Model Equation Fixed point

〈π, 0〉 V = Eπ(O)V Ππ

〈∗, 0〉 V = max OV
O∈Ω

max Π
Ππ | supp(π)⊆Ω

〈π, β〉 M = Eπ(O)Eβ(I,M) O〈π,β〉

〈∗, β〉 M = argmax OB̄G
OB̄ | O∈Ω,B̄=Eβ(I,M)

argmax OG
O〈π,β〉 | supp(π)⊆Ω,β=β

〈π, ∗〉 M = argmax ŌBG
ŌB | Ō=Eπ(O),B∈{I,M}

argmax OG
O〈π,β〉 | π=π,β∈B

〈∗, ∗〉 M = argmax OBG
OB | O∈Ω,B∈{I,M}

argmax OG
O〈π,β〉 | supp(π)⊆Ω,β∈B

Table 2. Summary of model equations and their fixed
points, when composing option models O ∈ Ω .

over the set of options with policy π, i.e. it maximises
over termination conditions for a given policy π.

We can now define action-option model optimality
equations for optimal β-option models, where the ter-
mination condition is given; and for optimal π-option
models, where the policy is given,

M = argmax AB̄G
AB̄ | A∈A,B̄=Eβ(I,M)

(18)

M = argmax ĀBG
ĀB | Ā=Eπ(A),B∈{I,M}

(19)

These equations have respective fixed points: optimal
β-option model M = argmax OG

O〈π,β〉 | π∈Π,β=β

, and optimal π-

option model M = argmax OG
O〈π,β〉 | π=π,β∈B

.

For option-option model composition of β-options, we
restrict option models to elements of the hierarchical
option model set that also match a given termina-
tion condition β,

{
O〈π,β〉 | supp(π) ⊆ Ω,β = β

}
. The

hierarchically optimal β-option model is the argmax
model over this restricted set, argmax OG

O〈π,β〉 | supp(π)⊆Ω,β=β

.

The option-option model optimality equations for β-
options and π-options respectively are,

M = argmax OB̄G
OB̄ | O∈Ω,B̄=Eβ(I,M)

(20)

M = argmax ŌBG
ŌB | Ō=Eπ(O),B∈{I,M}

(21)

The fixed points of these equations are the hierar-
chically optimal β-option model M = argmax OG

O〈π,β〉 | supp(π)⊆Ω,β=β

;

and the optimal π-option model M = argmax OG
O〈π,β〉 | π=π,β∈B

.

Table 1 and 2 summarise the various model equations
and their fixed points. In the supplementary material,
we prove that each fixed point satisfies the correspond-
ing equations, and furthermore that the subgoal value
of each fixed point is unique.

Compositional Planning Using Optimal Option Models

5 Option-Option Model Iteration

The Bellman optimality equation forms the basis of a
wide variety of MDP planning algorithms (Sutton &
Barto, 1998). Similarly, the model optimality equa-
tions can be used to derive a wide variety of MDP
planning algorithms. In particular, the option-option
model equations can be used to derive algorithms for
compositional planning in MDPs. We focus here on a
dynamic programming algorithm that uses the option-
option model optimality equation (Equation 17) as an
iterative update. This algorithm, which we call option-
option model iteration (OOMI), can be viewed as a
generalisation of value iteration to option models for
multiple subgoals.

We assume that we are given a base set Ω of option
models, and also m subgoal value models {G1, ...,Gm}
for m different subgoals. At each iteration k, the al-
gorithm updates a set of m option models Mk ={
Mk

1 , ...,M
k
m

}
, containing one option model for ev-

ery subgoal. Each option model is initialised to the
true value model, M0

g = G−. At each iteration k, for

every subgoal j, option model Mk+1
g is updated by

the option-option model optimality equation (Equa-
tion 17). Maximisation is performed over the base set
Ω and the current set of option models Mk,

Mk+1
g ← argmax OBGg

OB | O∈Ω∪Mk,B∈{I,Mk
g}

(22)

OOMI imposes no explicit hierarchy: any option
model may be composed with any other option model.
When updating the option model Mg for subgoal value
model Gg, all current option models are considered. In
particular, the option model Mg itself is considered;
this allows option models to be repeatedly squared,
so that a single model may be efficiently applied as
many times as required. As a result, even if OOMI is
restricted to primitive actions, Ω = A, and only a sin-
gle subgoal, G1 = G−, it may still converge in signifi-
cantly fewer iterations than value iteration. We prove
in the supplementary material that OOMI converges
to a hierarchically optimal option model for each sub-
goal value model Gg. If OOMI includes the true value
model in its set of value models, Gg = G−, then
the corresponding option model Mg will converge to
the hierarchically optimal policy model Π ∗Ω . Option-
option model iteration can similarly be extended to β-
options, where the termination condition is given; or
π-options, where the policy is given, by using Equa-
tions 20 and 21 respectively as iterative updates. Fi-
nally, the option-option expectation model equation
(Equation 16) can be used as the basis for an iterative
update, analogous to policy iteration, that interleaves
option evaluation with option improvement.

