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Abstract

We present a novel approach for training ker-
nel Support Vector Machines, establish learn-
ing runtime guarantees for our method that
are better then those of any other known
kernelized SVM optimization approach, and
show that our method works well in practice
compared to existing alternatives.

1. Introduction

We present a novel algorithm for training kernel Sup-
port Vector Machines (SVMs). One may view a SVM
as the bi-criterion optimization problem of seeking a
predictor with large margin (low norm) on the one
hand, and small training error on the other. Our
approach is a stochastic gradient method on a non-
standard scalarization of this bi-criterion problem.
In particular, we use the “slack constrained” scalar-
ized optimization problem introduced by Hazan et al.
(2011) where we seek to maximize the classification
margin, subject to a constraint on the total amount of
“slack”, i.e. sum of the violations of this margin. Our
approach is based on an efficient method for comput-
ing unbiased gradient estimates on the objective. Our
algorithm can be seen as a generalization of the “Batch
Perceptron” to the non-separable case (i.e. when errors
are allowed), made possible by introducing stochas-
ticity, and we therefore refer to it as the “Stochastic
Batch Perceptron” (SBP).

The SBP is fundamentally different from Pegasos
(Shalev-Shwartz et al., 2011) and other stochastic gra-
dient approaches to the problem of training SVMs, in
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that calculating each stochastic gradient estimate still
requires considering the entire data set. In this re-
gard, despite its stochasticity, the SBP is very much
a “batch” rather than “online” algorithm. For a lin-
ear SVM, each iteration would require runtime linear
in the training set size, resulting in an unacceptable
overall runtime. However, in the kernel setting, es-
sentially all known approaches already require linear
runtime per iteration. A more careful analysis reveals
the benefits of the SBP over previous kernel SVM op-
timization algorithms.

In order to compare the SBP runtime to the runtime
of other SVM optimization algorithms, which typi-
cally work on different scalarizations of the bi-criterion
problem, we follow Bottou & Bousquet (2008); Shalev-
Shwartz & Srebro (2008) and compare the runtimes
required to ensure a generalization error of £* + €,
assuming the existence of some unknown predictor
u with norm |lu|| and expected hinge loss £*. The
main advantage of the SBP is in the regime in which
e = Q(L*), i.e. we seek a constant factor approxima-
tion to the best achievable error (e.g. we would like an
error of 1.01£*). In this regime, the overall SBP run-
time is ||ul|* /e, compared with |u|* /€3 for Pegasos
and |ul* /€2 for the best known dual decomposition
approach.

2. Setup and Formulations

Training a SVM amounts to finding a vector w defin-
ing a classifier  — sign({w, ® (x))), that on the one
hand has small norm (corresponding to a large classi-
fication margin), and on the other has a small training
error, as measured through the average hinge loss on
the training sample: £(w) = LN (i (w, @ (),
where each (z;,y;) is a labeled example, and ¢ (a) =
max (0,1 — a) is the hinge loss. This is captured by
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the following bi-criterion optimization problem:

min . L(w). (2.1)
We focus on kernelized SVMs, where the feature map
®(x) is specified implicitly via a kernel K (z,z') =
(® (2),® ('), and assume that K(z,2') < 1. We
consider only “black box” access to the kernel (i.e. our
methods work for any kernel, as long as we can com-
pute K(x,2’) efficiently), and in our runtime analy-
sis treat kernel evaluations as requiring O(1) runtime.
Since kernel evaluations dominate the runtime of all
methods studied (ours as well as previous methods),
one can also interpret the runtimes as indicating the
number of required kernel evaluations. To simplify our
derivation, we often discuss the explicit SVM, using
®(x), and refer to the kernel only when needed.

A typical approach to the bi-criterion Problem 2.1 is to
scalarize it using a parameter A controlling the tradeoff
between the norm (inverse margin) and the empirical
error:
i 2 ol + St w s @) 22)
min — ||w —  (w, O (x; .
ekt 2 n 4= Yi i
Different values of A correspond to different Pareto

optimal solutions of Problem 2.1, and the entire Pareto
front can be explored by varying A.

