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Abstract

Tensor decomposition is a powerful computa-
tional tool for multiway data analysis. Many
popular tensor decomposition approaches—such
as the Tucker decomposition and CANDE-
COMP/PARAFAC (CP)—amount to multi-linear
factorization. They are insufficient to model
(i) complex interactions between data entities,
(ii) various data types (e.g.missing data and bi-
nary data), and (iii) noisy observations and out-
liers. To address these issues, we propose tensor-
variate latent nonparametric Bayesian models,
coupled with efficient inference methods, for
multiway data analysis. We name these mod-
els InfTucker . Using these InfTucker models,
we conduct Tucker decomposition in an infi-
nite feature space. Unlike classical tensor de-
composition models, our new approaches han-
dle both continuous and binary data in a prob-
abilistic framework. Unlike previous Bayesian
models on matrices and tensors, our models are
based on latent Gaussian or t processes with
nonlinear covariance functions. To efficiently
learn the InfTucker models from data, we de-
velop a variational inference technique on ten-
sors. Compared with classical implementation,
the new technique reduces both time and space
complexities by several orders of magnitude. Our
experimental results on chemometrics and social
network datasets demonstrate that our new mod-
els achieved significantly higher prediction accu-
racy than the most state-of-art tensor decomposi-
tion approaches.

Appearing in Proceedings of the 29 th International Conference
on Machine Learning, Edinburgh, Scotland, UK, 2012. Copyright
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1 Introduction

Many real-world datasets with multiple aspects can be
described by tensors (i.e., multiway arrays). For exam-
ple, patient drug responses can be represented by a ten-
sor with four modes (person, medicine, biomarker, time)
and user customer ratings by a tensor with three modes
(user, item, time). Given tensor-valued data, we want to
model complex interactions embedded in data (e.g., drug
interactions) and predict missing elements (e.g., unknown
drug responses). Traditional multiway factor models—
such as the Tucker decomposition (Tucker, 1966) and
CANDECOMP/PARAFAC (CP) (Harshman, 1970)—have
been applied for various applications (e.g., computer vi-
sion (Shashua & Hazan, 2005) and chemometrics (Acar
et al., 2011) etc). These models, however, face serious chal-
lenges for modeling complex multiway interactions. First,
interactions between entities in each mode may be coupled
together and highly nonlinear. The classical multi-linear
models cannot capture these intricate relationships. Sec-
ond, the data are often noisy, but the classical models are
not designed to deal with noisy observations. Third, the
data may contain many missing values. We need to first
impute the missing values before we can apply the clas-
sical multiway factor models. Forth, the data may not be
restricted to real values: they can be binary as in dynamic
network data or have ordinal values for user-movie-ratings.
But the classical models simply treat them as continuous
data — this treatment would lead to degenerated predictive
performance.

To address these challenges we propose a nonparametric
Bayesian multiway analysis model, InfTucker . Based on
latent Gaussian processes or t processes, it conducts the
Tucker decomposition in an infinite dimensional feature
space. It generalizes the elegant work of Chu & Ghahra-
mani (2009) by capturing nonlinear interactions between
different tensor modes. Grounded in a probabilistic frame-
work, it naturally handles noisy observations and missing
data. Furthermore, it handles various data types—binary
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or continuous—by simply using suitable data likelihoods.
Although InfTucker offers an elegant solution to multiway
analysis, learning the model from data is computationally
challenging. To overcome this challenge, we develop an
efficient variational Bayesian approach that explores tensor
structures to significantly reduce the computational cost.
This efficient inference technique also enables the usage
of nonlinear covariance functions for latent Gaussian and t
processes on datasets with reasonably large sizes.

Our experimental results on chemometrics and social net-
work datasets demonstrate that the InfTucker achieves
significantly higher prediction accuracy than state-of-the-
art tensor decomposition approaches—including High Or-
der Singular Value Decomposition (HOSVD) (Lathauwer
et al., 2000), Weighted CP (Acar et al., 2011) and nonneg-
ative tensor decomposition (Shashua & Hazan, 2005).

2 Tensor Decomposition

A K-mode tensor Y ∈ Rn1×...×nK has K modes, where
the k-th mode has nk dimensions. We use yi to denote the
i = (i1, . . . , iK) entry of Y .

