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Abstract

Consider a weighted or unweighted k-nearest
neighbor graph that has been built on n data
points drawn randomly according to some
density p on R?. We study the convergence of
the shortest path distance in such graphs as
the sample size tends to infinity. We prove
that for unweighted kNN graphs, this dis-
tance converges to an unpleasant distance
function on the underlying space whose prop-
erties are detrimental to machine learning.
We also study the behavior of the shortest
path distance in weighted kNN graphs.

1. Introduction

The shortest path distance is the most fundamental
distance function between vertices in a graph, and it is
widely used in computer science and machine learning.
In this paper we want to understand the geometry in-
duced by the shortest path distance in randomly gener-
ated geometric graphs like k-nearest neighbor graphs.

Consider a neighborhood graph G built from an i.i.d.
sample X1, ..., X,, drawn according to some density p
on X C R? (for exact definitions see Section 2). As-
sume that the sample size n goes to infinity. Two
questions arise about the behavior of the shortest path
distance between fixed points in this graph:

1. Weight assignment: Given a distance measure D
on X, how can we assign edge weights such that the
shortest path distance in the graph converges to D?

2. Limit distance: Given a function h that assigns
weights of the form h (]| X; —Xj||) to edges in G, what is
the limit of the shortest path distance in this weighted
graph as n — 00?
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The first question has already been studied in some
special cases. Tenenbaum et al. (2000) discuss the case
of e- and kNN graphs when p is uniform and D is the
geodesic distance. Sajama & Orlitsky (2005) extend
these results to e-graphs from a general density p by
introducing edge weights that depend on an explicit es-
timate of the underlying density. In a recent preprint,
Hwang & Hero (2012) consider completely connected
graphs whose vertices come from a general density p
and whose edge weights are powers of distances.

There is little work regarding the second question.
Tenenbaum et al. (2000) answer the question for a very
special case with h(z) = z and uniform p. Hwang &
Hero (2012) study the case h(z) = 2%, a > 1 for arbi-
trary density p.

We have a more general point of view. In Section 4
we show that depending on properties of the function
h(x), the shortest path distance operates in different
regimes, and we find the limit of the shortest path
distance for particular function classes of h(z). Our
method also reveals a direct way to answer the first
question without explicit density estimation.

An interesting special case is the unweighted kNN
graph, which corresponds to the constant weight func-
tion h(x) = 1. We show that the shortest path dis-
tance on unweighted kNN-graphs converges to a limit
distance on X that does not conform to the natural
intuition and induces a geometry on X that can be
detrimental for machine learning applications.

Our results have implications for many machine learn-
ing algorithms, see Section 5 for more discussion. (1)
The shortest paths based on unweighted kNN graphs
prefer to go through low density regions, and they even
accept large detours if this avoids passing through high
density regions (see Figure 1 for an illustration). This
is exactly the opposite of what we would like to achieve
in most applications. (2) For manifold learning algo-
rithms like Isomap, unweighted kNN graphs introduce
a fundamental bias that leads to huge distortions in
the estimated manifold structure (see Figure 2 for an
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Figure 1. The shortest path based on an unweighted (red)
and Euclidean weighted (black) kNN graph.

Figure 2. Original data (left) and its Isomap reconstruction
based on an unweighted kNN graph (right).

illustration). (3) In the area of semi-supervised learn-
ing, a standard approach is to construct a graph on the
sample points, then compute a distance between ver-
tices of the graph, and finally use a standard distance-
based classifier to label the unlabeled points (e.g., Sa-
jama & Orlitsky, 2005 and Bijral et al., 2011). The
crucial property exploited in this approach is that dis-
tances between points should be small if they are in
the same high-density region. Shortest path distances
in unweighted kNN graphs and their limit distances
do exactly the opposite, so they can be misleading for
this approach.

2. Basic definitions

Consider a closed, connected subset X C R? that
is endowed with a density function p with respect
to the Lebesgue measure. For the ease of presen-
tation we assume for the rest of the paper that the
density p is Lipschitz continuous with Lipschitz con-
stant L and bounded away from 0 by pmin > 0. To
simplify notation later on, we define the shorthand

a(x) = (p(a)) /4.

We will consider different metrics on X. A ball with
respect to a particular metric d in X will be written
as B(z,r,d) :={y € X | d(z,y) < r}. We denote the
Euclidean volume of the unit ball in R? by 7.

