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Abstract

We study the problem of identifying botnets
and the IP addresses which they comprise,
based on the observation of a fraction of the
global email spam traffic. Observed mail-
ing campaigns constitute evidence for joint
botnet membership, they are represented by
cliques in the graph of all messages. No evi-
dence against an association of nodes is ever
available. We reduce the problem of identify-
ing botnets to a problem of finding a minimal
clustering of the graph of messages. We di-
rectly model the distribution of clusterings
given the input graph; this avoids potential
errors caused by distributional assumptions
of a generative model. We report on a case
study in which we evaluate the model by its
ability to predict the spam campaign that a
given IP address is going to participate in.

1. Introduction

We address the problem of identifying botnets that are
capable of exploiting the internet in a coordinated, dis-
tributed, and harmful manner. Botnets consist of com-
puters that have been infected with a software virus
which allows them to be controlled remotely by a bot-
net operator. Botnets are used primarily to dissemi-
nate email spam, to stage distributed denial-of-service
(DDoS) attacks, and to harvest personal information
from the users of infected computers (Stern, 2008).

Providers of computing, storage, and communication
services on the internet, law enforcement and prose-
cution are interested in identifying and tracking these
threats. An accurate model of the set of IP addresses
over which each existing botnet extends would make it
possible to protect services against distributed denial-
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of-service attacks by selectively denying service re-
quests from the nodes of the offending botnet.

Evaluating botnet models is difficult, because the
ground truth about the sets of IP addresses that con-
stitute each botnet at any given time is entirely un-
available (Dittrich & Dietrich, 2008). Many studies on
botnet identification conclude with an enumeration of
the conjectured number and size of botnets (Zhuang
et al., 2008). Reliable estimates of the current size
of one particular botnet require an in-depth analysis
of the communication protocol used by the network.
For instance, the size of the Storm botnet has been
assessed by issuing commands that require all active
nodes to respond (Holz et al., 2008). However, once
the communication protocol of a botnet is understood,
the botnet is usually taken down by law enforcement,
and one is again ignorant of the remaining botnets.

We develop an evaluation protocol that is guided by
the basic scientific principle that a model has to be
able to predict future observable events. We focus on
email spam campaigns which can easily be observed by
monitoring the stream of messages that reach an email
service provider. Our evaluation metric quantifies the
model’s ability to predict which email spam campaign
a given IP address is going to participate in.

Previous studies have employed clustering heuristics
to aggregate IP addresses that participated in joint
campaigns into conjectured botnets (Xie et al., 2008;
Zhuang et al., 2008). Because an IP address can be a
part of multiple botnets during an observation inter-
val, this approach is intrinsicaly inaccurate. The prob-
lem is furthermore complicated as it is possible that a
botnet processes multiple campaigns simultaneously,
and multiple botnets may be employed for large cam-
paigns. We possess very little background knowledge
about whether multiple networks, each of which has
been observed to act in a coordinated way, really form
one bigger, joint network. Also, distributional assump-
tions about the generation of the observable events are
very hard to motivate. We address this lack of prior
knowledge by directly modeling the conditional distri-
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bution of clusterings given the observable data, and
by searching for minimal clusterings that refrain from
merging networks as long as empirical evidence does
not render joint membership in a botnet likely.

Other studies have leveraged different types of data
in order to identify botnets. For example Mori et al.
(2010); DiBenedetto et al. (2010) record and cluster
fingerprints of the spam-sending hosts’ TCP behavior,
exploiting that most bot types use their own protocol
stacks with unique characteristics. Yu et al. (2010)
identify bot-generated search traffic from query and
click logs of a search engine by detecting shifts in
the query and click distributions compared to a back-
ground model. Another angle to detect bots is to mon-
itor traffic from a set of potentially infected hosts and
find clusters in their outgoing and incoming packets
(Gu et al., 2008; John et al., 2009); for example, DNS
requests of bots used to connect to control servers
(Choi et al., 2009) or IRC channel activity (Goebel
& Holz, 2007). The major difference here is that ac-
cess to all the traffic of the hosts is required, and thus
these methods only work for finding infected hosts in
a network under one’s control.

The rest of this paper is organized as follows. In Sec-
tion 2, we discuss our approach to evaluating botnet
models by predicting participation in spamming cam-
paigns. In Section 3, we establish the problem of min-
imal graph clustering, devise a probabilistic model of
the conditional distribution of clusterings given the
input graph, and derive a Gibbs sampler. Section 4
presents a case study that we carried out with an email
service provider. Section 5 concludes.

