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Abstract

Latent force models (LFMs) are flexible
models that combine mechanistic modelling
principles (i.e., physical models) with non-
parametric data-driven components. Sev-
eral key applications of LFMs need non-
linearities, which results in analytically in-
tractable inference. In this work we show how
non-linear LFMs can be represented as non-
linear white noise driven state-space models
and present an efficient non-linear Kalman
filtering and smoothing based method for
approximate state and parameter inference.
We illustrate the performance of the pro-
posed methodology via two simulated exam-
ples, and apply it to a real-world problem of
long-term prediction of GPS satellite orbits.

1. Introduction

Gaussian processes (GPs) are stochastic processes,
which are commonly used for representing uncertain-
ties of dynamic systems in many applications such as
tracking, navigation and automatic control systems
(Jazwinski, 1970; Bar-Shalom et al., 2001; Grewal &
Andrews, 2001; Maybeck, 1982). In these applica-
tions, the Gaussian processes are typically white, and
the processes are used as stochastic inputs in physical
models such as driving forces of mechanical systems
described in terms of ordinary differential equations
(ODEs).
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In a machine learning context, Gaussian processes
(Rasmussen & Williams, 2006) are used as non-
parametric models for unknown functions. Prior in-
formation on the smoothness and other properties of
the model functions is encoded into the covariance
function of the Gaussian process. Recently, Alvarez
et al. (2009) introduced the idea of using Gaussian
processes as non-parametric models for unknown in-
put functions in physical models, which are formulated
as differential equations (e.g. ODEs). As opposed to
the classical models used in tracking, navigation and
control applications, in this latent force model (LFM)
approach, the input functions are not modeled as white
noise processes, but instead their covariance structure
is selected according to the machine learning approach,
where the covariance structure is written in terms of
unknown parameters that are estimated from data.

In this paper we show how non-linear latent force
models can be represented as non-linear white noise
driven state-space models, that is, partially ob-
served non-linear stochastic differential equations
(SDEs Jazwinski, 1970; Grewal & Andrews, 2001;
(Oksendal, 2003) and show how recently developed
efficient non-linear Kalman filtering and smoothing
based methods (Séarkka, 2007; Singer, 2008; Sarkké,
2010; Arasaratnam et al., 2010; Singer, 2011; Sarkka
& Sarmavuori, 2012) can be used for inferring the
state and parameters of these models. We com-
pare the performance of the method to previously
proposed Laplace-approximation and Markov chain
Monte Carlo (MCMC) solutions (Lawrence et al.,
2006; Titsias et al., 2009). The key advantages of the
proposed approach over the previous ones is that i)
its computational scaling is linear in the number of
time steps and ii) it naturally handles stochasticity
and non-linearity of the physical model.
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Our main motivation for the proposed approach stems
from an important real-world problem of long-term
prediction of GPS satellite orbits (Seppénen et al.,
2012). We show how the accuracy of orbit predic-
tion can be improved by nonparametrically modelling
forces unexplained by a deterministic non-linear phys-
ical orbit model.

2. Latent Force Models

Latent force models (LFMs) (Alvarez et al., 2009) are
a relatively new modeling approach, combining mech-
anistic modeling principles (i.e., physical models) with
non-parametric data-driven components. They have
been successfully employed, for example, in ranked
prediction of transcription factors (Honkela et al.). For
instance, Lawrence et al. (2006) modelled the time-
dependent expression levels {z;()}}_, of N genes with
a system of first order ODEs

R
=Bj+Y _ Sjrg;(ur(t))=Djz;(t), j=1,...,N

r=1

(1)
where the driving processes {u,(t)}2_; (represent-
ing the transcription factors, TFs) were given in-
dependent Gaussian process (GP) priors u,(t) ~
GP(m(t), ky, (t,t)), r = 1,..., R, where m(t) and
ky, (t,t") were suitably chosen mean and covariance
functions.

da; (t)
dt

If the functions g;(-) are linear, the model (1) is an
instance of a linear latent force model. In such cases
(see paper by Alvarez et al., 2009, for examples) the
posterior inference on z;(t) and wu,(t) is based on
closed form computation of the covariance functions of
x(t), dx;(t)/dt and all the required cross covariances
by solving the differential equation and then utilizing
standard GP regression techniques.

