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Abstract

We propose a non-convex training objective
for robust binary classification of data sets in
which label noise is present. The design is
guided by the intention of solving the result-
ing problem by adiabatic quantum optimiza-
tion. Two requirements are imposed by the
engineering constraints of existing quantum
hardware: training problems are formulated
as quadratic unconstrained binary optimiza-
tion; and model parameters are represented
as binary expansions of low bit-depth. In the
present work we validate this approach by us-
ing a heuristic classical solver as a stand-in
for quantum hardware. Testing on several
popular data sets and comparing with a num-
ber of existing losses we find substantial ad-
vantages in robustness as measured by test
error under increasing label noise. Robust-
ness is enabled by the non-convexity of our
hardware-compatible loss function, q-loss.

1. Introduction

In recent years machine learning researchers and prac-
titioners have been focusing on convex optimization
methods due to their computational advantages and
well understood mathematical properties. The many
successes of convexity-based algorithms are witnesses
to that. While it is easily recognized that allowing for
non-convex objectives opens up a plethora of possibili-
ties for better solutions to machine learning problems,
much of the contemporary research has deliberately
avoided them. The reason is the widely known fact
that non-convexity often results in NP-hard problems.

However this choice comes at a cost as the shortcom-
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ings of convex objectives are also well understood. Re-
cent work (Long & Servedio, 2010) showed that convex
loss functions cannot be made robust in the presence
of label noise because they cause unbounded growth of
penalties for large negative margins. (Manwani & Sas-
try, 2011) further characterized this effect by analyzing
various convex losses and found that none of them is
tolerant to non-uniform label noise. In practice label
noise turns out to be a serious problem due to the fact
that it affects real-world data sets to a significant de-
gree. Since label noise manifests itself throughout the
optimization as large negative margins, the finally con-
structed decision hyperplane that represents the global
minimum of any convex loss tends to be pulled by the
mislabeled training examples away from the minimizer
of classification error. Therefore, even though solving
convex losses to optimality is feasible, when label noise
causes the lowest objective value to not correspond to
the lowest attainable training error, the entire exer-
cise misses the mark. Consequently, any approach ex-
hibiting this problem does not stand to benefit from
improved optimization techniques.

Fig. 1 shows an example of the broken correspondence
between training error and objective value when a con-
vex loss is used in a training problem of practical
significance—“OCR in photos”. The human task of
tagging characters in photos of potentially poor qual-
ity is not easy, so the presence of mislabeled exam-
ples in the training set is not surprising. Even worse,
routinely used semi-automatic preparation of training
data is also contributing to mistakes. The problem
may gradually disappear for cleaner data sets, which
often happen to be the cases when convex losses pro-
duce excellent classifiers. Unfortunately the nature of
large-scale supervised learning does not permit elab-
orate quality assurance for data sets that are handed
out to training algorithms; accordingly label noise will
continue to pollute real-world data sets. Moreover fu-
ture intelligent systems will rely increasingly on weakly
labeled data, thus increasing the need for robustness.



Robust Classification with Adiabatic Quantum Optimization

3.61 3.62

5.95

6.03

6.1

3.61 3.62

5.9

6

6.1

3.52 3.53

3.6

3.8

4

3.62 3.63

5.8

5.9

6

1/Risk

T
ra

in
in

g
er

ro
r

(%
)

2.08 2.1 2.12
4.7

5

5.4

1/Risk

3.04 3.08 3.12

7.6

8

8.4

1/Risk

Figure 1. Relationship between training error and inverse
empirical risk produced by minimizing square loss on six
different binary classifiers for digits (e.g. ’1’ vs the rest,
’2’ vs the rest, etc.) The data (”OCR in photos”; 10200
dimensions; 38924 examples; 10 classes) represents a chal-
lenging real-world training problem of significant practical
importance. An adequate loss function should generally be
decreasing training error as the empirical risk approaches
global minimum (top plots). Unfortunately, the opposite
effect (bottom plots) can often be observed when working
with convex losses. The failures are found to be due to
two factors, both of which cause square loss to be drasti-
cally misled by its convexity: occasionally mistaken labels
resulting from the semi-automatic process generating the
data; and the presence of examples of one class that may
be similar to examples of another class (e.g. ’6’ and ’8’).