Assume the finite dataset X1, ..., X,, has been drawn
i.i.d according to p. We build a geometric graph G =
(V, E) that has the data points as vertices and connects
vertices that are close. Specifically, for the kNN graph
we connect X; with X; if X; is among the k nearest
neighbors of X; or vice versa. For the e-graph, we
connect X; and X; whenever their Euclidean distance

satisfies || X; — X;|| < e. In this paper, all graphs
are undirected, but might carry edge weights w;; > 0.
In unweighted graphs, we define the length of a path
by its number of edges, in weighted graphs we define
the length of a path by the sum of the edge weights
along the path. In both cases, the shortest path (SP)
distance Dy (z,y) between two vertices x,y € V is the
length of the shortest path connecting them.

Let f be a positive continuous scalar function defined
on X. For a given path v in X that connects = with
y and is parameterized by ¢, we define the f-length of
the path as

Dy, = / SO ().

This expression is also known as the line integral along
~ with respect to f. The f-geodesic path between x
and y is the path with minimum f-length.

The f-length of the geodesic path is called the f-
distance between x and y. We denote it by dy(z, ).
If f(x) is a function of the density p at x, then the f-
distance is sometimes called a density based distance
(Sajama & Orlitsky, 2005).

The f-distance on X is a metric, and in particular it
satisfies the triangle inequality. Another useful prop-
erty is that for a point u on the f-geodesic path be-
tween x and y we have D¢ (z,y) = Dy(z,u)+Dy(u,y).

The function f determines the behavior of the f-
distance. When f(z) is a monotonically decreasing
function of density p(z), passing through a high den-
sity region will cost less than passing through a low
density region. It works the other way round when f
is a monotonically increasing function of density. A
constant function does not impose any preference be-
tween low and high density regions.

The main purpose of this paper is to study the rela-
tionship between the SP distance in various geomet-
ric graphs and particular f-distances on X'. For ex-
ample, in Section 3 we show that the SP distance in
unweighted kNN graphs converges to the f-distance
with f(z) = p(z)/.

In the rest of the paper, all statements refer to points
x and y in the interior of X such that their f-geodesic
path is bounded away from the boundary of X.

3. Shortest paths in unweighted graphs

In this section we study the behavior of the shortest
path distance in the family of unweighted kNN graphs.
We show that the rescaled graph SP distance con-
verges to the g-distance in the original space X.
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Theorem 1 (SP limit in unweighted kNN graphs)
Consider the unweighted kNN graph G,, based on the
i.i.d. sample X1,..,X, € X from the density p.
Choose \ and a such that

AL kyVd . ,
AZm(a) 7CL<].—10gk<4 (1+)\) )
Mg Pmin

Fiz two points x = X; and y = X;. Then there
exist e1(\, k),ea(N\ k,n),es(N\) (see below for explicit
definitions) such that with probability at least 1 —
3eznexp(—A2k®/6) we have

equ(Jf,y) < eQDSP(xay) < Dq($,y) — €2.

Moreover if n — oo, k — oo, k/n — 0, A = 0 and
A2k®/log(n) — oo, then the probability converges to
1 and (k/(nan))Y/ 2Dy, (x,y) converges to Dy(z,y) in
probability.

The convergence conditions on n and k are the ones to
be expected for random geometric graphs. The con-
dition A%k%/log(n) — oo is slightly stronger than the
usual k/log(n) — oo condition. This condition is sat-
isfied as soon as k is of the order a bit larger than
log(n). For example k =~ log(n)'™® with a small «
will work. For k smaller than log(n), the graphs are
not connected anyway (see e.g. Penrose, 1999) and are
unsuitable for machine learning applications.

Before proving Theorem 1, we need to state a couple
of propositions and lemmas. We start by introducing
some ad-hoc notation:

Definition 2 (Connectivity parameters) Con-
sider a geometric graph based on a fized set of points
X1,.... Xn € RE. Let 100 be a real number such that
D (X;, X;) < 11w implies that X; is connected to X
in the graph. Analogously, consider ry, to be a real
number such that Dy(X;, X;) > 1y, implies that X; is
not connected to X; in the graph.