However, in the case of non-linear g;(-) (such as
gj(u(t)) = e*®) | ensuring the positivity of the forces
effect) the ODE becomes non-linear. The standard GP
techniques cannot anymore be applied since the needed
covariance terms are analytically intractable. Infer-
ence in these models has been previously performed
mainly by the Laplace method (Lawrence et al., 2006)
and Markov chain Monte Carlo (MCMC) (Titsias
et al., 2009). A severe limitation of these approaches
is that they are based on the assumption that the like-
lihood of data can be written as an explicit function
of the latent force process u(t) which can be evaluated
(either approximately or exactly) in a computationally
feasible manner.

3. SDE View of Latent Force Models

As discussed by Hartikainen & Sarkka (2010), GPs
with certain stationary covariance functions (includ-
ing the Matérn class) can be represented as solu-
tions to linear time-invariant (LTI) SDEs (Qksendal,
2003). That is, we can formulate the GP priors on the
r =1,..., R components of u(t) = (ui(t)...ug(t))?
as multivariate LTI SDEs of form

dz,(t) =F,, z.(t)dt + L, . df, - (t) (2)
where z,(t) = (u,(t) dul;t(t) dd;;dtﬁrl(t))T and
0 1 0
Fz,r - - ,Lz,r — .
0 1 0
—a) o el —ap! ar

This dynamic model on w,(t) corresponds to a GP
prior with a certain stationary covariance function
when the coefficients a?,...,aP~1, the diffusion con-
stant ¢, and the dimensionality p, of z,(t) are chosen
appropriately.

Using this view on GP priors, the conversion of lin-
ear latent force models into linear-Gaussian state-
space models was recently considered by Hartikainen
& Séarkkéa (2011). In this paper, we consider conversion
of non-linear latent force models into non-linear state-
space models. Analogously to the linear case, a general
non-linear latent force model can be formulated as a
continuous-discrete system of form

dx(t) = £(x(t),u(t),t) dt,
dz,(t) =F,,z,(t)dt + L, dB,,(t), r=1,...,R

where x(t) € RM is the state (M being the number
of state components needed in representing the out-
put processes {x;(t)}}_, in a vector form), u(t) € R¥
the latent force processes and f(-) the dynamic model
function of output process x(t).

We can further simplify the notation by construct-
ing an augmented system with state x,(t) compris-
ing of the output process and latent forces as x,(t) =
(x(t),21(t),...,zr(t))T with dynamics

dxq(t) = (x4 (8),t) dt + Lo (x4(t),t) dBa(t).  (3)

In the context of stochastic processes and filtering the-
ory, the dynamic model function f, is called the drift
function and L, the dispersion matriz weighting the
R-dimensional Brownian motion 8,(¢) with diffusion
matrix Q. Note that within this framework the model
for x(t) does not need to be deterministic given u(t).
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To complete the model specification we assume that
observations at discrete time instants ¢, ...,tr can be
modeled as

yk:hk(xa(tk))—f—rk, k=1,...,T (4)

where h(-) is the measurement model function, y; €
NP is the measurement at time t; and rp ~ N(0, Ry,)
is the measurement noise.

4. Filtering and Smoothing of SDEs

Given continuous-discrete system of the form

dx(t) = f(x(t),t) dt + L(x(¢),t)dB(t) (5)
vi =hp(x(t)) + 1, k=1,....T

our aim is now to infer the filtering and smoothing

distributions of the state x(t) at a time instant ¢:

p(X(t)|YI:k)v te [tkv tk+1) (6)

and
p(X(t)‘yliT)’ te [to)tT]v (7)