(Ding & Vishwanathan, 2010) and (Masnadi-Shirazi
et al., 2010) took these lessons and independently stud-
ied two different non-convex but seemingly well be-
haved types of loss functions. (Collobert et al., 2006;
Ertekin et al., 2011) also explored non-convexity in
the context of SVM with ramp loss, but their focus
was on achieving sparser sets of support vectors and
speed of training rather than improved accuracy and
robustness of the constructed classifier.

In the present work we continue the study of non-
convexity. We report on training with a non-convex
objective using discrete optimization in a formula-
tion adapted to take advantage of emerging hard-
ware that performs adiabatic quantum optimization
(AQO). AQO, first proposed in (Farhi et al., 2000), is
a quantum computing model with good prospects for
scalable and practically useful hardware implementa-
tion. Studies of its purported computational superior-
ity over classical computing have repeatedly given en-
couraging results, e.g. (Dickson & Amin, 2011). Sig-
nificant investments are underway by the Canadian
company D-Wave to develop a hardware implemen-
tation. A series of rigorous studies of the quantum
mechanical properties of the D-Wave processors, cul-
minating in a Nature article (Johnson et al., 2011),
have increased the excitement in the quantum com-
puting community for this approach. This was fur-
ther fueled by news of a successful collaboration with
Google (Neven et al., 2009a) and of Lockheed Martin

purchasing a D-Wave machine. For machine learning
purposes, D-Wave’s implementation of AQO can be re-
garded as a discrete optimization engine that accepts
any problems formulated as quadratic unconstrained
binary optimization (QUBO), also equivalent to the
Ising model and Weighted MAX-2-SAT. It should be
noted that this training formulation is a good for-
mat for AQO independently of D-Wave’s efforts since
it can be physically realized as the simplest possi-
ble multi-qubit configuration—an Ising system (Brush,
1967). We do not claim principled superiority of q-loss
over other non-convex losses. However q-loss is distin-
guished by the fact that it can be formulated for AQO
on quantum hardware that only supports quadratic
(2-local) interactions among its qubits. To the best of
our knowledge, no other non-convex loss has this prop-
erty1. While all other non-convex losses are tackled by
convex optimization with limited success, q-loss may
be solvable to optimality by AQO.

The paper is organized as follows: Section 2 defines
the training problem; Section 3 introduces q-loss, de-
rives its QUBO formulation, and discusses the intu-
ition behind it; Sections 4 and 5 deal with choosing
hyper-parameter values and discretization of variables;
Section 6 presents our experiments; and Section 7 con-
cludes with overview and discussion. Technical details
can be found in the Appendix of (Denchev et al., 2012).

2. Training a binary classifier

We study binary classifiers y = sign
(
wwwTxxx+ b

)
, where

xxx ∈ RN is an input pattern to be classified, y ∈ {−1, 1}
is the label associated with xxx, www ∈ RN is a vec-
tor of weights to be optimized, and b ∈ R is the
bias. Training, also known as regularized risk mini-
mization, consists of choosing www and b by simultane-
ously minimizing two terms: empirical risk R(www, b) =∑S
s=1 L (m (xxxs, ys,www, b)) /S and regularization Ω(www).