We instead consider the “slack constrained” scalar-
ization (Hazan et al., 2011), where we maximize the
“margin” subject to a constraint of v on the total
allowed “slack”, corresponding to the average error.
That is, we aim at maximizing the margin by which
all points are correctly classified (i.e. the minimal dis-
tance between a point and the separating hyperplane),
after allowing predictions to be corrected by a total
amount specified by the slack constraint:
max max min

i (w, @ (25 i
max max min (yi (w, @ (z;)) + &)

subject to: [lw|| <1, € =0, 17¢ <nw

(2.3)

In this scalarization, varying v explores different
Pareto optimal solutions of Problem 2.1. This is cap-
tured by the following Lemma, which also quantifies
how suboptimal solutions of the slack-constrained ob-
jective correspond to Pareto suboptimal points:

Lemma 2.1. (Hazan et al., 2011, Lemma 2.1) For
any u # 0, consider Problem 2.3 with v = L (u) / ||ul|.
Let w be an €-suboptimal solution to this problem with
objective value 7y, and consider the rescaled solution

w=w/y. Then:
holl S full . £ (w) € —— £ (w)
w|| <——ju|| , w) < —L(u
1—€full 1—€[ull

3. The Stochastic Batch Perceptron

In this section, we will develop the Stochastic Batch
Perceptron. We consider Problem 2.3 as optimization
of the variable w with a single constraint ||w|| < 1,
with the objective being to maximize:

max min
£20,1T¢<nv peA™

flw) = Zpi (yi (w, @ (z;)) + &)

(3.1)
Notice that we replaced the minimization over train-
ing indices 4 in Problem 2.3 with an equivalent mini-
mization over the probability simplex, A™ = {p = 0 :
17p = 1}, and that we consider p and £ to be a part of
the objective, rather than optimization variables. The
objective f(w) is a concave function of w, and we are
maximizing it over a convex constraint |w|| < 1, and
so this is a convex optimization problem in w.

Our approach will be to perform a stochastic gradi-
ent update on w at each iteration: take a step in the
direction specified by an unbiased estimator of a (su-
per)gradient of f(w), and project back to ||w| < 1. To
this end, we will need to identify the (super)gradients
of f(w) and understand how to efficiently calculate
unbiased estimates of them.

3.1. Warmup: The Separable Case

As a warmup, we first consider the separable case,
where ¥ = 0 and no errors are allowed. The objec-
tive is then:

f(w) = miny; (w, @ (z:)) , (3.2)
This is simply the “margin” by which all points are
correctly classified, i.e. v s.t. V; y; (w, ®(z;)) > . We
seek a linear predictor w with the largest possible mar-
gin. It is easy to see that (super)gradients with re-
spect to w are given by y; ®(z;) for any index i attain-
ing the minimum in Equation 3.2, i.e. by the “most
poorly classified” point(s). A gradient ascent approach
would then be to iteratively find such a point, update
w <+ w~+ny;®(x;), and project back to ||w|| < 1. This
is akin to a “batch Perceptron” update, which at each
iteration searches for a violating point and adds it to
the predictor.

In the separable case, we could actually use exact su-
pergradients of the objective. As we shall see, it is
computationally beneficial in the non-separable case
to base our steps on unbiased gradient estimates. We
therefore refer to our method as the “Stochastic Batch
Perceptron” (SBP), and view it as a generalization of
the batch Perceptron which uses stochasticity and is
applicable in the non-separable setting. In the same
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Figure 1. Tllustration of how one finds £* and p*. The up-
per curve represents the values of the responses ¢;, listed in
order of increasing magnitude. The lower curve illustrates
a minimax optimal probability distribution p*.

way that the “batch Perceptron” can be used to max-
imize the margin in the separable case, the SBP can
be used to obtain any SVM solution along the Pareto
front of the bi-criterion Problem 2.1.

3.2. Supergradients of f(w)

For a fixed w, we define ¢ € R™ be the vector of “re-
sponses”:

ci = yi (w, ® (z;)) (3.3)

Supergradients of f(w) at w can be characterized
explicitly in terms of minimax-optimal pairs p* and
¢* such that p* = argminyean p'(c 4+ £*) and &* =
arg maxey o 17¢e<ny ()7 (¢ + ).