where y;.; is a shorthand notation for {y,...,y:}.
In general, this is a difficult task that has been well
studied in the field of stochastics and filtering theory
(Jazwinski, 1970). The formal Bayesian continuous-
discrete filter consists of separate prediction and up-
date steps (Jazwinski, 1970), which are recursively it-
erated forward in time. On the prediction step we solve
the probability density p(x(t;)|y1.x—1) of the state at
time tx, and on the update step, we use the Bayes’
rule to update the density with latest observation as
p(x(tr)ly1k) o< p(yelx(te))p(x(tk)|y1:6-1). The pre-
diction density p(x(tx)|y1.x—1) must be solved from the
Fokker—Planck—Kolmogorov (FPK) partial differential
equation, which is analytically intractable in general.
Thus, to perform filtering and smoothing in practice
approximate solutions must be sought. In this article,
we consider Gaussian approximations for the filtering
and smoothing distributions.

In the following we review the main steps of the Gaus-
sian filtering and smoothing framework! which we con-
sider appropriate for the type of models considered
in this article. The general Gaussian filtering and
smoothing framework is classical (see, e.g., Jazwin-
ski, 1970; Maybeck, 1982), but here we utilize the re-
cently developed sigma-point methods (Sarkka, 2007;
Singer, 2008; Sarkké, 2010; Arasaratnam et al., 2010;
Sarkkd & Sarmavuori, 2012) for numerically solving

Matlab toolbox implementing the presented methods
can be found from http://becs.aalto.fi/en/research/
bayes/1fm/.

the general continuous-discrete Gaussian filtering and
smoothing equations. As shown by Singer (2011), the
Gaussian filtering framework can also used for efficient
evaluation of the likelihoods needed in parameter esti-
mation methods.

The filter works by recursively solving the following
set of equations for time steps k =1,...,T":

e Solve mean and covariance of the predicted distri-
bution p(x(t)|yi:x—1) = N(m(t, ), P(¢,)) by nu-
merically integrating the differential equations

dm

)
O = Bl — m)f (. 1)] + B, ) (x — m) ]

+E[L(x(t),t) QL(x(1), )],

where the expectations are taken with respect to
x ~ N(m(t),P(t)), and t,, denotes the time in-
stance ”infinitesimally before the time ¢;”.

e Compute the approximate filtering distribution
p(x(tr)|ly1x) = N(m(tx),P(tx)) via the update
(moment matching) equations

pr = Elhy(x)],
Sk = E[(hy (%) — ) (hy(x) — px) "]
Dy = E[(x — my) (hy (x) — )]
K = D;S;!
my; = m, + Ky, (yr — )
P, =P, - K;S:K}.
This is equivalent to the update step of a discrete-

time filter, with definitions m,, = m(t;), P, =
P(t;) and my £ m(tk.), Pk £ P(tk).

The approximate smoothing distributions
px(tlyrr) ~  Nix(t)lm® (), P*(t)) can be
obtained by recursively solving the following Kalman
smoothing like equations for k=T —1,...,1:

Grt1 = Crltrer1) P (t41)
m®(ty,) = m(ty) + Gryr [m*(tgy1) — m(ty, )]
P*(ty) = P(tr) + Gry1 [P (tht1) — Pt )] Gi i1,
where the cross covariance term C; can be shown

(Sérkkéd & Sarmavuori, 2012) to follow the differential
equation
dCy,

—E = G P B[ ) (x —m)")".

2These equations can be derived by applying the Ité
formula to the FPK (see, e.g., Jazwinski, 1970).
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This can be integrated alongside m(t) and P(¢) dur-
ing the filtering with negligible computation cost. An
important thing to note here is that the time steps t;
are not restricted to be the measurement time steps,
that is, we can calculate the smoothed estimates at any
time point inside the interval ¢ € [tg, tr]. On such steps
the update equations of the filter are simply skipped.

The expectations in the equations above are taken
over the approximating Gaussian distribution, and can
be numerically computed with sigma-point and cuba-
ture integration methods (see, Sarkka, 2007; Singer,
2008; Sarkké, 2010; Arasaratnam et al., 2010; Sarkka
& Sarmavuori, 2012). As was discussed by Singer
(2011), the Gaussian filter also computes approxi-
mations to the conditional measurement likelihoods
p(¥kly1k-1) = N(¥k|tk,Sk), which can be used in
marginal likelihood based parameter learning via the
factorization p(yi.7|0) = Hle p(Yk|y1:6-1,0), where
# denotes a vector of unknown parameters.