R, via a loss function L, estimates the error that any
candidate classifier causes over a set of S training ex-
amples {(xxxs, ys)|s = 1, . . . , S}. The argument of L is
known as the margin of example s with respect to the
decision hyperplane defined by www and b:

m (xxxs, ys,www, b) = ys
(
wwwTxxxs + b

)
(1)

Ω controls the complexity of the classifier and is nec-
essary for good generalization because classifiers with
high complexity display overfitting—they can classify
the training set with low error but may not do well on
previously unseen data. Training amounts to solving

(www, b)∗ = arg min
www,b
{R (www, b) + Ω (www)} . (2)

1Except for 0-1 loss (Neven et al., 2009b)
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A natural choice for L is 0-1 loss, which simply
indicates a misclassification for a negative margin:
L0-1(m) = (1− sign (m)) /2. Due to the non-convexity
of L0-1, the resulting optimization problem (2) is NP-
hard (Feldman et al., 2010). To avoid dealing with
NP-hard problems, in practice L0-1 is replaced by some
convex upper bound (e.g. square, logistic, exponen-
tial, hinge), and Ω is usually chosen as `1- or `2-norm
penalization of www. This allows arriving at convex opti-
mization problems that can be rigorously analyzed and
efficiently solved by classical means. However, such re-
laxations are known to compromise the original goal of
training because convex losses can be severely misled
by label noise in the training data.

3. q-loss

Because the quantum hardware natively represents a
general family of quadratic functions, the simplest loss
function that would work is square loss, which is a
convex upper bound to L0-1:

Lsquare(m) = (m− 1)
2

(3)

However, there are two drawbacks of square loss when
applied to binary classification. First, in binary clas-
sification it does not make sense to penalize large pos-
itive margins. Second, as mentioned earlier, square
loss has the same flaw as all convex losses—penalties
for large negative margins grow unboundedly, which
can cause non-robustness with respect to label noise.

With these considerations in mind, we modify square
loss in order to obtain a training formulation for binary
classification that is both compatible with quantum
hardware and robust to label noise. The resulting loss,
which we name q-loss (Fig. 2, top), is essentially a
doubly truncated version of (3) with parameterization
over q ∈ (−∞, 0] defined as follows:

Definition 1 (q-loss)

Lq(m) = min
(

(1− q)2 , (max (0, 1−m))
2
)

(4)

Unfortunately, (4) does not lead to a QUBO. However,
we can transform it into a problem that can be solved
as a QUBO. The basic idea is to find a variational
approximation via a family of quadratic functions that
upper-bound q-loss and are governed by a variational
parameter t ∈ R as shown in Fig. 2, middle.

Theorem 2 q-loss in (4) is equivalent to:

Lq (m) = min
t

{
(m− t)2 + (1− q)2 (1− sign (t− 1))

2

}
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Figure 2. Top: q-loss for different values of q. Middle: q-
loss with three members of the quadratic upper bounds
family. t ∈ R is the variational parameter. Bottom: Tran-
forming the y-axis for concavity.

Proof Since q-loss is non-convex, the standard deriva-
tion via convex duality (Jordan et al., 1999) dictates
that we first find a new coordinate system in which q-
loss is concave or convex. Then we calculate the con-
jugate function for linear bounds in the transformed
space and transform back to the original space where
the linear bounds become the quadratic bounds shown
in Fig. 2, middle. Because of the presence of two
constant segments in q-loss, any coordinate system
in which the two axes are independent transforma-
tions of the original x and y axes clearly cannot re-
sult in concavity or convexity. Thereby we are led
to the transformation f(y) = y − x2, which gives
f (Lq (m)) = Lq (m) − m2. It can be seen (Fig. 2,
bottom) that in this transformed space q-loss is con-
cave and the quadratic upper bounds become tangent
lines. The conjugate function in the transformed space
is g (η) = minm {ηm− f (Lq (m))}.

To minimize, we seek stationary points by differenti-
ating φ(η,m) = ηm− f(Lq(m)) with respect to m:

∂

∂m
φ (η,m) = η − d

dm
Lq (m) + 2m (5)

=

{
η + 2 for m ∈ (q, 1)

η + 2m for m ∈ (−∞, q) ∪ (1,∞) ,
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as yielded by piecewise differentiation of Lq(m). Set-
ting to 0 gives the stationary points

η = −2 for m ∈ (q, 1) (6)

m = −η/2 for m ∈ (−∞, q) ∪ (1,∞) . (7)

Plugging them back into the conjugate function yields

g (η) =


−η

2

4 − (1− q)2 for m ∈ (−∞, q)
−1 for m ∈ (q, 1)

−η
2

4 for m ∈ (1,∞)

= −η
2

4
− (1− q)2

(
1− sign

(
−η2 − 1

))
2

. (8)

In accordance with convex duality,

f (Lq (m)) = min
η
{ηm− g (η)} (9)

= min
η

{
ηm+

η2

4
+ (1− q)2

(
1− sign

(
−η2 − 1

))
2

}
.