6 Empirical Results

We illustrate our framework for compositional plan-
ning using two hierarchical MDPs: the Tower of Hanoi
problem, and the Nine Rooms problem. The N -disc
Tower of Hanoi problem has a discount factor is γ = 1,
each action receives a reward of −1, and episodes ter-
minate upon reaching the goal state (N discs stacked
on right peg). The level-1 Nine Rooms gridworld is a
3 × 3 grid. The N -level Nine Rooms gridworld con-
tains a 3× 3 grid of instances of level N − 1 problems;
neighbouring instances are connected by a width 3N−2

doorway; and there is a single goal state in one corner.
The discount factor is γ = 0.9, rewards are 1 in the goal
state, and 0 elsewhere. We also use stochastic variants
in which each action causes the intended move with
probability 1−p, or with probability p randomly selects
another legal move (Tower of Hanoi, p = 0.4), or re-
mains in the current state (Nine Rooms, p = 0.05). For
the Tower of Hanoi, we use m = 3N + 1 subgoal value
models. This set includes the true value model G− and

a subgoal value model Gd,e =

[
1 0
V on
d,e 0

]
for placing

each disc d on top of each peg e. Each subgoal value
function is defined by V ond,e (s) ∝ on(s, d, e), where the
predicate on(s, d, e) has a value of 1 if disc d is on peg
e in state s and 0 otherwise.2 For the Nine Rooms, we
use 12(n− 1) subgoal value models. This set includes
a subgoal value model Gl,j for each of the j ∈ [1, 12]
doorways at each level l of the hierarchy. Each subgoal
value function is defined by V doorwayl,j (s) ∝ in(s, l, j),
where the predicate in(s, l, j) has a value of 1 if state
s is in the jth level-l doorway, and 0 otherwise. In this
problem, initiation sets were used to restrict the states
considered to relevant doorways within the neighbour-
hood of the subgoal. All subgoal values are designed
to be achieved “at any cost”, by choosing a large con-
stant of proportionality. We use the primitive actions
(moving a disc in Tower of Hanoi; moving N, E, S, W
in Nine Rooms) as the base set Ω .

We compare three solution methods. Action-policy
model iteration (APMI) is a one-level planning al-
gorithm that plans over primitive action models. It
iteratively applies the action-policy model optimality
equation (Equation 9), and is equivalent to value iter-
ation. Action-option-policy model iteration (AOPMI)
is a two-level planning algorithm, with fixed planning
operators. It first performs intra-option learning, con-
structing option models from primitive action models
by iteratively applying the action-option model op-
timality equation (Equation 15). It then fixes the
set of option models, and performs inter-option plan-

2Results are qualitatively similar for other choices of
subgoal, such as stacking or unstacking discs.

Compositional Planning Using Optimal Option Models

N APMI AOPMI OOMI
iters backs iters backs iters backs

Deterministic N-Disc Tower of Hanoi
1 2 2 2 4 2 6
2 4 4 3 11 3 17
3 8 8 4 23 4 29
4 16 16 6 42 5 44
5 32 32 12 76 6 62
6 64 64 20 137 7 83
7 128 128 40 253 8 107
8 256 256 74 476 9 134
9 512 512 148 914 10 164

10 1,024 1,024 288 1,779 11 197
11 2,048 2,048 576 3,499 12 233
12 4,096 4,096 1,142 6,926 13 272

Stochastic N-Disc Tower of Hanoi
1 4 27 5 157 5 194
2 12 162 13 626 8 291
3 26 287 28 1,285 14 780
4 50 832 48 2,640 22 1,293
5 98 1,216 78 3,972 30 2,940
6 193 2,281 123 7,193 38 4,460
7 383 6,860 196 12,752 46 5,796
8 763 10,059 335 19,200 54 6,858