Lemma 3.1 (Proof in Appendix C). For any w, let
p*,&* be minimaz optimal for Equation 3.1. Then
Yo piyi® () is a supergradient of f(w) at w.

This suggests a simple method for obtaining unbiased
estimates of supergradients of f(w): sample a train-
ing index ¢ with probability p}, and take the stochas-
tic supergradient to be y;® (z;). The only remaining
question is how one finds a minimax optimal p*.

It is possible to find a minimax optimal p* in O(n)
time. For any ¢, a solution of min,ean p? (z + &) must
put all of the probability mass on those indices ¢ for
which ¢; + &; is minimized. Hence, an optimal £* will
maximize the minimal value of ¢; + £*. This is illus-
trated in Figure 1. The intuition is that the total mass
nv available to £ is distributed among the indices as
if this volume of water were poured into a basin with
height ¢;. The result is that the indices ¢ with the low-
est responses have columns of water above them such
that the common surface level of the water is 7.

Once the “water level” « has been determined, the op-
timal p* must be uniform on those indices i for which
& > 0, ie. for which ¢; < v, must be zero on all
i s.t. ¢; > 7, and could take any intermediate value
when ¢; = v (that is, for some ¢ > 0, we must have
¢ <y = pl =¢q ¢ =7v7—0<p’ <gq and
¢i > v — pf = 0—see Figure 1). In particular, the
uniform distribution over all indices such that ¢; <
is minimax optimal. Notice that in the separable case,
where no slack is allowed, v = min; ¢; and any distribu-
tion supported on the minimizing point(s) is minimax
optimal, and y;®(x;) is an ezact supergradient for such
an i, as discussed in Section 3.1.

It is straightforward to find the water level v in linear
time once the responses ¢; are sorted (as in Figure 1),
i.e. with a total runtime of O(nlogn) due to sorting.
It is also possible to find the water level v in linear
time, without sorting the responses, using a divide-
and-conquer algorithm, further of which may be found
in Appendix B'.

3.3. Kernelized Implementation

In a kernelized SVM, w is an element of an implicit
space, and cannot be represented explicitly. We there-
fore represent w as w = > ; a;y;® (x;), and main-
tain not w itself, but instead the coefficients «;. Our
stochastic gradient estimates are always of the form
y;®(x;) for an index i. Taking a step in this direction
amounts to simply increasing the corresponding «;.

We could calculate all the responses ¢; at each iteration
as ¢; = Y5y a;yy; K (z;,2;). However, this would
require a quadratic number of kernel evaluations per
iteration. Instead, as is typically done in kernelized
SVM implementations, we keep the responses ¢; on
hand, and after each stochastic gradient step of the
form w < w + ny;® (x;), we update the responses as:

¢ ¢ +nyy; Kz, x;) (3.4)

This involves only n kernel evaluations per iteration.
In order to project w onto the unit ball, we must ei-
ther track ||w|| or calculate it from the responses as
lw]| =37, a;c;. Rescaling w so as to project it back
into ||w|| <1 is performed by rescaling all coeflicients
a; and responses ¢;, again taking time O(n) and no
additional kernel evaluations.

3.4. Putting it Together

We are now ready to summarize the SBP algorithm.

Starting from w(® = 0 (so both a(?) and all responses

! Appendices may be found in the long version of this
paper, arXiv:1204.0566.
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are zero), each iteration proceeds as follows:

1. Find p* by finding the “water level” ~ from the re-
sponses (Section 3.2), and taking p* to be uniform
on those indices for which ¢; < 7.

2. Sample j ~ p*.

3. Update w1V « P (w® + n,y;® (z;)), where P
projects onto the unit ball and 7, = % This is
done by first increasing a < « + 7; and updat-
ing the responses as in Equation 3.4, then calcu-
lating ||w]|| (Section 3.3) and scaling « and ¢ by
min(1, 1/ ).

Updating the responses as in Equation 3.4 requires
O(n) kernel evaluations (the most computationally ex-
pensive part) and all other operations require O(n)
scalar arithmetic operations.