In order to define tensor decomposition, two linear al-
gebra operations on matrix are generalized to tensor—
vectorization and tensor-matrix multiplication (Kolda &
Bader, 2009). We define the vectorization operation, de-
noted by vec(Y), to stack the tensor entries into a n =∏K
k=1 nk by 1 vector. The entry i = (i1, . . . , iK) of Y

is mapped to the entry at position j = iK +
∑K−1
i=1 (ik −

1)
∏K
k+1 nk of vec(Y)1.

The mode-k tensor-matrix multiplication of a tensorW ∈
Rr1×...×rK and a matrix U ∈ Rs×rk is denoted asW×kU,
which is of size r1 × . . . × rk−1 × s × rk+1 × . . . × rK .
It takes the products W’s elements in the k-th dimension
by the associated elements in the rows of U and sums the
products. The corresponding entry-wise definition is

(W ×k U)i1...ik−1jik+1...iK =

rk∑
ik=1

wi1...iKujik . (1)

There are two families of tensor decomposition, the Tucker
family and the CP family. The Tucker family extends bi-
linear factorization models on matrix to handle tensor. For-
mally, Tucker decomposition defines a multi-linear form on
tensor.

Definition 1 (Tucker decomposition) The Tucker decom-

1Unlike the usual column-wise vec-operation, applying our
definition of vec() on matrices (2-mode tensors) gives the row-
wise vectorization. This definition avoids the use of transpose in
many equations throughout this paper.

W
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M
=

n 3
× 
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n1× r1
n2× r2
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r1× r2× r3

Figure 1. Illustration of Tucker decomposition on a 3-mode tensor
Y . The core tensorW is multiplied by matrices U1, U2 and U3

on different dimensions to obtain Y .

position for a K-mode tensorM∈ Rn1×...×nK is

M =W ×1 U(1) ×2 . . .×K U(K) = [[W; U(1), . . . ,U(K)]]
(2)

where W ∈ Rr1×...×rK is the core tensor, and U(k) ∈
Rnk×rk are K latent factor matrices.

The last identity in (2) is introduced by Kolda & Bader
(2009) to compactly represent Tucker decomposition. We
can relate Tucker decomposition with matrix-vector multi-
plication using the vec operation on tensors.

Proposition 2 The Tucker decomposition (2) can be repre-
sented in a vectorized form

vec([[W; U(1), . . . ,U(K)]]) = U(1) ⊗ . . .⊗U(K) · vec(W)
(3)

where ⊗ is the Kronecker product.

The alternating least square (ALS) method has been used
to solve Tucker decomposition (Kolda & Bader, 2009). A
graphical illustration of the Tucker decomposition on a 3-
mode tensor is shown in Figure 1.

The CP family is a restricted form of the Tucker fam-
ily. The entry-wise definition of CP for a tensor M is
mi1...iK =

∑r
l=1 λlui1l . . . uiK l. We focus on generaliz-

ing Tucker decomposition to an infinite feature space using
tensor-variate Gaussian or t processes in this paper.

3 Infinite Tucker Decomposition

In this section we present the infinite Tucker decomposi-
tion based on latent Gaussian processes and t processes.
The following discussion is primarily for latent Gaussian
processes. The model derivation for latent t processes is
similar to that of latent Gaussian processes.

We extend classical Tucker decomposition in three aspects:
i) flexible noise models for both continuous and binary ob-
servations; ii) an infinite core tensor to model complex in-
teractions; and iii) latent Gaussian process or t prior pro-
cess. More specifically, we assume the observed tensor Y



Infinite Tucker Decomposition: Nonparametric Bayesian Models for Multiway Data Analysis

is sampled from a latent real-valued tensorM via a proba-
bilistic noise model p(Y|M) =

∏
i p(yi|mi).