2. Problem Setting and Evaluation

The ground truth about the sets of IP addresses that
constitute each botnet is unavailable. Instead, we fo-
cus on the botnet model’s ability to predict observable
events. We consider email spam campaigns which are
one of the main activities that botnets are designed
for, and which we can easily observe by monitoring the
stream of emails that reach an email service provider.
Most spam emails are based on a campaign template
which is instantiated at random by the nodes of a bot-
net. Clustering tools can identify sets of messages that
are based on the same campaign template with a low
rate of errors (Haider & Scheffer, 2009). A single cam-
paign can be disseminated from the nodes of a single
botnet, but it is also possible that a botnet processes
multiple campaigns simultaneously, and multiple bot-
nets may be employed for large campaigns.

We formalize this setting as follows. Over a fixed pe-

riod of time, n messages are observed. An adjacency
matrix X of the graph of messages reflects evidence
that pairs of messages originate from the same bot-
net. An edge between nodes i and j—represented by
an entry of Xij = 1—is present if messages i and j
have been sent from the same IP address within the
fixed time slice, or if a campaign detection tool has
assigned the messages to the same campaign cluster.
Both types of evidence are uncertain, because IP ad-
dresses may have been reassigned within the time slice
and the campaign detection tool may incur errors. The
absence of an edge is only very weak and unreliable ev-
idence against joint botnet membership, because the
chance of not observing a link between nodes that are
really part of the same botnet is strongly dependent
on the observation process.

The main part of this paper will address the problem of
inferring a reflexive, symmetric edge selector matrix Y
in which entries of Yij = 1 indicate that the messages
represented by nodes i and j originate from the same
botnet. The transitive closure Y + of matrix Y defines
a clustering CY of the nodes. The clustering places
each set of nodes that are connected to one another by
the transitive closure Y + in one cluster; the clustering
is the union of clusters:

CY =
⋃n

i=1
{{j : Y +

ij = +1}}. (1)

Because Y + is reflexive, symmetric and transitive,
it partitions all nodes into disjoint clusters; that is,
c∩ c′ = ∅ for all c, c′ ∈ CY , and

⋃
c∈CY

c = {1, . . . , n}.

An unknown process generates future messages which
are characterized by two observable and one latent
variable. Let the multinomial random variables s indi-
cate the campaign cluster of a newly received message,
a indicate the IP address, and let latent variable c indi-
cate the originating cluster, associated with a botnet.
We quantify the ability of a model CY to predict the
observable variable s of a message given a in terms of
the likelihood

P (s|a,CY ) =
∑

c
P (s|c, CY )P (c|a,CY ). (2)

Equation 2 assumes that the distribution over cam-
paigns is conditionally independent of the IP address
given the botnet; that is, botnet membership alone
determines the distribution over campaigns.

Multinomial distribution P (s|c, CY ) quantifies the
likelihood of campaign s within the botnet c. It can
be estimated easily on training data because model CY

fixes the botnet membership of each message. Multi-
nomial distribution P (c|a,CY ) quantifies the probabil-
ity that IP address a is part of botnet c given model
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CY . Model CY assigns each node—that is, message—
to a botnet. However, an address can be observed
multiple times within the fixed time slice, and the bot-
net membership can change withing the time interval.
Hence, a multinomial distribution P (c|a,CY ) has to
be estimated for each address a on the training data,
based on the model CY . Note that at application time,
P (c|a,CY ) and hence the right hand side of Equation
2 can only be determined for addresses a that occur in
the training data on which CY has been inferred.

3. Minimal Graph Clustering

Let X be the adjacency matrix of the input graph with
n nodes. Entries of Xij = 1 indicate an edge between
nodes i and j which constitutes uncertain evidence for
joint membership of these nodes in a botnet. The in-
put matrix is assumed to be reflexive (Xii = 1 for
all i), and symmetric (Xij = Xji).

The outcome of the clustering process is represented by
a reflexive, symmetric edge selector matrix Y in which
entries of Yij = 1 indicate that nodes i and j are as-
signed to the same cluster, which indicates that the
messages originate from the same botnet. The tran-
sitive closure Y + of matrix Y defines a clustering CY

of the nodes according to Equation 1. Intuitively, the
input matrix X can be thought of as data, whereas
output matrix Y should be thought of as the model
that encodes a clustering of the nodes. A trivial base-
line would be to use X itself as edge selector matrix
Y . In our application, this would typically lead to all
messages being grouped in one single cluster.

No prior knowledge is available on associations be-
tween botnets in the absence of empirical evidence.
If the adjacency matrix X does not contain evidence
that links nodes i and j, there is no justification for
grouping them into the same cluster. This is reflected
in the concept of a minimal edge selector matrix.