Definition 3 (Dense sampling assumption) Con-
sider a graph G with connectivity parameters 1y, and
Tup. We say that it satisfies the dense sampling as-
sumption if there exists an ¢ < Tyoy/4 such that for
all x € X there exists a vertex y in the graph with
Dy(z,y) <.

Proposition 4 (Bounding D, by Dy) Consider
any unweighted geometric graph based on a fixed set
X1,..., X, € X CR? that satisfies the dense sampling
assumption. Fix two vertices x and y of the graph
and set

e1 = (Piow — 28)/Tup > €2 = Tiow — 26.

Figure 3. Path constructions in the proofs of Proposition 4
(top) and Theorem 9 (bottom).

Then the following statement holds:

elDf(.T’y) < 62D8p(xay) < Df(may) — €2.

Proof. Right hand side. Consider the f-geodesic
path ~; , connecting z to y. Divide v; , to segments
by ug = @, u1, ..., us, ug1 = y such that D¢ (u;, ui1) =
Tiow—2¢ for i =0,...,t—1 and D (us, usy1) < riow —2¢
(see Figure 3). Because of the dense sampling assump-
tion, for all i = 1,...,t there exists a vertex v; in the
ball B(u;,s; Dy) and we have

Dy(vi,ui)) < <
-Df (uiv ui+1) S Tlow — 2§
Dy¢(uiz1,vi41) < <.

Applying the triangle inequality gives D(v;,vi41) <
Tlow, Which shows that v; and v;y; are connected. By
summing up along the path we get

(Tlow - QC)(D‘ep(zy y) - 1) < (Tlow - 2§)t
= (@)
=Y Di(upuip1) < Di(w,y).
=0

In step (a) we use the simple fact that if « is on the
f-geodesic path from z to y, then

Dy(x,y) = Dy(z,u) + Dy(u,y).
Left hand side. Assume that the graph SP between

x and y consists of vertices zg = x,21,...,2s = y. By
Dy (zi, zit1) < ryp We can write
Tlow — 26 ~s—1
(Tlow - 2§)Dsp(xv y) LZf:() Df(zia Zi—i—l)
Tup
Tlow — 2
> 12D i(a,y).
Tup
O

The next lemma uses the Lipschitz continuity and
boundedness of p to show that ¢(z)||z — y|| is a good
approximation of Dg(x,y) in small intervals.
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Lemma 5 (Approximating D, in small balls)
Consider any given A < 1. If | — y|| < pminA/L then
the following statements hold:

1. We can approzimate p(y) by the density at x:

py)(1 =) <p(z) <py)(1+A).

2. We can approzimate Dy(x,y) by q(z)||x — yl|:

(1= (@) [e—yll < Dy(,y) < (1A q(@)|z—y].

Proof. Part (1). By the Lipschitz continuity of p for
|z —y| < & we have

Ip(z) — p(y)| < L||lz —y|| < L6.
Setting 0 = Apmin/L leads to the result.

Part (2). The previous part can be written as
(1= NY(2) < qly) < (1+ 1) q(@).

Denote the g¢-geodesic path between x and y by v*
and the line segment connecting x to y by . Using the
definition of a g-geodesic path, we can write

[atr@np@ria < [aene <

l

(1+/\)1/d/lq(x)ll(t)’\dt = (1+N)Y(2)]z —yl.

Also,

v

[atr@nmraria = @-x" [ g@h el

(1 =N g(@) ]~ yl.

d

v

Now we are going to show how the quantities r;,,, and
Typ introduced in Definition 2 can be bounded in ran-
dom unweighted kNN graphs and how they are related
to the metric D,.

To this end, we define the kNN g¢-radii at vertex = as
R, k(xz) = Dy(z,y) and the approximated kNN g-radii
at vertex x as Ry x(z) = q(z)||z — y||, where y is the
k-nearest neighbor of . The minimum and maximum
values of kNN ¢-radii are defined as

min max

0k :Hhianyk(u) N :mlz}qu’k(u).

Accordingly we define R;”}C” and ]?;:L,‘jm for the approx-
imated g¢-radii.

The following proposition is a direct adaptation of
Proposition 31 from von Luxburg et al. (2010).

Proposition 6 (Bounding glfc” and RJ';*
Given A < 1/2 define 110 and ryp as

o= (i) o ()

and radius Tiow and Ty as

7 o Tlow P o Tup
low*(l_‘_)\)l/d ) upfi(l_)\)l/d.