Since at each iteration we are just updating using an
unbiased estimator of a supergradient, we can rely on
the standard analysis of stochastic gradient descent to
bound the suboptimality after T iterations:

Lemma 3.2 (Proof in Appendix C). For any T, > 0,
after T iterations of the Stochastic Batch Perceptron,
with probability at least 1 — 0, the average iterate
W=7 23:1 w® (corresponding to & = % Zthl a®),

satisfies: f (w) > supj, <1 f (w) — O (\/@) ‘

Since each iteration is dominated by n kernel evalu-
ations, and thus takes linear time (we take a kernel
evaluation to require O(1) time), the overall runtime
to achieve e suboptimality for Problem 2.3 is O(n/€?).

3.5. Learning Runtime

The previous section has given us the runtime for ob-
taining a certain suboptimality of Problem 2.3. How-
ever, since the suboptimality in this objective is not di-
rectly comparable to the suboptimality of other scalar-
izations, e.g. Problem 2.2, we follow Bottou & Bous-
quet (2008); Shalev-Shwartz & Srebro (2008), and an-
alyze the runtime required to achieve a desired gen-
eralization performance, instead of that to achieve a
certain optimization accuracy on the empirical opti-
mization problem.

Recall that our true learning objective is to find a
predictor with low generalization error L/ (w) =
Prizy) {y (w, ®(z)) < 0} with respect to some un-
known distribution over x,y based on a training set
drawn i.i.d. from this distribution. We assume that
there exists some (unknown) predictor w that has
norm |lu|| and low expected hinge loss £* = L(u) =
E [¢(y (u, ®(x)))] (otherwise, there is no point in train-
ing a SVM), and analyze the runtime to find a predic-

tor w with generalization error Lo/ (w) < L* +e.

In order to understand the SBP runtime, we must de-
termine both the required sample size and optimiza-
tion accuracy. Following Hazan et al. (2011), and
based on the generalization guarantees of Srebro et al.
(2010), using a sample of size:

of(£2)1)

and optimizing the empirical SVM bi-criterion Prob-
lem 2.1 such that:

(3.5)

[wl| < 2[[ull 5 £(w) = L(u) <e/2 (3.6)

suffices to ensure L/, (w) < L* + € with high proba-
bility. Referring to Lemma 2.1, Equation 3.6 will be
satisfied for w/~ as long as w optimizes the objective
of Problem 2.3 to within:

ezfﬂzzﬂ<f:> (3.7)
[Jull (£(u) +€/2) [[ull (£(u) +€)

where the inequality holds with high probability for
the sample size of Equation 3.5. Plugging this sample
size and the optimization accuracy of Equation 3.7 into
the SBP runtime of O(n/é?) yields the overall runtime:

(250 14

for the SBP to find w such that its rescaling satisfies
Lo1(w) < L(u) + € with high probability.

(3.8)

In the realizable case, where £L* = 0, or more gener-
ally when we would like to reach £* to within a small
constant multiplicative factor, we have e = Q(L*), the
first factor in Equation 3.8 is a constant, and the run-
time simplifies to O(||ul|* /€). As we will see in Section
4, this is a better guarantee than that enjoyed by any
other SVM optimization approach.

3.6. Including an Unregularized Bias

It is possible to use the SBP to train SVMs with a
bias term, i.e. where one seeks a predictor of the form
x — ((w, ®(x)) +b). We then take stochastic gradient
steps on:

flw) = (3.9)

n
max — min Zpi (Yi (w, @(x:)) + yib + &)
beR,ex-0 PEAT

1Te<ny

Lemma 3.1 still holds, but we must now find mini-
max optimal p*,&* and b*. This can be accomplished
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Table 1. Upper bounds, up to log factors, on the run-
time (number of kernel evaluations) required to achieve
Loy (w) < L(u) +e.

Overall e=Q(L(u)
SBP (m)?’ Ju g
Dual Decomp. (%)2 \|1:2|\4 Hi:zl)\4
SGD on £ (ﬁ(@+e) L) 1k

using a modified “water filling” involving two basins,
one containing the positively-classified examples, and
the other the negatively-classified ones. As in the
case without an unregularized bias, this can be ac-
complished in O(n) time—see Appendix B for details.