Definition 1. A selector matrix Y and, equivalently,
the corresponding graph clustering CY , is minimal
with respect to adjacency matrix X if it satisfies

Y = Y + ◦X, (3)

where (Y + ◦ X)ij = Y +
ij Xij is the Hadamard product

that gives the intersection of the edges of Y + and X.

Intuitively, for every pair of nodes that are connected
by the adjacency matrix, selector matrix Y decides
whether they are assigned into the same cluster. Nodes
that are not connected by the adjacency matrix X
must not be linked by Y , but can still end up in the
same cluster if they are connected by the transitive

closure Y +. Equation 3 also ensures that the transi-
tive closure Y + does not differ from Y for any pair of
nodes i, j that are connected by the adjacency matrix.
This enforces that no two different minimal selector
matrices have the same transitive closures and there-
fore induce identical clusterings, which would inflate
the search space.

3.1. Probabilistic Model

This section derives a probabilistic model for the min-
imal graph clustering problem. Its most salient prop-
erty is that it is not based on a generative model of
the graph, but instead directly models the conditional
probability of the clustering given the adjacency ma-
trix X. This circumnavigates systematic errors caused
by inaccurate distributional assumptions for the gen-
eration of the adjacency matrix X.

We define the posterior distribution over all reflexive
and symmetric matrices Y that are minimal with re-
spect to X.

Definition 2. Let X ∈ {0, 1}n×n be a reflexive and
symmetric adjacency matrix. Then, YX ⊆ {0, 1}n×n
is the set of matrices that are reflexive, symmetric, and
minimal with respect to X.

In our application, each node is an element of at most
two cliques because each message is connected to all
other messages that have been sent from the same IP
address, and to all other messages that match the same
campaign template. If a template or an address has
been observed only once, either of these cliques may
resolve to just the node itself. Let QX denote the
set of cliques in X, and let Cq

Y be the projection of
clustering CY to the elements of q ∈ QX . Within
each clique q ∈ QX , any clustering Cq

Y is minimal
with respect to X because Xij = 1 for all i, j ∈ q,
and therefore any reflexive, symmetric, and transitive
clustering of q is possible. We model the probability
distribution over clusterings of each clique q ∈ QX as a
Chinese Restaurant process (Pitman & Picard, 2006)
with concentration parameter αq > 0:

P (Cq
Y |αq, nq) = α

|Cq
Y |

q
Γ(αq)

Γ(αq + nq)

∏
c∈Cq

Y

Γ(|c|). (4)

Equation 5 now defines the distribution over all par-
tition matrices Y ∈ YX as a product over all cliques
in QX , where the clique specific concentration param-
eters are collected into α = {αq : q ∈ QX}.

P (CY |X,α) ∝

{ ∏
q∈QX

P (Cq
Y |αq, nq) if Y ∈ YX

0 otherwise
(5)
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Equation 5 can be seen in analogy to the factoriza-
tion of the posterior over cliques in conditional ran-
dom fields. However, because the minimality property
has non-local effects on the possible values that edges
can assume, this factorization is not equivalent to the
assumption of the Markov property on which the fac-
torization theorem for random fields is based (Ham-
mersley & Clifford, 1971).

Normalization of Equation 5 is computationally in-
tractable because it requires the enumeration of the
elements of YX . However, the Gibbs sampler that we
will derive in the following only has to normalize over
all values of the random variables that are reassigned
in each step of the sampling process.

3.2. Inference

Computing the posterior distribution P (CY |X,α) is
a generalization of the inference problem for conven-
tional Chinese Restaurant process models. When all
entries of X are one, the graph has only one clique and
the special case of a Chinese Restaurant process is ob-
tained. In this case, depending on the concentration
parameter, the outcome may be one single cluster of
all nodes. Maximization of the posterior as well as full
Bayesian inference are intractable even for this special
case because of the non-convexity of the posterior and
the exponential number of possible clusterings. Hence,
in this section we describe a Gibbs sampler that gen-
erates unbiased samples from the posterior.

Algorithm 1 Assignment space YY
i for Gibbs sampler

Input: Current partitioning matrix Y
1: let q1, . . . , qk be the cliques with element i
2: let Yi = ∅
3: for all combinations c1 ∈ Cq1

Y ∪ {{i}}, . . . ,
ck ∈ Cqk

Y ∪ {{i}} do
4: let Y ′−i = Y−i
5: let Y ′il = Y ′li = 1 if and only if l ∈ cj for any j
6: if (Y ′−i)

+ = Y ′−i then
7: add Y ′ to YY

i

8: else
9: discard Y ′

10: end if
11: end for
Return: YY

i , all reflexive, symmetric, minimal parti-
tioning matrices derived from Y by reassigning Yi.