The weakness of the outlined inference scheme is that
it assumes that the state distributions are approxi-
mately Gaussian. An alternative way of performing
state inference would be to use a particle filter (Doucet
et al., 2001), which approximates the posterior with
sequential importance sampling. We could then use
particle MCMC methods (Andrieu et al., 2010) for es-
timating the unknown parameters. The difficulty in
using particle filters with SDEs is that when the state
transition density cannot be evaluated in closed form,
one is restricted to usage of the dynamic model as the
importance distribution (Andrieu et al., 2010), which
leads to inefficient sampling. Moreover, in the particle
filter we need to solve the SDE numerically between
the measurements for each sample separately, which is
computationally very demanding.

5. Simulated Experiments

This section illustrates the performance of the pro-
posed framework with two simulated examples.

5.1. Estimation of Transcription Factors

First we consider the TF model (1) with three differ-

eu(t)
Srew (sat-

(repression) and (iii)

ent non-linear functions: (i) g(u(t)) =
uration), (i) g(u(t)) = ﬁ
g(u(t)) = e*® (exponential). The drift model in this
case is linear and can thereby be solved approximately

as a function of u(t) (Lawrence et al., 2006), and thus
it is possible to implement Laplace and MCMC for it.

For each non-linear function we generated 100 state
trajectories for the time interval ¢ € [0, 15] by the TF

model (1) (N =3, R = 1) with the latent force having
a Matérn GP prior (v = 3/2). The model parame-
ters were randomly generated for each state trajectory
as B; ~ U(0,0.1), D; ~ U(0,2), A; ~ U(=0.1,0.1),
S; ~ U(0,1), and were treated as fixed and known
during the inference. For the saturation and repression
functions we used the parameters v € {0.1,0.5,1}. For
the GP prior we used the magnitude and length scale
parameters 02, = 1 and [ = 2. Given the state trajec-
tories we generated T' = 13 equally placed observations
for each of the N outputs with additive Gaussian noise
with variance o2 = 0.12.

Our aim is to estimate the trajectory of the latent
force given the generated observations. The estima-
tion results are listed in Table 1 for Laplace approx-
imation (LA), elliptical slice sampling (ESLS) (Mur-
ray et al., 2010) and a Gaussian continuous-discrete
filter /smoother (GFS) with moment matching per-
formed with the spherical cubature rule (Arasarat-
nam et al., 2010; Sarkka & Sarmavuori, 2012). With
Laplace and ESLS we approximated the integral in the
solution of the ODE by a Riemann sum with 363 grid
points, and with GFS we used the 4th order Runge—
Kutta method with 10 steps in integrating the moment
equations. With ESLS we drew 100000 samples for
u(t), of which first 5000 were discarded as burn-in.

With Laplace approximation we used Newton’s
method with a simple step size adjustment procedure
to find the mode. We excluded from the results all
the cases where the Newton’s method didn’t stop af-
ter pre-specified number of iterations (300), as well
as ones having RMSE (calculated over the 363 grid
points) greater than 3oy, with any method, as this was
taken to indicate that the method had diverged. The
typical computation times for the data sets considered
here were about 3 seconds with LA, 10 minutes with
ESLS and 8 seconds with GFS.

From the results we can see that ESLS provides con-
sistently good performance with all non-linear func-
tions. GFS performs equally well with saturation and
repression functions with all tested parameter config-
urations, but is slightly worse with the exponential
function compared to Laplace and ESLS. However,
Laplace had trouble in mode finding in several cases
with the exponential function. With saturation and
repression functions such problems were also present
when v € {0.1,0.5}, but with v = 1 Laplace performed
equally well with ESLS and GFS.