Transforming back into the original space and setting
t = −η/2, the variational upper bound for q-loss is

Lq (m) = f−1 (f (Lq (m))) (10)

= min
t

{
(m− t)2 + (1− q)2 (1− sign (t− 1))

2

}

3.1. Latent variables view

Traditionally when facing non-convex optimization
problems, a viable approach is to introduce latent vari-
ables that allow reformulating over a simpler family of
functions. This is precisely what Theorem 2 achieves.
For any fixed m, the latent variable t ∈ R gives a con-
vex optimization problem whose minimum is Lq(m):

Lq (m) = h (m, t∗ (m)) , where (11)

t∗ (m) = arg min
t
{h (m, t)}

h (m, t) = (m− t)2 + (1− q)2 (1− sign (t− 1)) /2

The regularized risk minimization (2) with empirical
risk over Lq in the form (11) is amenable to a block
coordinate descent method for jointly optimizing the
model parameters (www, b) and the latent variables ts
for s = 1, . . . , S: similarly to EM, alternate between
convex optimization runs over the latent variables (t
step) and the model parameters (w step). Even though
such methods do well on some problems with certain
benign structure—e.g. Gaussian mixtures (Dempster
et al., 1977))—they are also known to fail on other
problems that lack such structure. We believe q-loss
belongs to the latter group and have verified that a
block coordinate descent method is likely to be sensi-
tive to initialization and is quickly terminating in bad

local minima. The intuitive reason is that due to the
quadratically growing penalty for mismatching a mar-
gin with its latent variable, the t step tends to lock
in the model parameters found during the previous w
step, thus possibly preventing the next w step from
moving to a different model. The impact of this effect
becomes ever more severe for large data with S >> N .

On the other hand, by transforming (4) into (11) we
have made training with q-loss representable in QUBO
form albeit at the expense of additional variables. Sec-
tion A of (Denchev et al., 2012) explicitly shows the
QUBO problem that can be derived from (11). Since
the goal of AQO is to perform global optimization si-
multaneously over all variables, we believe AQO is a
much better candidate for training with q-loss. Besides
making the QUBO formulation possible, the introduc-
tion of latent variables also gives rise to an intuitive in-
terpretation of the mechanism by which q-loss achieves
robustness when compared to the non-robustness of
square loss. While in (3) the fixed target 1 has to be
matched as closely as possible by m, in (11) t plays
the role of a flexible target that can change sign for a
large negative margin, thereby flagging that training
example as mislabeled. t∗(m) in (11) is:
• Case I: m ≥ 1 ⇒ t∗(m) = m
• Case II: q < m < 1 ⇒ t∗(m) = 1
• Case III: m ≤ q ⇒ t∗(m) = m

Case I ensures zero penalty for large positive margins;
Case II produces the same quadratic penalty as (3);
Case III can be seen as flipping the label of a possi-
bly mislabeled example but also incurring a constant
penalty of (1−q)2 in order to not lose connection with
the original labeling. Thus, the hyper-parameter q de-
fines the largest negative margin to be tolerated. A
training example that has a negative margin with some
larger magnitude gets flipped with constant penalty.