4. Relationship to Other Methods

We discuss the relationship between the SBP and sev-
eral other SVM optimization approaches, highlighting
similarities and key differences, and comparing their
performance guarantees.

4.1. SIMBA

Recently, Hazan et al. (2011) presented SIMBA, a
method for training linear SVMs based on the same
“slack constrained” scalarization (Problem 2.3) we use
here. SIMBA also fully optimizes over the slack vari-
ables ¢ at each iteration, but differs in that, instead
of fully optimizing over the distribution p (as the SBP
does), SIMBA updates p using a stochastic mirror de-
scent step. The predictor w is then updated, as in the
SBP, using a random example drawn according to p. A
SBP iteration is thus in a sense more “thorough” then
a SIMBA iteration. The SBP theoretical guarantee
(Lemma 3.2) is correspondingly better by a logarith-
mic factor (compare to Hazan et al. (2011, Theorem
4.3)). All else being equal, we would prefer performing
a SBP iteration over a SIMBA iteration.

For linear SVMs, a SIMBA iteration can be performed
in time O(n + d). However, fully optimizing p as de-
scribed in Section 3.2 requires the responses c;, and
calculating or updating all n responses would require
time O(nd). In this setting, therefore, a SIMBA iter-
ation is much more efficient than a SBP iteration.

In the kernel setting, calculating even a single response
requires O(n) kernel evaluation, which is the same cost
as updating all responses after a change to a single
coordinate a; (Section 3.3). This makes the responses

essentially “free”, and gives an advantage to methods
such as the SBP (and the dual decomposition methods
discussed below) which make use of the responses.

Although SIMBA is preferable for linear SVMs, the
SBP is preferable for kernelized SVMs. It should also
be noted that SIMBA relies heavily on having direct
access to features, and that it is therefore not obvious
how to apply it directly in the kernel setting.

4.2. Pegasos and SGD on L(w)

Pegasos (Shalev-Shwartz et al., 2011) is a SGD method
optimizing the regularized scalarization of Problem
2.2. Alternatively, one can perform SGD on £(w) sub-
ject to the constraint that ||w|| < B, yielding similar
learning guarantees (e.g. (Zhang, 2004)). At each iter-
ation, these algorithms pick an example uniformly at
random from the training set. If the margin constraint
is violated on the example, w is updated by adding to
it a scaled version of y;®(x;). Then, w is scaled and
possibly projected back to |Jw|| < B. The actual up-
date performed at each iteration is thus very similar to
that of the SBP. The main difference is that in Pega-
sos and related SGD approaches, examples are picked
uniformly at random, unlike the SBP which samples
from the set of violating examples.

In a linear SVM, where ®(x;) € R¢ are given ex-
plicitly, each Pegasos (or SGD on L(w)) iteration is
extremely simple and requires runtime which is lin-
ear in the dimensionality of ®(z;). A SBP update
would require calculating and referring to all O(n) re-
sponses. However, with access only to kernel evalua-
tions, even a Pegasos-type update requires either con-
sidering all support vectors, or alternatively updating
all responses, and might also take O(n) time, just like
the much “smarter” SBP step.

To understand the learning runtime of such methods
in the kernel setting, recall that SGD converges to an
e-accurate solution of the optimization problem after
at most ||ul|® /€2 iterations. Therefore, the overall run-
time is 7 ||u||* /e2. Combining this with Equation 3.5
yields that the runtime requires by SGD to achieve
a learning accuracy of € is O (((E* +e)/e) ||ul* /63).

When e = Q(L*), this scales as 1/ compared with
the 1/e scaling for the SBP (see also Table 1).