5.2. Tracking a Ballistic Target on Reentry

Next we consider tracking a ballistic target reenter-
ing the atmosphere with a sensor measuring the dis-
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Table 1. Results of the TF experiment. The table lists
the root mean square errors (RMSE) averaged over non-
diverged simulations with all the tested non-linearities and
methods, and the number of divergences (DIV). The results
are listed in form RMSE (DIV).

LA ESLS GFS
Saturation
v=0.1 1.758 (0)  0.737 (0) 0.720 (0)
v =0.5 0.737 (0) 0.484 (0) 0.483 (0)
vy=1 0.489 (0) 0.483 (0) 0.484 (0)
Repression
v=0.1 1.933 (40) 0.327 (0) 0.374 (0)
v =05 1.267 (1)  0.363 (0) 0.367 (0)
y=1 0.483 (0) 0.476 (0) 0.474 (0)
Exponential
0.300 (55) 0.290 (0) 0.358 (9)

tance to the target. In this example the drift and mea-
surement models are non-linear, rendering Laplace and
MCMC inapplicable for state inference. For simplic-
ity we consider only a one dimensional case (that is,
the target falls directly towards the ground), but the
approach works similarly in a general 3D setting.

The motion of the target is assumed to follow the equa-
tion (Li & Jilkov, 2001)

-l 2
dv a(r,v,t) + g + u(t) 0 qu] [dBv]’

where 7 is the altitude and v the velocity of the target.
We assume that the acceleration is caused by the drag
force a(r,v,t) = —aexp(—yr)v?, where the exponen-
tially decaying term models the air density, gravita-
tional force g = 9.8m/s? and an unknown force u(t),
which we assume to have a Matérn GP prior model
(v = 5/2,0m = 50m/s? 1 = 5s). The drag force pa-
rameter was set o = 4.49 x 1074, and the air density
scale to v = 1.49 x 10~*. The noise parameters were
set to ¢, = 50m/4/s and ¢, = 10(m/s)/+/s. The dis-

tance measurements were modeled as

Yk =/ s34 (sy = 1) + 1y,

where (s, s,) = (30km, 30m) is the position of the sen-
sor, and measurement noise has variance o2 = (30m)?.

Starting from state (rg, v9) = (65km, 3km/s), we simu-
lated the target trajectory on time interval ¢t € [0, 30s]
and generated 120 equally spaced measurements with
the model above. Inference was performed with the
Gaussian filtering and smoothing framework. We
treated the drag force parameter o and the GP pa-
rameters o, and [ as unknowns, which were deter-
mined by optimizing the marginal likelihood of data.

4
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Figure 1. Tracking a Ballistic Target on Reentry.
The panels (a), (b) and (c) show the smoothed estimates
of r(t), v(t) and wu(¢t) (dark gray lines denoting the mean
and light gray shade the 95% uncertainty) as well as the
true simulated ones (red lines). Panel (d) shows a MCMC
estimate of p(log(a)|y1.T).

Example results of estimating r(¢), v(¢) and u(t) with
optimized parameters are shown in panels (a), (b) and
(c) of Figure 1. We also ran a MCMC inference for the
unknown parameters using the negative log marginal
likelihood provided by the filter as the energy func-
tion. Panel (d) shows the samples obtained for log(a),
peaking around the true value (—7.7).

For comparison, we implemented also a particle filter
for this model. We used a stochastic Runge-Kutta
(strong order 1.5) to draw samples from the SDE. In
practice, it required about 50000 particles to reach
similar level of accuracy as with the Gaussing filter-
ing scheme. In CPU time this took about 15 minutes,
whereas Gaussian filtering takes only a few seconds.

6. GPS Satellite Orbit Prediction

As a real-world case study we consider the problem of
predicting the orbit of a GPS satellite. Accurate mod-
eling of the forces acting on a GPS satellite is needed
in a number of applications and real-time applications
require prediction of the orbit (Seppénen et al., 2012).