Deterministic level-N Nine Rooms
2 22 22 15 23 10 18
3 70 70 29 151 14 29
4 214 214 65 595 24 44

Stochastic level-N Nine Rooms
2 24 24 41 67 22 52
3 77 77 57 317 24 69
4 239 239 95 980 33 90

Table 3. Iterations (iters) and backups per state (backs)
required to solve the given problems, using action-policy
model iteration (APMI), action-option-policy model itera-
tion (AOPMI) and option-option model iteration (OOMI).

ning. Finally, it constructs a value function from op-
tion models, by iteratively applying the option-policy
model optimality equation (Equation 12). Option-
option model iteration is the compositional planning
algorithm (OOMI) described in Section 5. For each
algorithm we measured the total number of iterations
(applications of the corresponding model equation) re-
quired; and also the mean number of backups (up-
dates to an individual state) to each state.3 The re-
sults are shown in Table 3. In larger instances of
both problems, the compositional approach required
significantly fewer iterations and backups than either
flat planning (APMI) or two-level planning (AOPMI),
where options are first created and then used. In the
Tower of Hanoi, APMI and AOPMI required a number
of iterations that grew exponentially with the number
of discs, whereas OOMI required just 1 additional it-
eration per disc in the deterministic case, and 8 ad-
ditional iterations per disc in the stochastic case. In
the Nine Rooms, the total iterations for APMI and
AOPMI again grows exponentially with the level, but
polynomially for OOMI.

7 Conclusion

The Bellman optimality equation has motivated the
development of a wide variety of MDP planning al-
gorithms. We have generalised the Bellman equation

3Note, however, that each backup has a larger cost with
model iteration, since a complete row must be updated.

in several important dimensions, enabling an anal-
ogous variety of compositional planning algorithms.
We have illustrated one such approach, using option-
option model iteration. This is the first MDP planning
algorithm to dynamically create its own planning oper-
ators. These operators are composed together to give
increasingly deep and purposeful jumps through state
space. Like value iteration, option-option model iter-
ation applies full-width backups over complete sweeps
of the state space. In principle, the model equations
could also be solved by sample backups over sam-
ple trajectories, leading to compositional algorithms
for hierarchical reinforcement learning. In this pa-
per we have focused on planning with table lookup
models; however, similar to MAXQ (Dietterich, 2000),
HAMs (Andre & Russell, 2002) or skills (Konidaris &
Barto, 2009), substantial efficiency improvements may
be generated when each option model is provided with
its own state abstraction.

References

Amarel, S. On representations of problems of reasoning
about actions. Machine Intelligence, 3:131–171, 1968.

Andre, D. and Russell, S. State abstraction for pro-
grammable reinforcement learning agents. In 18th Na-
tional Conference on Artificial Intelligence, 2002.

Bellman, R. Dynamic Programming. Princeton University
Press, 1957.

Dietterich, T. Hierarchical reinforcement learning with the
MAXQ value function decomposition. Journal of Arti-
ficial Intelligence Research, 13:227–303, 2000.

Jonsson, A. The role of macros in tractable planning. Jour-
nal of Artificial Intelligence Research, 36:471–511, 2009.

Konidaris, G. and Barto, A. Efficient skill learning using
abstraction selection. In 21st International Joint Con-
ference on Artificial Intelligence, 2009.

Korf, R. Learning to solve problems by searching for macro-
operators. Pitman Publishing, 1985.

Laird, J., Rosenbloom, P., and Newell, A. Chunking in
SOAR: The anatomy of a general learning mechanism.
Machine Learning, 1(1):1146, 1986.

Parr, R. and Russell, S. Reinforcement learning with hier-
archies of machines. In Advances in Neural Information
Processing Systems 10, 1997.

Precup, D., Sutton, R., and Singh, S. Theoretical results
on reinforcement learning with temporally abstract op-
tions. In 10th European Conference on Machine Learn-
ing, 1998.

Sacerdoti, E. A structure for plans and behavior. PhD
thesis, Stanford University, 1975.

Sutton, R. TD models: Modeling the world at a mixture
of time scales. In 12th International Conference on Ma-
chine Learning, pp. 531–539, 1995.

Sutton, R. and Barto, A. Reinforcement Learning: an In-
troduction. MIT Press, 1998.

Sutton, R., Precup, D., and Singh, S. Between MDPs and
semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Artificial Intelligence, 112(1-2):
181–211, 1999.