3.1 Tensor-variate Gaussian processes

We start by conducting Tucker decomposition forM with
a core tensor W of uniform size, r1 = . . . = rK = r.
We assign independent standard normal distribution onW ,
which is equivalent to

vec(W) ∼ N (0, I) (4)

where I is the identity matrix. In light of the vectorized
representation of Tucker decomposition (3), it is easy to see
that vec(M) follows a normal distribution by marginaliz-
ing out vec(W).

vec(M) ∼ N (0,Σ(1) ⊗ . . .⊗Σ(K)), (5)

Σ(k) = U(k)U(k)>

The covariance matrix of vec(M) has a Kronecker product
structure. Because the covariance of any two elements mi

and mj in the tensorM is

Cov(mi,mj) =

K∏
k=1

Σ
(k)
ikjk

(6)

we can interpret Σ(k) as the covariance on the k-th mode.
To model nonlinear relationships, we replace each row uki
of the latent feature matrix U(k) by a nonlinear feature
mapping φ(uki ). We obtain an equivalent nonlinear co-
variance matrix Σ(k) from nonlinear covariance function
k(u

(k)
i ,u

(k)
j ) = 〈φ(u

(k)
i ), φ(u

(k)
j )〉. The corresponding

core tensorW after the feature mapping has the size of the
mapped feature vector φ(u

(k)
i ) on mode k, which could be

infinite. A rigorous exposition on the relation between core
tensors and the feature vectors is given in Appendix B.

Note that by marginalizing out the core W in our model
means, we effectively use all possible values of the latent
coreW for our model estimation. Using all possible values
of W — instead of a particular single value of W — can
greatly reduce the chance of overfitting and boost predic-
tive performance (as demonstrated in our experiments).

We can also rewrite the normal probability density function
(p.d.f.) in (5) using the vectorization relation (3) as

N (vec(M); 0,Σ(1) ⊗ . . .⊗Σ(K))

= T N (M; 0,Σ(1), . . . ,Σ(K))

=
exp

{
− 1

2‖[[M; (Σ(1))−
1
2 , . . . , (Σ(K))−

1
2 ]]‖2

}
(2π)n/2

∏K
k=1 |Σ(k)|−

n
2nk

(7)

where n =
∏
k nk and ‖X‖ =

√∑
i x

2
i . The above equa-

tion (7) essentially defines a tensor-variate normal distribu-
tion T N (0,Σ(1), . . . ,Σ(K)) that naturally generalizes the

definition of matrix-variate normal distributions (Gupta &
Nagar, 2000).

Combining nonlinear covariance functions and tensor-
variate normal distributions, We can define tensor-variate
Gaussian processes onM.

Definition 3 (Tensor-variate Gaussian process) A
tensor-variate Gaussian process is a collection of random
variables {m(u(1), . . . ,u(K))}, u(k) ∈ Rr, whose finite
joint probability over {(u(1)

i1
, . . . ,u

(K)
iK

)} has the tensor-
variate normal distribution density function. Specifically,
given U(k), the zero mean tensor-variate Gaussian process
onM is denoted by

M∼ T GP(0, k(·, ·)). (8)

The finite probability density function is

p(M|U(1), . . . ,U(K)) = T N (M; 0,Σ(1), . . . ,Σ(K))
(9)

where Σ(k) = k(Uk,Uk) is the covariance matrix.

Intuitively, a tensor-variate Gaussian process is equivalent
to defining infinite Tucker decomposition with infinite fea-
ture mapping φ(u) and an infinite core tensorW∞ whose
elements are independent standard normal random vari-
ables

M = [[W∞;φ(U(1)), . . . , φ(U(K))]] (10)

Definition 3 shows that probabilistic infinite Tucker decom-
position of M can be realized by modeling M as a draw
from a tensor-variate Gaussian process. Our definition
of tensor-variate Gaussian processes generalizes matrix-
variate Gaussian processes defined in (Yu et al., 2007) and
(Yan et al., 2011).

Finally, to encourage sparsity in estimated u
(k)
i —for easy

model interpretation—we use a Laplace prior u
(k)
i ∼

L(λ) ∝ exp(−λ‖u(k)
i ‖1).

3.2 Tensor-variate t processes

Because of the strong relation between t-distributions and
normal distributions—t distributions can be regarded as
mixtures of Gaussian distributions weighted by Gamma
distributions, we can easily define tensor-variate t pro-
cesses as an alternative way to define infinite Tucker de-
composition:

Definition 4 (Tensor-variate t Processes) M follows a
tensor-variate t process T T P(ν,0, k(·, ·)) with a degree
of freedom ν > 2, ifM follows tensor t distribution with
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the following density

T T (M; ν,0, {Σ(k)}Kk=1) =
Γ(n+ν2 )

∏K
k=1 |Σ(k)|−

n
2nk

Γ(ν2 )(νπ)
n
2(

1 +
1

ν
‖[[M; (Σ(1))−

1
2 , . . . , (Σ(K))−

1
2 ]]‖2

)− 1
2 (n+ν)

(11)

where Γ(x) is the Gamma function.