The equation of motion for the satellite can be written
as a (vector) Markov model

\4

g M = [a(r,w +ulr,v, 1)’

where a(r,t) is a deterministic model for the acceler-
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ation of the satellite, and u(r, v, t) represents acceler-
ation terms caused by unknown forces acting on the
satellite. Here, r and v represent the 3D position and
velocity vectors of the satellite in an inertial coordinate
system fixed to an arbitrary reference frame.

The deterministic acceleration of the motion model is
a(r, t) = ag + @moon + Asun + Asrp, (8)

where ag, amoon, asun and ag, are the accelerations

due to Earth’s gravitation, lunar gravitation, solar
b b

gravitation and solar radiation pressure, respectively.

When the asymmetrical mass distribution of the Earth
is taken into account, its gravity potential U can be
written in the form of the spherical harmonics expan-
sion (Montenbruck & Gill, 2005)
RE n )
(r) Pyum (sin o)

GME o0 n
=22
(onm cos(mA) + S sin(mA))] L (9)

Ulr, ) =

n=0m=0

Here the potential U is not only a function of satellite’s
radius 7, but also the longitude A and latitude ¢. The
constant Ry in this formula is the Earth’s radius and
the terms P, are the associated Legendre polynomi-
als of degree n and order m. The coefficients S,,,,, and
Chm are experimentally determined constants, whose
magnitude decreases very fast with increasing n and
m. Therefore, the potential can be approximated by
taking into account only the first few terms. We used
terms up to the degree and order 8. The acceleration
due to Earth gravitation can be computed as gradient
of the gravity potential U:

a, =R VU, (10)

where R is a suitable coordinate transformation ma-
trix. For more details, see Montenbruck & Gill (2005)
and Seppénen et al. (2012).

After Earth’s gravitation the next biggest acceleration
components in the satellite’s equation of motion are
caused by the gravitational forces of the Moon and
the Sun. When dealing with Earth centered refer-
ence frame one has to compute the acceleration of the
satellite in relation to the acceleration of the Earth.
To compute this relative acceleration of the satellite
caused by any celestial body, one can use the form

ep — T I'ch
ag, = GM ( _ ) , 11
o —tP  Trwl) (Y

where M is the mass of the celestial body, r¢p is its
position in the Earth centered inertial reference frame

and r is the position of the satellite in the same refer-
ence frame. Applying this formula to Moon and Sun
gives the accelarations ameon and ag,, in Equation (8).

The last acceleration component in Equation (8), the
solar radiation pressure, is a non-gravitational force
whose exact form is not very well known. The main
component of this force is pointing to the opposite di-
rection from Sun. Furthermore, the amplitude of this
force is almost constant, or the variations in the am-
plitude are rather small compared to its magnitude.
Based on this information we can add a rough model
for solar radiation pressure and later estimate the re-
maining parts of the force. The rough model is

AU?
T esun7 (12)

Agp = —
/rS'LlIl

where eq,, is a unit vector from satellite to Sun, AU
is the astronomical unit and rg,, is the distance from
satellite to Sun. The satellite-specific constant ampli-
tude « was batch estimated using half a year of posi-
tion data of the satellite.

6.1. Modeling the Unknown Forces

As the first step in the modeling we would like to get
a glimpse of what the unknown forces look like. To
do this we assume separate GP smoothness priors for
each component of u(r,v,t). Instead of placing the
GP priors directly on the inertial coordinate system
used in the integration, we place them on the radial,
tangential and normal components of a RTN coordi-
nate system with unit vectors

r rXxXv
€eRp = 7, er = ey X epR, ey = —.
[ x> v

Thus, the model for the unknown forces is

up(t)
u(r,v,t) =R(r,v) |ur(t) |,
’LLN(t)

where R(r,v) is a matrix transforming RTN coordi-
nates to the inertial coordinate system used in integra-
tion, and each of the latent forces ugr,ur and uy have
Matérn GP priors. Overall, the model can be writ-
ten in form (3), and thus be inferred with framework
presented in Section 4.