Assume that ), < )\p1+1/d/L. Then

min

P(Rgf]lgn S Tlow) § nexp(_)‘Qk/6)

P(R;’:‘,’jm > rup> < nexp(—=\?k/6).

Proof. Consider a ball B, with radius 74, /q(x)
around x. Note that 715, /q() < PminA/L , so we
can bound the density of points in B, by (1 + \)p(x)
using Lemma 5. Denote the probability mass of the
ball by p(x), which is bounded by

nw) = [ ples <

x

1+ )\)p(az)/ ds

x

(1 + )‘)fziownd = Mmax-

Observe that R%k(m) < Plow if and only if there are at
least k data points in B,. Let Q ~ Binomial(n, u(x))
and S ~ Binomial(n, pimax). By the choice of 7, we
have E(S) = k/(1+ X). It follows that

P(Ro(@) <o) = P(Q2k) <P(S2k)
- P(S > (14 )\)E(S)).

Now we apply a concentration inequality for binomial
random variables (see Prop. 28 in von Luxburg et al.,
2010) and a union bound to get

P<an?]lgn < 'Flow) < P(E'Z : Rq,k(Xi) < 'flow)
- ( -2k )

nexp | ———

= Psa
< nexp(—A?k/6).

By a similar argument we can prove the analogous
statement for R":*. Finally, Lemma 5 gives

min max
pMmin q,k pmaz q,k

ek = (1+)\)1/d > gk = (1_)\)1/d'
O

The following proposition shows how the sampling pa-
rameter ¢ can be chosen to satisfy the dense sampling
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assumption. Note that we decided to choose ¢ in a
form that keeps the statements in Theorem 1 simple,
rather than optimizing over the parameter ¢ to maxi-
mize the probability of success.

Lemma 7 (Sampling lemma) Assume Xi,...,X,
are sampled i.i.d. from a probability distribution p and
a constant a < 1 is given. Set X as in Theorem 1,
ke N 1/d
¢:=(1+ A)l/d(—) ,
namn
and e3(\) = 27/(1 — X\)2. Then with probability at
least 1 — esnexp(—k®/6), for every x € X exists a
y € Xq,..., X, such that Dy(x,y) <.

Proof. Define ¢o = (1 4+ \)~*/%. We prove that for
every x € X, there exist a vertex y such that g(z)||x —
y|| < 0. Then using Lemma 5 will give the result.

The proof idea is a generalization of the covering ar-
gument in the proof of the sampling lemma in Tenen-
baum et al. (2000). We first construct a covering of
X that consists of balls with approximately the same
probability mass. The centers of the balls are chosen
by an iterative procedure that ensures that no center
is contained in any of the balls we have so far. We
choose the radius ¢p/q(z) for the ball at point z and
call it By(x,<p). The probability mass of this ball can
be bounded by

V(By(w,50)) = (1= N)sina

Note that smaller balls B, (u, (1 — )/ /2) are all
disjoint. To see this, consider two balls Bg(x, (1 —
MYg/2), B,(y, (1 — X)Y/2). Observe that

(1-NVig (1-MNYig o
2q(x) 2q(y) T a(z)

We can bound the total number of balls by
1 24

S

= V(B (1= N 50/2)) = na(l — N2l

Now we sample points from the underlying space and
apply the same concentration inequality as above. We
bound the probability that a ball B,(u,s) does not
contain any sample point (“is empty”) by

Pr(Ball i is empty) < exp(—nging/6).
Rewriting and Substituting the value of ¢y gives

Pr(no ball is empty) > 1— )" Pr(B; is empty)

d 20pe—k"/6
>1-8. e ™oma/6 >~ 1_ 27
= N = (1— \)2ka
2dne=k"/6 Ko
— - 1- —k*/6
>1 TEYE = 1—-e3ne .

a

Proof of Theorem 1. Set 7y, and ry,, as in
Proposition 6. The assumption on A\ ensures that
Tup < )\pllnti/ d/L. It follows from Proposition 6
that the statements about 74, and r,, in Defini-
tion 2 both hold for G, with probability at least

pr = 1 —2nexp(—A%2k/6). Set ¢ as in Lemma 7 and
define the constant a < 1 —log, (4d(1 + )\)2). By this

choice we have 7, > 4¢<. Lemma 7 shows that the
sampling assumption holds in G,, for the selected ¢
with probability at least pyo = 1 —egnexp(—k®/6). To-
gether, all these statements about G, hold with prob-
ability at least p := 1 — 3egn exp(—\2k?/6).