3.3 Noise models

We use a noise model p(Y|M) to link the infinite Tucker
decomposition and the tensor observation Y .

Probit model: In this case, each entry of the observa-
tion is binary; that is, yi ∈ {0, 1}. A probit function
p(yi|mi) = Φ(mi)

yi(1 − Φ(mi))
1−yi models the binary

observation. Note that Φ(·) is the standard normal cumu-
lative distribution function. The probit model can be ex-
tended to handle multi-class and ordinal data as well.

Gaussian model: We use a Gaussian likelihood
p(yi|mi) = N (yi|mi, σ

2) to model the real-valued obser-
vation yi.

Missing values: We allow missing values in the observa-
tion. Let O denote the indices of the observed entries in Y .
Then we have p(YO|MO) as the likelihood.

4 Algorithm

Given the observed tensor Y , we aim to obtain the MAP
estimate of component matrices U(k) by maximizing the
marginal likelihood p(Y|{U(k)}Kk=1)p({U(k)}Kk=1). Inte-
grating outM in the above equation is intractable for the
probit noise. Therefore, we develop a variational expec-
tation maximization (EM) algorithm. The inference for
Gaussian noise is exact, but it can be derived in the vari-
ational EM framework as a special case. In the following
paragraphs, we first present the inference and prediction
algorithms for both of the noise models, and then describe
an efficient algebraic approach to significantly reduce the
computation complexity. Due to the space limitation, we
only describe the inference algorithm for tensor-variate t
processes. Tensor-variate Gaussian process inference can
be derived similarly.

4.1 Inference

Probit noise: We follow the data augmentation scheme by
Albert & Chib (1993) to decompose the probit model into
p(yi|mi) =

∫
p(yi|zi)p(zi|mi)dzi . Let δ(·) be the indica-

tor function, we have

p(yi|zi) = δ(yi = 1)δ(zi > 0) + δ(yi = 0)δ(zi ≤ 0),

p(zi|mi) = N (zi|mi, 1)

It is well known that a t distribution can be factorized into a
normal distribution convolved with a Gamma distribution,
such that

T T (M; ν,0, {Σ(k)}Kk=1) =

∫
Gam(η; ν/2, ν/2)·

T N (M; 0, {η−1/KΣ(k)}Kk=1)dη, (12)

The joint probability likelihood with data augmentation is

p(Y,Z,M, η,U) = p(Y|Z)p(Z|M)p(M|η,U)p(η)p(U).

where U =
[
U(1), . . . ,U(K)

]
, p(M|η,U) and p(η) are the

tensor-variate normal distribution and the Gamma distribu-
tion in (12). p(U) is the Laplace prior.

Our variational EM algorithm consists of a variational E-
step and a gradient-based M-step. In the E-step, we approx-
imate the posterior distribution p(Z,M, η|Y,U) by a fully
factorized distribution q(Z,M, η) = q(Z)q(M)q(η).
Variational inference minimizes the Kullback-Leibler (KL)
divergence between the approximate posterior and the true
posterior.

min
q

KL (q(Z)q(M)q(η)‖p(Z,M, η|Y,U)) . (13)

The variational approach optimizes one approximate dis-
tribution, e.g., q(Z), in (13) at a time, while having all the
other approximate distributions fixed. We loop over q(Z),
q(M) and q(η) to iteratively optimize the KL divergence
until convergence.

Given q(M) and q(η), the q(zi) is a truncated normal dis-
tribution

q(zi) ∝ N (Eq [mi] , 1)δ(zi > 1), (14)

Eq [zi] = Eq [mi] +
(2yi − 1)N (Eq [mi] |0, 1)

Φ((2yi − 1)Eq [mi])
. (15)

Given q(Z) and q(η), it is more convenient to write the
optimized approximate distribution forM in its vectorized
form. Let

Σp = Σ(1) ⊗ . . .⊗Σ(K) (16)

be the covariance matrix of the tensor TP prior, we have

q(vec(M)) = N (vec(M)|µ,Υ), (17)
µ = vec(Eq [M]) = Υ vec(Eq [Z]) (18)

Υ = Eq [η]
−1

Σp

(
I + Eq [η]

−1
Σp

)−1
. (19)