Examples of smoothed force trajectories for ten days
are shown as red lines in Figure 2. It is apparent that
the force trajectories exhibit almost periodic, or quasi-
periodic behavior, which can be utilized to improve
predictions when modelled appropriately.
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(a) ur(t)

5
Time [days]

(b) ur(t)

U

5
Time [days]

(c) un(t)

Figure 2. GPS Satellite Prediction: estimated latent
forces. Red lines show the smoothed forces in RTN coor-
dinates for 10 days with satellite 31. Dark gray lines denote
the mean estimate of the constructed quasi-periodic force
model and light gray the 95% uncertainty, when given the
smoothed forces of first 2 days as observations, after which
the model is used to predict the forces for the 8 rest days.

6.2. Quasi-Periodic Model for Latent Forces

To model the quasi-periodicities in the latent forces
we use a stochastic resonator model, which previously
has been used for modeling periodic phenomena in the
brain (Sarkké et al., 2012). We model the periodic
component as a superposition of resonators of the form

d%c, (1)

pra —(2mnf)%en(t) + wn(t), (13)

where the additive white noise components w, (t) have
spectral densities g,,. As shown by Sarkké et al. (2012),
this model can be written in state space form

dx(t) = Fx(t)dt + LdB(t)

u(t) = Hx(t) + b+ €(t), (14)

which is compatible with the framework presented in
this article. In Equation (14) we have also included a
bias term b (which could also be time-varying) as the
resonator model assumes the process to be zero-mean,
and a white noise component €(¢) with spectral density
ge to account for possible modeling errors.

6.3. Example Online Prediction Results

We now apply the constructed quasi-periodic latent
force model to predict the satellite orbit, and compare
the results to ones obtained with only the determinis-
tic model. We consider an online prediction scenario,
in which we observe the position and velocity of the
satellite on certain time intervals, and between these
intervals the models are used to provide predictions.
We use 30 days of position data (collected every 15
minutes) of satellite 31 from the beginning of January
2010. The regions of observed data are illustrated with
gray shades in Figure 3.

In the quasi-periodic latent force model we used 7 har-
monic components to model ug(t), ur(t) and 10 in
un(t). As the period we used a little less than one
day, which we observed to be a clear period in the esti-
mated latent forces. The rest of the model parameters
were optimized with respect to marginal likelihood, in
which the smoothed mean estimate given by a Matérn
GP model on a short time segment on the same satel-
lite were treated as observed data. For inference in
the actual GPS prediction with the latent force model
we used the Gaussian continuous-discrete filter with
the spherical cubature rule and moment integration
by 4th order Runge-Kutta method with 80 steps be-
tween each observation. With the deterministic model
the predictions were calculated by integrating the dy-
namics starting from the latest observation.

The errors in position estimates for both models are
shown in Figure 3. It is evident that the modeling
of periodicity reduces the position errors significantly.
For example, in this particular case the position er-
ror of LFM after 15 days was less than 10% of that
of the deterministic model. In fact, the amplitude of
error even decreases during some time intervals, which
might indicate the presence of some unexplained pe-
riodic forces acting on a longer time period. While
we have here reported the predictions only with one
satellite on a one-month time frame, the results are
promising and certainly warrant further research.

7. Conclusion

In this article we have shown how non-linear latent
force models can be represented as non-linear white
noise driven state-space models. The resulting repre-
sentation allows to apply efficient filtering and smooth-
ing algorithms for state and parameter inference. The
potential weakness of the approach is the underlying
Gaussian approximation to the state posterior, but as
we have shown there are many applications where the
approach works well. The advantage of the approach



State-Space Inference for Non-Linear Latent Force Models

Pos. error (m)

-250

0 5 10 20 25 30

Time [days]

(a) Position error with deterministic model

Pos. error (m)

0 5 10 15 20 25 30

Time [days]

(b) Position error with quasi-periodic latent force model

Figure 3. GPS Orbit Prediction: Errors in position
estimates. The Figure shows the errors in position esti-
mates in the inertial coordinate system with (a) the de-
terministic model and (b) the latent force model given the
data on shaded time intervals.

is that it is computationally light compared to, for
example, pure particle filtering and MCMC based ap-
proximations, whose computational requirements can
be infeasible for practical use.
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