4.3. Dual Decomposition Methods

Many of the most popular packages for optimiz-
ing kernel SVMs, including LIBSVM (Chang & Lin,
2001) and SVM-Light (Joachims, 1998), use dual-
decomposition approaches. This family of algorithms
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works on the dual of the scalarization 2.2, given by:

max
aE[O,ﬁ]"

n 1 n
Zai D) Z aiojyiy; K (zi, z5)  (4.1)
i=1

,5=1

and proceed by iteratively choosing a small working
set of dual variables «;, and then optimizing over these
variables while holding all other dual variables fixed.
At an extreme, SMO (Platt, 1998) uses a working set
of the smallest possible size (two in problems with an
unregularized bias, one in problems without). Most
dual decomposition approaches rely on having access
to all the responses ¢; (as in the SBP), and employ
some heuristic to select variables a; that are likely to
enable a significant increase in the dual objective.

On an objective without an unregularized bias the
structure of SMO is similar to the SBP: the responses
¢; are used to choose a single point j in the training
set, then «; is updated, and finally the responses are
updated accordingly. There are two important differ-
ences, though: how the training example to update is
chosen, and how the change in «; is performed.

SMO updates a; so as to exactly optimize the dual
Problem 4.1, while the SBP takes a step along o; so
as to improve the primal Problem 2.3. Dual feasibility
is not maintained, so the SBP has more freedom to use
large coefficients on a few support vectors, potentially
resulting in sparser solutions.

The use of heuristics to choose the training example to
update makes SMO very difficult to analyze. Although
it is known to converge linearly after some number of
iterations (Chen et al., 2006), the number of itera-
tions required to reach this phase can be very large
(see a detailed discussion in Appendix E). To the best
of our knowledge, the most satisfying analysis for a
dual decomposition method is the one given in Hush
et al. (2006). In terms of learning runtime, this analy-

sis yields a runtime of O (((ﬁ(u) +¢) /) ||ul* /62) to
guarantee Lo/ (w) < L(u) +e. When e = Q(L*), this

runtime scales as 1/€2, compared with the 1/e guaran-
tee for the SBP.

4.4. Stochastic Dual Coordinate Ascent

Another variant of the dual decomposition approach
is to choose a single a; randomly at each iteration and
update it so as to optimize Equation 4.1 (Hsieh et al.,
2008). The advantage here is that we do not need to
use all of the responses at each iteration, so that if it is
easy to calculate responses on-demand, as in the case
of linear SVMs, each SDCA iteration can be calculated
in time O(d) (Hsieh et al., 2008). In a sense, SDCA
relates to SMO in a similar fashion that Pegasos re-

lates to the SBP: SDCA and Pegasos are preferable on
linear SVMs since they choose working points at ran-
dom; SMO and the SBP choose working points based
on more information (namely, the responses), which
are unnecessarily expensive to compute in the linear
case, but, as discussed earlier, are essentially “free”
in kernelized implementations. Pegasos and the SBP
both work on the primal (though on different scalar-
izations), while SMO and SDCA work on the dual and
maintain dual feasibility.

The current best analysis of the runtime of SDCA is
not satisfying, and yields the bound n/\e on the num-
ber of iterations, which is a factor of n larger than the
bound for Pegasos. Since the cost of each iteration is
the same, this yields a significantly worse guarantee.
We do not know if a better guarantee can be derived
for SDCA. See a detailed discussion in Appendix E.

4.5. The Online Perceptron

We have so far considered only the problem of opti-
mizing the bi-criterion SVM objective of Problem 2.1.
However, because the online Perceptron achieves the
same form of learning guarantee (despite not optimiz-
ing the bi-criterion objective), it is reasonable to con-
sider it, as well.

The online Perceptron makes a single pass over the
training set. At each iteration, if w errs on the
point under consideration (i.e. y; (w, ®(x;)) < 0), then
y;®(z;) is added into w. Let M be the number of
mistakes made by the Perceptron on the sequence of
examples. Support vectors are added only when a mis-
take is made, and so each iteration of the Perceptron
involves at most M kernel evaluations. The total run-
time is therefore Mn.

While the Perceptron is an online learning algorithm,
it can also be used for obtaining guarantees on the
generalization error using an online-to-batch conver-
sion (e.g. (Cesa-Bianchi et al., 2001)).