The optimized q(η) is also a Gamma distribution:

q(η) = Gam(η;β1, β2), Eq [η] =
β1
β2
, β1 =

ν + n

2
,

β2 =
ν + µ>Σ−1p µ + tr(Σ−1p Υ)

2
.
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Based on the variational approximate distribution obtained
in the E-step, we maximize the expected log likelihood over
U in the M-step.

max
U

Eq [log p(Y,Z,M, η|U)p(U)] . (20)

After eliminating constant terms, we need to solve the fol-
lowing optimization problem with regularization on U(k)

min
U
f(U) = τ‖[[Eq [M] ; (Σ(1))−

1
2 , . . . , (Σ(K))−

1
2 ]]‖2

+

K∑
k=1

n

nk
log |Σ(k)|+ τ tr

(
Σ−1p Υ

)
, (21)

where τ = Eq [η]. In the above equation (21), Σ(k) =
k(U(k),U(k)) is considered as a function of U(k). Υ and
τ are the statistics computed in the E-step, and they have
fixed values. The gradient of f(U) w.r.t. to a scalar u(k)ij is

∂f

∂u
(k)
ij

=
n

nk
tr

(
(Σ(k))−1

∂Σ(k)

∂u
(k)
ij

)
+ τµ>∆(k)µ + τ tr

(
∆(k)Υ

)
(22)

∆(k) = (Σ(1))−1 ⊗ . . .⊗ (Σ(k−1))−1

⊗ (Σ(k))−1
∂Σ(k)

∂u
(k)
ij

(Σ(k))−1

⊗ (Σ(k+1))−1 ⊗ . . .⊗ (Σ(K))−1 (23)

With an `1 penalty on f(U), we choose a projected scaled
subgradient L-BFGS algorithm for optimization—due to
its excellent performance (Schmidt, 2010).

Gaussian noise: The inference for the regression case fol-
lows the same format as the probit noise case. Eq [Z] is
replaced by YO, and we do not need to update q(Z). The
variational EM algorithm is only applied to the observed
entries ofMO and the covariance [Σp]O,O.

4.2 Prediction

Probit noise: Given a missing value index i =
(i1, . . . , iK), the predictive distribution is

p(yi|Y) ≈
∫
p(yi|mi)p(mi|M, η)q(M)q(η)dmidMdη

The above integral is intractable, so we replace η integral
q(η)dη by the mode of its approximate posterior distribu-
tion τ∗ = (β1 − 1)/β2, thus the predictive distribution is
approximated by∫

p(yi = 1|zi)p(zi|mi)p(mi|M, τ∗)q(M)dzidmidM

=

∫
δ(zi > 0)N (zi|µi(1), ν2i (1))dzi = Φ(

µi(1)

νi(1)
) (24)

where

k(i, j) =

K∏
k=1

Σ(k)(u
(k)
ik
,u

(k)
jk

), k = [k(i, j)]
>
j∈O

µi(ρ) = k>(Σp + ρ2τ∗I)−1 vec(Y)

ν2i (ρ) = 1 +
1

τ∗
[k(i, i)− k>(Σp + ρ2τ∗I)−1k]

Gaussian noise: The predictive distribution for the regres-
sion case can be evaluate by a similar integral, which gives

p(yi|YO) = N (zi|µi(σ), ν2i (σ)). (25)

4.3 Efficient Algorithm

If n =
∏K
k=1 nk is the number of all elements in Y , a

naı̈ve implementation of the above algorithm requires pro-
hibitiveO(n3) time complexity andO(n2) space complex-
ity for each EM iteration. The key computation bottlenecks
are the computations involving Υ, which are tr(Σ−1p Υ) in
(21), tr

(
∆(k)Υ

)
in (22) and Υ vec(Eq [Z]) in (18).

To avoid this high complexity, we can make use of the Kro-
necker product structure and generalize the strategy used
by Yan et al. (2011) on matrix-variate Gaussian processes.
We assume Eq [η] = 1 to simplify the computation. It is
easy to adapt our computation strategies to Eq [η] 6= 1. Let
Σ(k) = V(k)Λ(k)V(k)> be the singular value decomposi-
tion (SVD) of the covariance matrix Σ(k), V(k) is an or-
thogonal matrix and Λ(k) is a diagonal matrix. Υ can be
represented as

Υ = Σp (I + Σp)
−1

= VΛV>, where

V = V(1) ⊗ . . .⊗V(K)

Λ = Λ(1) ⊗ . . .⊗Λ(K)(I + Λ(1) ⊗ . . .⊗Λ(K))−1

It is obvious that V is an orthogonal matrix and Λ is a
diagonal matrix. The above relation implies that we can
actually compute the singular value decomposition of Υ =
VΛV> from covariance matrices Σ(k).