Using Proposition 4 completes the first part of the the-
orem. For the convergence we have

rlow72gi(1f/\>1/d (17)\2)1/d
L+ A kl=a '

€1 = =
Tup

This shows that e —+ 1 as A — 0 and & — oo. For

A — 0 and £ — oo we can set a to any constant

smaller than 1. Finally it is easy to check that e — 0

and ¢/ — 0. O

4. Shortest paths in weighted graphs

In this section we discuss both questions from the In-
troduction. We also extend our results from the pre-
vious section to weighted kNN graphs and e-graphs.

4.1. Weight assignment problem

Consider a graph based on the i.i.d. sample
X1,..., X, € X from the density p. We are given a
positive scalar function f which is only a function of
the density: f(z) = f(p(z)). We want to assign edge
weights such that the graph SP distance converges to
the f-distance in X.

It is well known that the f-length of a curve 7 : [a, b] —
X can be approximated by a Riemann sum over a par-
tition of [a, b] to subintervals [x;, z;41]:

Do = ¥, f(Hee) y(2,) - A(wis) .

As the partition gets finer, the approximation lA)fﬁ
converges to Dy (cf. Chapter 3 of Gamelin, 2007).
This suggests using edge weights

wy; = f(p(X5) ) 1X: - X

However the underlying density p(x) is not known in
many machine learning applications. Sajama & Orl-
itsky (2005) already proved that the plug-in approach



Shortest path distance in random k-nearest neighbor graphs

using a kernel density estimator p(z) for p(z) will lead
to the convergence of the SP distance to f-distance
in e-graphs. Our next result hows how to choose edge
weights in kNN graphs without estimating the density.
It is a corollary from a theorem that will be presented
in Section 4.2.

We use a notational convention to simplify our argu-
ments and hide approximation factors that will even-
tually go to 1 as the sample size goes to infinity. We
say that f is approximately larger than g (f =y g) if
there exists a function e(\) such that f > e(A\)g and
e(A) = 1asn — oo and A — 0. The symbol < is de-
fined similarly. We use the notation f ~y g if f <\ g
and f =) g.

Corollary 8 (Weight assignment) Consider the
kNN graph based on the i.i.d. sample X1,....,X, € X
from the density p. Let f be of the form f(x) = f(p(x))
with f increasing. We assume that f is Lipschitz con-
tinuous and f is bounded away from 0. Set the edge
weights

d
~ r
wij = || X; — XJHf(m) (1)

Fiz two points x = X; and y = X;. Choose X and a
as in Theorem 9. Then with probability at least 1 —
3esn exp(—A?k?/6) we have Dgy(x,y) ~x D¢(x,y).

4.2. Limit distance problem

Consider a weighted graph based on the i.i.d. sample
X1,..., X, € X from the density p. We are given a
increasing edge weight function h : RT — RT which
assigns weight h(||z — y||) to the edge (z,y). We are
interested in finding the limit of the graph SP distance
with respect to edge weight function h as the sample
size goes to infinity. In particular we are looking for
a distance function f such that the SP distance con-
verges to the f-distance.

Assume we knew the solution f* = f*(p(z)) of this
problem. To guarantee the convergence of the dis-
tances, f* should assign weights of the form of w;; ~
F*(p(X:)||X; — X;|. This would mean

P ~ .

which shows that determining f* is closely related to
finding a density based estimation for || X; — X;||.

Depending on h, we distinguish two regimes for this
problem: subadditive and superadditive.

4.2.1. SUBADDITIVE WEIGHTS

A function h(z) is called subadditive if Yo,y > 0 :
h(z)+h(y) > h(z+y). Common examples of subaddi-
tive functions are f(z) = 2%, a < 1 and f(z) = ze™ ™.
For a subadditive h, the SP in the graph will sat-
isfy the triangle inequality and it will prefer jumping
along distant vertices. Based on this intuition, we
come up with the following guess for vertices along
the SP: For e-graphs we have the approximation
IX; — X,;|| = € and f(x) = h(e)/e. For kNN-graphs
we have || X; — X;| =~ r/q(X;) with r = (k/(nnq))*/?
and
~ ro al/d

r . q(@) ol
_h(m)T’f(x)_h(xl/d) r

We formally prove this statement for kNN graphs in
the next theorem. In contrast to Theorem 1, the scal-
ing factor is moved into f. The proof for e-graphs is
much simpler and can be adapted by setting r = ¢,
g(z) =1, and 70 = Tup = €.