4. Bounding q

While it is difficult to formalize any general statements
about the computational hardness of q-loss, it is easily
recognized that the hardness depends on the size of the
parabolic segment controlled by q. For q → −∞, even
the negative margins of highest magnitude incur the
usual quadratic penalty, and the loss becomes effec-
tively convex. For smaller q the loss becomes similar
to 0-1 loss, so the resulting optimization problems may
be approaching the hardness of the corresponding 0-
1 loss problems. However, the most beneficial regime
of operation is not known a-priori. This necessitates
cross-validation over q, which, depending on the noise
level, we expect to result in some trade-off between
robustness and computational hardness. For the pur-
pose of choosing values for cross-validation, we give an
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approximate lower bound for q as a function of our
estimate of the underlying Bayes error in the data and
the label noise that we might artificially insert into the
training set for robustness evaluation.

Let the effective Bayes error be βeff ∈ [0, 0.5). This
should account both for the Bayes error β0 of the data
that we are given and the additional error ν ∈ [0, 0.5)
that we introduce by injecting label noise. Then if we
wish for the entire βeff portion of the training set to
be flagged by q-loss as mislabeled, the empirical risk
is R(www, b) ≥ βeff ∗ (1 − q)2. But we know the trivial
solution consisting of all 0 weights has R(000, 0) = 1.
Then we want βeff ∗ (1 − q)2 < 1, which, together
with q ∈ (−∞, 0], gives q ∈ (1− 1/

√
βeff , 0].

Usually we do not have β0, but we can obtain an em-
pirical estimate by training on the given data: βemp =
β0 + βopt + βgen, where βopt is the additional error
caused by imperfect optimization, and βgen represents
the generalization component of the overall test error.
Assuming βemp is sufficiently close to β0 and account-
ing for the artificially introduced label noise ν, we set
βeff = βemp − 2βempν + ν. The subtraction corrects
for originally bad examples that flip under ν.

5. Low-precision discrete variables

The quantum optimization processor that we aim to
deploy for solving q-loss requires problems to be dis-
crete and formulated as QUBO. Further, the current
hardware can handle a maximum of 512 binary vari-
ables, which imposes the additional requirement of be-
ing frugal with the bit-depth of weights. To that end
we discretize the elements of www to some low bit-depth
dw < 64. While this approach is somewhat unconven-
tional, (Neven et al., 2008) argued there is no funda-
mental reason why the weights should need high pre-
cision and in fact showed a favorable sufficiency condi-
tion of dw ≈ log(S/N) in the case of binary features.
Even though classifiers constructed out of more general
features have not been studied in this way, our experi-
ments provide support for using low-precision weights.

The reason for fixing at 1 the smallest positive margin
that yields zero penalty in q-loss is the same as in hinge
loss SVM (Bishop, 2006): any arbitrary rescaling of
the weights www → κwww and bias b→ κb does not change
the geometric distance ys

(
wwwTxxxs + b

)
/‖www‖ from a data

point (xxxs, ys) to the decision surface. Therefore, we
can assume a margin of 1 for the correctly classified
point that is closest to the decision surface. However,
this freedom of arbitrary rescaling becomes compli-
cated when the bit-depth of weights is lowered. We
want the intervals for weight variables to cover the
maximum magnitude that the interplay between mar-

gin enforcement and regularization may demand. On
the other hand, a loose interval decreases the effec-
tive precision in sub-intervals that may really matter.
Thus we derive a λ-dependent bound for setting the
intervals in which discrete weight variables take values.

Let F (www, b) = R(www, b) + λΩ(www) be the objective func-
tion. For q-loss, F (000, 0) = R(000, 0) = 1 and ∃ ŵww 3
F (000, 0) = λΩ(ŵww). Then,

F (ŵww, b) = R(ŵww, b) + λΩ(ŵww) ≥ λΩ(ŵww) = F (000, 0) (12)

Also, F (−ŵww, b) ≥ F (000, 0) because Ω(−ŵww) = Ω(ŵww).
Now consider any w̃ww 3 Ω(w̃ww) ≥ Ω(ŵww):

F (w̃ww, b) ≥ λΩ(w̃ww) ≥ λΩ(ŵww) = F (000, 0) (13)

Hence, F (w̃ww, b) ≥ F (ŵww, b) ≥ F (000, 0) and F (−w̃ww, b) ≥
F (−ŵww, b) ≥ F (000, 0). Thus, we can use Ω(ŵww) = 1/λ
to bound the intervals in which the weight variables
live while ensuring that the minimizer of F belongs to
these intervals. For `2-norm regularization, Ω(ŵww) =
‖ŵww‖2 ≥ ‖ŵww‖∞ = max(|ŵww|), so we train by optimizing
wj ∀j only in the interval [−Ω(ŵww),Ω(ŵww)].