Computing tr(Σ−1p Υ) and tr
(
∆(k)Υ

)
:

We define dk = diag(V(k)(Σ(k))−1V(k)>)> with Σ(k)

being a computed statistics in the E-step, diag(Λ) denotes
the diagonal elements of Λ, and D is a tensor of size
n1 × . . . × nK , such that vec(D) = diag(Λ). In order to
efficiently compute tr(Σ−1p Υ) appearing in equation (21),
we use the following relations

tr(Σ−1p Υ) = tr(Σ−1p V>ΛV) = tr(ΛVΣ−1p V>)

= diag(VΣ−1p V>)> diag(Λ)

= d1 ⊗ . . .⊗ dK diag(Λ)

= d1 ⊗ . . .⊗ dK vec(D)

= D ×1 d1 . . .×K dK , (26)
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Both time and space complexities of the last formula (26)
is O(n). The technique of (26) can be used to efficient
calculate the last term tr

(
∆(k)Υ

)
in the gradient (22) as

well. Furthermore, if we use the incremental EM algo-
rithm, which only takes one gradient descent step for each
M step, equation (26) can be simplified such that dk is the
inverse of the eigenvalues of Σ(k).

dk = diag
(

(Λ(k))−1
)>

In practice, this incremental EM algorithm performs as
good as EM with full optimization.

Computing Υ vec(Eq [Z]):
For any tensor A of the same size as D, Λ vec(A) means
multiplying the j-th element of vec(A) by the Λjj , which
is the j-th element of vec(D). So we have Λ vec(A) =
vec(D �A), where � denotes the entry-wise product.

In light of this relation and (3), we can efficiently compute
(18) by

Υ vec(Eq [Z]) = VΛV> vec(Eq [Z])

= VΛ vec
(

[[Eq [Z] ; V(1)>, . . . ,V(K)>]]
)

= V vec (G � D) ,

where G = [[Eq [Z] ; V(1)>, . . . ,V(K)>]]. It can be further
simplified as:

Υ vec(Eq [Z]) = vec([[G � D; V(1), . . . ,V(K)]]). (27)

Equation (27) greatly reduces the time and space complex-
ities of (18). The time complexity of each mode-k multipli-
cation isO(nkn), and SVD of the covariance matrix on the
k-th mode costs O(n3k). So the total time complexity in-
cluding other computation steps is O(

∑K
k=1 n

3
k + nkn). If

we assume the length of each mode are the same, the time
complexity of our efficient algorithm is O(n1+

1
K ) which is

a huge reduction from O(n3) of the naı̈ve algorithm. The
space complexity is reduced toO(n+

∑K
k=1 n

2
k) andO(n)

for tensors with uniform size for each mode, because we
only need to store the covariance matrix for each mode
rather than the n2 × n2 covariance matrix Σp. We can
further reduce the complexities by approximating the co-
variance matrices via truncated SVD.

5 Related Works

The InfTucker model extends Probabilistic PCA (PPCA)
(Tipping & Bishop, 1999) and Gaussian process latent
variable models (GPLVMs) (Lawrence, 2006). Using
a Dirac covariance and a linear covariance for the two
modes of a matrix, our model reduces to the PPCA model
T N (0, I,UU>); similarly, using a Dirac covariance and a

nonlinear covariance K, our model reduces to the GPLVM
model T N (0,K, I). While PPCA and GPLVM model in-
teractions of one mode of a matrix and ignore the joint in-
teractions of two modes, InfTucker does. Our model is also
related to previous matrix-variate GPs (Yu et al., 2007).
The main difference lies in the fact they used linear covari-
ance functions to reduce the computational complexities
and dealt with matrix-variate data for online recommen-
dation and link prediction. Hoff (2011) proposed a hier-
archical Bayesian extension to CANDECOMP/PARAFAC
that captures the interactions of component matrices. Por-
teous et al. (2008) generalized hierarchical Dirichlet pro-
cesses to handle tensor data. Unlike these approaches, ours
can handle non-Gaussian noise and uses nonlinear covari-
ance functions to model complex interactions. Both Hoff
(2011) and Porteous et al. (2008) used Gibbs samplers for
inference—requiring high computational cost and making
their approach infeasible for tensors with moderate and
large sizes.