Theorem 9 (Limit of SP in weighted graphs)
Consider the kNN graph based on the i.i.d. sample
Xi1,...Xn € X from the density p. Let h be an
increasing, Lipschitz continuous and subadditive func-
tion, and define the edge weights w;; = h(|| X; — Xj||).
Fiz two points x = X; and y = X;. Define
r = (k/(nng))"/¢ and set

) = h(—"9®)

Choose A and a such that

4L

A> W(z)l/d ,a<1-log, (4d(1 +)\)2).

Nq min
Then with probability at least 1 — 3ezn exp(—A2k®/6)
we have Dgp(z,y) =x Ds(z,y).

Proof.  The essence of the proof is similar to the
one in Theorem 1, we present a sketch only. The
main step is to adapt Proposition 4 to weighted graphs
with weight function h. Adapting Lemma 5 for gen-
eral f is straightforward. The lemma states that
D¢ (x,y) = f(z)||lz — y| for nearby points. We set
Tlow and ¢ as in the sampling lemma and Proposition
6 (these are properties of kNN graphs and hold for any
f). Proposition 6 says that in kNN graphs, = is con-
nected to y with high probability iff ||z —y|| i 7/q(z).
The probabilistic argument and the criteria on choos-
ing A are similar to Theorem 1.

First we show that Dg,(z,y) <x Ds(z,y). Consider
the f-geodesic path v} , connecting x to y. Divide
Yz, o segments ug = T, u1, ..., Ut, Uty1 = Yy such
that Dg(ui, wir1) = Tiow — 26 for ¢ = 0,...,t — 1
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and Dg(u, ui+1) < Tiow — 26 (see Figure 3). There
exists a vertex v; near to w; such that v; and ;41
are connected. We show that the length of the path
T, V1, ..., V¢, Y is approximately smaller than Dy (z,y).

From the path construction we have
[vi = viga || o llwi — wiga |l =x 7/q(ui).

By summing up along the path we get

Doplary) < X h(lon—visal)
o 2 hlllus = wigall) =a 320 hM(gry)
= i fui) gy = 2 fw)llwi — wiga |
From the adaptation of Lemma 5 we have

D g (ug, uit1) = f(ui)]|wi — wia]|, which gives

2 Flua)llui = wigall o 325 Dy (ui; i) = Dy (,y).
This shows that Dsy(z,y) <x Dy(z,y).

For the other way round, we use a technique different
from Proposition 4. Denote the graph shortest path
between =z and y by 7 : zg = x,21, ..., 25, 2541 = Y-
Consider 7’ as a continuous path in X correspond-
ing to m. As in the previous part, divide 7’ into
segments ug = T, U1, ..., U, U1 = Y (see Figure 3).
From Dy(z;, zi+1) <x 7 and Dg(u;, uiy1) =~ 7 we have
s = t. Using this and the subadditivity of h we get

Dep(w,y) = > h(llzi — zivall) =x D25 hllwi — wiga|])-

To prove Dyp(x,y) =x Dy(z,y), we can write

Shllui —wiall) = Sih(aty) = X Ly
o D flu)|lui — wiga|
~y o 2o Dp(ui, uigr) > Dy(z,y).

O
The proof of Theorem 8 is a direct consequence of
this theorem. It follows by choosing h(t) = tf(r?/t%)
(which is subadditive if f is increasing) and setting
wij = h([|Xi = X;]]).

4.2.2. SUPPERADDITIVE WEIGHTS

A function h is called superadditive if Vax,y > 0 :
h(z)+h(y) < h(x+y). Examples are f(z) = 2% a > 1
and f(z) = ze®. To get an intuition on the behav-
ior of the SP for a superadditive h, take an exam-
ple of three vertices x,y,z which are all connected
in the graph and sit on a straight line such that
le = yll + lly — 2|l = ||z — z||. By the superadditiv-
ity, the SP between x and z will prefer going through
y rather than directly jumping to z. More generally,
the graph SP will prefer taking many “small” edges

rather than fewer “long” edges. For this reason, we
do not expect a big difference between superadditive
weighted kNN graphs and e-graphs: the long edges in
the kNN graph will not be used anyway. However, due
to technical problems we did not manage to prove a
formal theorem to this effect.