The discrete optimization problem for training with
q-loss and `2-norm regularization is:

(ẇww, ḃ)∗ = arg min
ẇww,ḃ

{
1

S

S∑
s=1

Lq

(
ys(ẇww

Txxxs + ḃ)
)

+ λ‖ẇww‖2

}
,

(14)
where ẇww and ḃ are the discretizedwww and b, and λ ∈ R≥0
controls the relative importance of regularization.

6. Experimental evaluation

While prior work on non-convex losses applied var-
ious forms of convex optimization (Masnadi-Shirazi
et al., 2010; Yuille & Rangarajan, 2002; Liu et al.,
1989) hoping they can still be solved with somewhat
reasonable quality, we take the approach of directly
tackling the resulting problems by discrete optimiza-
tion. Admittedly, this choice makes the optimization
method largely oblivious to existing benign structure
and may cause us to face NP-hardness in certain situ-
ations. However, we do this for the purpose of being
compatible with emerging quantum hardware that can
be employed as a discrete optimization engine having
the potential to do well on such problems.

Quantum hardware was already successfully deployed
by (Neven et al., 2009a) on a large-scale training prob-
lem with square loss and `0-norm regularization. In
the present work on q-loss with `2-norm regularization,
we only verify the validity of our approach by using
Tabu search (Palubeckis, 2004) as a classical heuris-
tic stand-in and leave the quantum hardware to future
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work. A quantum optimization with q-loss is expected
to achieve in shorter time equal or better results than
our classical optimization setup. We do not report
CPU time comparisons because they are irrelevant in
the absence of quantum hardware runs.

In order to show robustness, we randomly flip train-
ing labels and observe the worsening of test error as
a function of increasing label noise. While prior work
on robust classification (Ding & Vishwanathan, 2010;
Collobert et al., 2006; Freund, 2009) considered uni-
form label noise, we note this does not adequately
capture the essence of the true mechanism by which
label noise trickles into real-world training tasks. In
fact, recent work (Manwani & Sastry, 2011) shows that
even convex losses can be robust under uniform noise.
Moreover, experience with practical applications con-
firms that the type of label noise that affects classifica-
tion accuracy is never independent of the underlying
data distribution. For example, if the human taggers
preparing training data for a computer vision appli-
cation receive somewhat inaccurate or ambiguous in-
structions affecting only one of the classes, the result-
ing label noise is strongly correlated with that class.
For this reason we move to a noise model in which
we introduce uniformly random flips only in the labels
of one class—here WLOG of the negative class—and
keep the labels of the other class clean. In the ex-
periments described below, the percentage label noise
refers to the probability with which we flip labels in
the negative portion of training data.

We conduct experiments on two synthetic and four
UCI data sets with data summary given in Section B of
(Denchev et al., 2012). The synthetic data sets (Long
& Servedio, 2010; Mease & Wyner, 2007) are designed
to provide stark distinction between robust and non-
robust losses. We compare the classification perfor-
mance of q-loss to seven other convex and non-convex
`2-regularized methods: liblinear (`2-loss primal SVM)
(Fan et al., 2008), t-logistic regression (Ding & Vish-
wanathan, 2010), smoothed hinge loss (Zhang et al.,
2010), logistic regression, square loss, sigmoid loss, and
probit loss (Bishop, 2006). For all methods except q-
loss and liblinear we use Petsc/Tao implementations
with convex optimization (Balay et al., 2011; Benson
et al., 2010). We do not compare against ramp loss
(Collobert et al., 2006), as (Ding & Vishwanathan,
2010) already attempted it in a similar setting on the
majority of data sets we use and were unable to pro-
duce any salient results. Not surprisingly, this is an ex-
ample of the inadequacy of convex optimization meth-
ods when applied to non-convex problems. Also, we do
not compare against 0-1 loss because it is not margin-
enforcing. It is well known that if minimized, 0-1 loss