From a bound on the number of mistakes M (e.g.
Shalev-Shwartz (2007, Corollary 5)), it is possible to
show that the expected number of mistakes the Percep-
tron makes is upper bounded by nL(u)+||ul| /nL(u)+
[u]?. This implies that the total runtime required
by the Perceptron to achieve Lo/ (w) < L(u) + € is
0 (((C(u) +¢) /) [|ul* /e) This is of the same or-
der as the bound we have derived for SBP. However,
the Perceptron does not converge to a Pareto optimal
solution to the bi-criterion Problem 2.1, and there-
fore cannot be considered a SVM optimization proce-
dure. Furthermore, the online Perceptron generaliza-
tion analysis relies on an “online-to-batch” conversion
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technique (e.g. (Cesa-Bianchi et al., 2001)), and is
therefore valid only for a single pass over the data. If
we attempt to run the Perceptron for multiple passes,
then it might begin to overfit uncontrollably. Although
the worst-case theoretical guarantee obtained after a
single pass is indeed similar to that for an optimum of
the SVM objective, in practice an optimum of the em-
pirical SVM optimization problem does seem to have
significantly better generalization performance.

5. Experiments

We compared the SBP to other SVM optimization ap-
proaches on the datasets in Table 2. We compared to
Pegasos (Shalev-Shwartz et al., 2011), SDCA (Hsieh
et al., 2008), and SMO (Platt, 1998) with a second
order heuristic for working point selection (Fan et al.,
2005). These approaches work on the regularized for-
mulation of Problem 2.2 or its dual (Problem 4.1). To
enable comparison, the parameter v for the SBP was
derived from A as ||0*||v = L 3" 0 (y; (w*, @ (2;))),
where @* is the known (to us) optimum.

We first compared the methods on a SVM formula-
tion without an unregularized bias, since Pegasos and
SDCA do not naturally handle one. So that this
comparison would be implementation-independent, we
measure performance in terms of the number of ker-
nel evaluations. As can be seen in Figure 2, the SBP
outperforms Pegasos and SDCA, as predicted by the
upper bounds. The SMO algorithm has a dramatically
different performance profile, in line with the known
analysis: it makes relatively little progress, in terms
of generalization error, until it reaches a certain criti-
cal point, after which it converges rapidly. Unlike the
other methods, terminating SMO early in order to ob-
tain a cruder solution does not appear to be advisable.

We also compared to the online Perceptron algorithm.
Although use of the Perceptron is justified for non-
separable data only if run for a single pass over the
training set, we did continue running for multiple
passes. The Perceptron’s generalization performance
is similar to that of the SBP for the first epoch, but
the SBP continues improving over additional passes.
As discussed in Section 4.5, the Perceptron is unsafe
and might overfit after the first epoch, an effect which
is clearly visible on the Adult dataset.

To give a sense of actual runtime, we compared our im-
plementation of the SBP? to the SVM package LIB-
SVM, running on an Intel E7500 processor. We al-
lowed an unregularized bias (since that is what LIB-

2Source code is available from http://ttic.uchicago.
edu/~cotter/projects/SBP

SVM uses), and used the parameters in Table 2. For
these experiments, we replaced the Reuters dataset
with the version of the Forest dataset used by Nguyen
et al. (2010), using their parameters. LIBSVM con-
verged to a solution with 14.9% error in 195s on Adult,
0.44% in 1980s on MNIST, and 1.8% in 35 hours on
Forest. In one-quarter of each of these runtimes, SBP
obtained 15.0% error on Adult, 0.46% on MNIST, and
1.6% on Forest. These results of course depend heavily
on the specific stopping criterion used.

6. Summary and Discussion

The Stochastic Batch Perceptron is a novel approach
for training kernelized SVMs. The SBP fares well
empirically, and, as summarized in Table 1, our run-
time guarantee for the SBP is the best of any existing
guarantee for kernelized SVM training. An interesting
open question is whether this runtime is optimal, i.e.
whether any algorithm relying only on black-box ker-

nel accesses must perform (((E* +6)/e)3 ||ull? /e)
kernel evaluations.

As with other stochastic gradient methods, deciding
when to terminate SBP optimization is an open issue.
The most practical approach seems to be to terminate
when a holdout error stabilizes. We should note that
even for methods where the duality gap can be used
(e.g. SMO), this criterion is often too strict, and the
use of cruder criteria may improve training time.
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