The most closely related work is the probabilistic Tucker
decomposition (pTucker) model (Chu & Ghahramani,
2009); actually the GP-based InfTucker with Gaussian
noise function reduces to pTucker as a special case when
using a linear covariance function. Our TP-based InfTucker
further differs from pTucker by marginalizing out a scal-
ing hyperparameter of the covariance function and han-
dles non-Gaussian noise functions. A kernelized version
of pTucker was also discussed by the authors without con-
ducting any experiment on it. The kernelized pTucker ap-
proach captures nonlinear relationships between observa-
tions in the same way as kernel PCA. This is fundamen-
tally different from our approach, which captures nonlinear
relationships between the latent factors. In addition, the
kernelized pTucker approach needs to explicitly calculate
the Kronecker product of the latent factors, so it is difficult
for pTucker to scale up to large datasets. In contrast, our in-
ference method does not conduct any expensive Kronecker
product—we have exploited properties of Kronecker prod-
ucts to greatly simplify the computations.

To handle missing data, enhance model interpretability, and
avoid overfitting, several extensions (e.g., using nonnega-
tivity constraints) to tensor decomposition have been pro-
posed, including nonnegative tensor decomposition (NTD)
(Shashua & Hazan, 2005) and Weighted tensor decomposi-
tion (WTD) (Acar et al., 2011). Unlike ours, these models
either solve the core tensors explicitly, or do not handle
nonlinear multiway interactions.

6 Experiments

We use InfTuckergp and InfTuckertp to denote the two
new infinite Tucker decomposition models based on tensor-
variate Gaussian and t processes, respectively. To evaluate
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Data amino flow injection bread
CP 0.053±0.002 0.051±0.005 0.238±0.001
TD 0.054±0.002 0.051±0.003 0.248±0.001
HOSVD 0.053±0.002 0.052±0.004 0.259±0.001
NCP 0.057±0.005 0.110±0.023 0.233±0.001
PTD 0.054±0.002 0.048±0.002 0.240±0.001
WCP 0.049±0.004 0.079±0.011 0.246±0.003
InfTuckergp 0.047±0.003 0.049±0.002 0.232±0.001
InfTuckertp 0.047±0.003 0.046±0.002 0.225±0.001

Table 1. The mean square errors (MSE) with standard errors.
The results suggested that our new approaches–InfTuckergp and
InfTuckertp —achieved higher prediction accuracy than all the
competing approaches. In particular, the improvements of
InfTuckertp over all the other methods on all datasets (except
InfTuckergp on the amino dataset) are statistically significant
(p < 0.05).

them, we conducted two sets of experiments, one on con-
tinuous tensor data and the other on binary tensor data, to
evaluate the prediction accuracy on hold-out data. The hy-
perparameters are determined using cross-validation in our
MAP inference framework. For both experiments, we com-
pared InfTucker with the following tensor decomposition
methods: CANDECOMP/PARAFAC (CP), Tucker decom-
position (TD), Nonnegative CP (NCP), High Order SVD
(HOSVD), Weighted CP (WCP) and Probabilistic Tucker
Decomposition (PTD). We implemented PTD as described
in the paper by Chu & Ghahramani (2009) and applied to
a small continuous tensor data (bread as described in the
6.1). To handle larger and binary datasets, we used probit
models and the efficient computation techniques described
in Section 4.3 for PTD. For the other methods, we used the
implementation of the tensor data analysis toolbox2 devel-
oped by T. G. Kolda.

6.1 Experiment on continuous tensor data

Experimental setting. We used three continuous chemo-
metrics datasets3, amino, bread, and flow injection. The
dimensions of the tensors are 5 × 51 × 201, 10 × 11 × 8,
12 × 100 × 89, respectively.