yields the lowest possible training error, but due to the
lack of margin enforcement, generalization is bad even
when regularization is applied (Vapnik, 1998).

With all methods we perform a standard 10-fold cross-
validation procedure (Dietterich, 1998) for locating
appropriate values of parameters affecting generaliza-
tion. Fig. 3 presents the main results with an empha-
sis on the consistently superior performance of q-loss
across all data, especially at high levels of noise. We
have verified that often in the high noise cases Tabu
search fails to reach the lowest attainable objective
value. Therefore we believe we are looking precisely
at cases of computationally hard optimizations that
fail classically but may be solved successfully by quan-
tum means. We note sigmoid and probit are some-
times close competitors of q-loss but other times are
the worst performers. This can be explained by their
non-convexity, which gives them the potential for ro-
bustness, but makes them hard to optimize reliably.
However, unlike q-loss, we do not know of any AQO-
compatible formulations for probit and sigmoid.

q-loss allows identifying possibly mislabeled training
examples as the points with m ≤ q. We recorded the
points whose labels we flipped before training (injected
flips) and the points that q-loss flagged as mislabeled
(trained flips). Fig. 4 summarizes the overlaps between
these two sets. The sets of trained flips for covertype
and adult9 are expectedly larger due to the large Bayes
error of these data sets. (Denchev et al., 2012) pro-
vides details on cross-validated hyper-parameter val-
ues (Sections C and D) and statistical significance tests
for the observed error rates (Section E).

7. Conclusion

In this paper we introduced q-loss as a robust alter-
native to convex losses that suffer in the presence
of label noise. The QUBO format of the optimiza-
tion incorporating q-loss makes this version of training
an ideal candidate for applying emerging commercial
AQO technology as the optimization method of choice.
Moreover just by using a classical heuristic solver as
a stand-in for hardware-based AQO, we were already
able to show significant advantages in test error over a
rich variety of data sets and across a number of exist-
ing convex and non-convex losses. Our focus here was
on formulating a robust loss that can be made com-
patible with the engineering constraints imposed by
emerging quantum hardware. Since with other non-
convex losses there is no other choice but to resort
to often failing convex optimization, q-loss stands out
with its AQO compliance. This opens up new possibil-
ities for achieving results better than ever seen before.
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Figure 3. Test error vs label noise for 8 methods (see legend) on 2 synthetic data sets (Long-Servedio and Mease-Wyner)
and 4 UCI data sets (covertype, mushrooms, adult9, web8). Error bars are obtained from 10-fold cross-validation.

Given such encouraging results, we see great potential
for robust classification with q-loss under AQO.

Even though (11) is a QUBO, future work still needs
to address the fact that on large data sets this formu-
lation may result in a number of binary variables that
exceeds the available physical qubits. For that reason,
options for training via repeated optimization runs—
e.g. large neighborhood search—need to be studied.
By using suitable graph embedding techniques, we also
need to address the fact that not all quadratic in-
teractions between QUBO variables have correspond-
ing connections between qubits on the physical device.

Also, future work needs to investigate the asymptotic
scaling of the time necessary for optimizing q-loss with
AQO, similarly to how that was done for square loss in
(Neven et al., 2009b). An open question is whether the
derivation in Section 3 can be extended to expressing
a more general class of functions as QUBOs.
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Figure 4. Venn diagrams showing overlap between flips in-
jected in the data before training (injected flips) and flips
indicated by training with q-loss (trained flips). Orange
color shows portion of injected flips recovered by q-loss.
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