The special case of the superadditive family h(x) = 22,
a > 1 is treated in Hwang & Hero (2012) by com-
pletely different methods. Although their results are
presented for complete graphs, we believe that it can
be extended to € and kNN graphs. We are not aware
of any other result for the limit of SP distance in the
superadditive regime.

5. Consequences in applications

In this section we study the consequences of our re-
sults on manifold embedding using Isomap and on a
particular semi-supervised learning method.

There are two cases where we do not expect a drastic
difference between the SP in weighted and unweighted
kNN graph: (1) If the underlying density p is close to
uniform. (2) If the intrinsic dimensionality of our data
d is high. The latter is because in the g-distance, the
underlying density arises in the form of p(x)l/ ¢ where
the exponent flattens the distribution for large d.

5.1. Isomap

Isomap is a widely used method for low dimensional
manifold embedding (Tenenbaum et al., 2000). The
main idea is to use metric multidimensional scaling on
the matrix of pairwise geodesic distances. Using the
Euclidean length of edges as their weights will lead
to the convergence of the SP distance to the geodesic
distance. But what would be the effect of applying
Isomap to unweighted graphs?

Our results of the last section already hint that there
is no big difference between unweighted and weighted
e-graphs for Isomap. However, the case of kNN graphs
is different because weighted and unweighted shortest
paths measure different quantities. The effect of ap-
plying Isomap to unweighted kNN graphs can easily be
demonstrated by the following simulation. We sample
2000 points in R? from a distribution that has two uni-
form high-density squares, surrounded by a uniform
low density region. An unweighted kNN graph is con-
structed with £ = 10, and we apply Isomap with target
dimension 2. The result is depicted in Figure 2. We
can see that the Isomap embedding heavily distorts
the original data: it stretches high density regions and
compacts low density regions to make the vertex dis-
tribution close to uniform.
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5.2. Semi-supervised learning

Our work has close relationship to some of the litera-
ture on semi-supervised learning (SSL). In regulariza-
tion based approaches, the underlying density is either
exploited implicitly as attempted in Laplacian regular-
ization (Zhu et al., 2003 but see Nadler et al., 2009;
Alamgir & von Luxburg, 2011 and Zhou & Belkin,
2011), or more explicitly as in measure based regu-
larization (Bousquet et al., 2004). Alternatively, one
defines new distance functions on the data that take
the density of the unlabeled points into account. Here,
the papers by Sajama & Orlitsky (2005) and Bijral
et al. (2011) are most related to our paper. Both pa-
pers suggest different ways to approximate the density
based distance from the data. In Sajama & Orlitsky
(2005) it is achieved by estimating the underlying den-
sity while in Bijral et al. (2011), the authors omit the
density estimation and use an approximation.

Our work shows a simpler way to converge to a similar
distance function for a specific family of f-distances,
namely constructing a kNN graph and assigning edge
weights as in Equation 1.

6. Conclusions and outlook

We have seen in this paper that the shortest path dis-
tance on unweighted kNN graphs has a very funny
limit behavior: it prefers to go through regions of
low density and even takes large detours in order to
avoid the high density regions. In hindsight, this
result seems obvious, but most people are surprised
when they first hear about it. In particular, we be-
lieve that it is important to spread this insight among
machine learning practitioners, who routinely use un-
weighted kNN-graphs as a simple, robust alternative
to e-graphs.

In some sense, unweighted e-graphs and unweighted
kNN graphs behave as “duals” of each other: while
degrees in e-graphs reflect the underlying density, they
are independent of the density in kNN graphs. While
the shortest path in e-graphs is independent of the
underlying density and converges to the Euclidean dis-
tance, the shortest paths in kNN graphs take the den-
sity into account.

Current practice is to use € and kNN graphs more or
less interchangeably in many applications, and the de-
cision for one or the other graph is largely driven by
robustness or convenience considerations. However, as
our results show it is important to be aware of the
implicit consequences of this choice. Each graph car-
ries different information about the underlying density,
and depending on how a particular machine learning

algorithms makes use of the graph structures, it might
either miss out or benefit from this information.
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