All the above tensor data were normalized such that each
element of the tensor has zero mean and unit variance
(based on the vectorized representations). For each ten-
sor, we randomly split it via 5-fold cross validation: each
time four folds are used for training and one fold for test-
ing. This procedure was repeated 10 times, each time
with a different partition for the 5-fold cross validation. In
InfTuckertp , the degree of freedom ν in the tensor-variate t
process is fixed to 10. We chose the Gaussian/exponential

2http://csmr.ca.sandia.gov/˜tgkolda/
TensorToolbox/

3Available from http://www.models.kvl.dk/
datasets

covariance functions Σ(k)(ui,uj) = e−γ‖ui−uj‖t , where
t = 1, 2 and γ is selected from [0.01 : 0.05 : 1] by 5-
fold cross validation. The regularization parameter λ for
InfTuckergp and InfTuckertp is chosen from {1, 10, 100}.

Results. We compared the the prediction accuracy val-
ues of all the approaches on hold-out elements of the ten-
sor data. 80% of the data are held out for training and
the remaining 20% are used for testing in each run. For
each comparison, we used the same number of latent fac-
tors, denoted as r, for all the approaches. We varied r
from 3 to 5 and computed the averaged mean square er-
rors (MSEs) and the standard errors of the MSEs. Based
on cross-validation, we set r = 3. The MSEs on the three
datasets are summarized in Table 1. Based on the predic-
tion accuracies, PTD and WCP tie on the third best, while
HOSVD is the worst ( perhaps due to the strong nonnega-
tivity constraint on the latent factors). Clearly, InfTuckergp

achieved higher prediction accuracies than all the previous
approaches on all the datasets, and InfTuckertp further out-
performed InfTuckergp for most cases.

6.2 Experiment on binary tensor data

Experimental setting. We extracted three binary so-
cial network datasets, Enron, Digg1, and Digg2, for our
experimental evaluation. Enron is a relational dataset de-
scribing the three-way relationship: sender-receiver-time.
This dataset, extracted from the Enron email dataset4, has
the dimensionality of 203 × 203 × 200 with 0.01% non-
zero elements. The Digg1 and Digg2 datasets were all ex-
tracted from a social news website digg.com5. Digg1
describes a three-way interaction: news-keyword-topic,
and Digg2 describes a four-way interaction: user-news-
keyword-topic. Digg1 has the dimensionality of 581 ×
124 × 48 with 0.024% non-zero elements, and Digg2 has
the dimensionality of 22 × 109 × 330 × 30 with only
0.002% non-zero elements. Apparently these datasets are
very sparse.

Results. We chose r from the range {3,5,8,10,15,20}
based on cross-validation. Since the data are binary, we
evaluated all these approaches by area-under-curve (AUC)
values by averaged over 50 runs. 80% of the data are used
for training and 20% are used for testing in each run. For
InfTucker , the values to compute the AUCs are the pre-
dicted probability obtained from equation (24). For other
methods, the values to compute the AUCs are the recon-
structed values. The larger the averaged AUC value an
approach achieves, the better it is. We reported the aver-
aged AUC values for all algorithms in Figure 2. Again, the
proposed InfTuckergp and InfTuckertp approaches signif-

4Available at http://www.cs.cmu.edu/˜enron/
5Available at http://www.public.asu.edu/

˜ylin56/kdd09sup.html
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Figure 2. The AUC values of six algorithms on three multi-way networks. The dimensions of the latent factors are r = 3, 5, 8, 10, 15, 20
respectively.

icantly outperform all the others. Note that the nonproba-
bilistic approaches—such as CP and TD—- suffer severely
from the least square minimization; given the sparse and
binary training data, the least-square-minimization leads to
too many predictions with zero values, a result of both over-
fitting and mis-model fitting. This experimental compari-
son fully demonstrates the advantages of InfTucker (stem-
ming from the right noise models and the nonparametric
Bayesian treatment).

7 Conclusions

To conduct multiway data analysis, we have proposed a
new nonparametric Bayesian tensor decomposition frame-
work, InfTucker , where the observed tensor is modeled as a
sample from stochastic processes on tensors. In particular,
we have employed tensor-variate Gaussian and t processes.
This new framework can model nonlinear interactions be-
tween multi-aspects of the tensor data, handle missing data
and noise, and quantify prediction confidence (based on
predictive posterior distributions). We have also presented
an efficient variational method to estimate InfTucker from
data. Experimental results on chemometrics and social net-
work datasets demonstrate that the superior predictive per-
formance of InfTucker over the alternative tensor decom-
position approaches.
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