Gibbs samplers divide the set of random variables into
smaller subsets and iteratively draw new values for one
subset given the values of the remaining variables. For
the observations to form an unbiased sample, the ran-
dom variables have to be partitioned such that the

sequence of assignments formes an ergodic Markov
chain; that is, each state has to be reachable from each
other state. In our case, perhaps the most obvious-
seeming approach would be to factor the posterior over
individual edges. However, since many matrices Y vi-
olate the minimality condition, the chain of alterations
of single matrix entries would not in general be ergodic.

Therefore, we devise a sampling algorithm that jointly
samples the i-th row and column (the i-th row and
column are identical because Y is symmetric). Let Y ′i
refer to the i-th row and column of the new matrix
Y ′, and let Y ′−i = Y−i refer to the remaining matrix
entries, such that Y ′ = Y ′i ∪ Y ′−i. Equation 6 expands
the definition of the conditional probability; Equation
7 factorizes over the cliques, according to Equation 5.
Equation 8 omits all terms that are constant in Y ′i :
the denominator, and all cliques in which node i does
not occur. Normalization of the right hand side of
Equation 8 is now over all values for Y ′i that render Y ′

reflexive, symmetric, and minimal with respect to X.

P (Y ′i |Y−i, X,α) =
P (Y ′i , Y

′
−i|X,α)

P (Y−i|X,α)
(6)

∝
∏

q∈QX
P (Cq

Y ′ |αq, nq)

P (Y−i|X,α)
(7)

∝
∏

q∈QX :i∈q
P (Cq

Y ′ |αq, nq) (8)

The main computational challenge here is to determine
the set YY

i of reflexive, symmetric, minimal matrices
that can be derived from Y by changing row and col-
umn i. Since Equation 8 has to be normalized, all of
its elements have to be enumerated. An obvious but
inefficient strategy would be to enumerate all up to
2n assignments of Yi and test the resulting matrix for
reflexivity, symmetry, and minimality.

However, most values of Y ′i violate minimality and
need not be enumerated. Algorithm 1 constructs the
set YY

i in O(nk), where k is the maximal number of
cliques that each node is a member of. In our applica-
tion, each node is an element of up to two cliques—the
set of messages with a shared IP address, and the set
of messages that follow the same campaign template.
Hence, in our case, the algorithm has a worst-case ex-
ecution time of O(n2). In most cases, the number of
clusters in each of the two cliques is much lower than
n, and thus much fewer than n2 cases are considered.

Theorem 1. Given an adjacency matrix X and an
edge selector matrix Y, Algorithm 1 constructs a set
YY
i that contains all Y ′ = Y ′i ∪ Y−i which are reflex-

ive, symmetric, and minimal with respect to X. The
execution time of Algorithm 1 is in O(nk) when each
node is a member of at most k cliques in X.
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Proof. Let node i be an element of cliques q1, . . . , qk.
On these cliques, the current partitioning matrix Y in-
duces clusterings Cq1

Y , . . . , C
qk
Y with at most n clusters

each. When Y ′i links node i to more than one cluster
from any Cql

Y , then by the definition of a clustering in
Equation 1 these clusters are merged in CY ′ . However,
when Y ′i links node i to two clusters with at least one
other element in ql each, say j and l with Yjl = 0,
the transitive closure Y ′+ has to add at least an edge
to Y ′−i that links j and l. Since j and l are in clique
ql, they have to be connected by the adjacency ma-
trix, Xjl = 1. But Y ′jl = 0, Y ′

+
jl = 1 and Xjl = 1

violates the minimality condition defined in Equation
3. Therefore, Y ′ must only merge clusters that have
elements in different cliques, and so at most nk com-
binations of clusters can lead to minimal matrices Y ′

when merged. Reflexivity and symmetry of Y ′ follow
from reflexivity and symmetry of X. The execution
time is dominated by the enumeration of all nk many
combinations of clusters in Line 3.

The Gibbs sampler iteratively samples Y t+1 according
to P (Y ′it |Y

t
−it , X,α), given by Equation 8. Each Y t+1

is created from the predecessor by cycling over the
rows that are resampled—that is, it = t mod n. The
conditional is defined over the set YY t

it
. We will now

argue that a sequence of matrices created by the Gibbs
sampler is an ergodic Markov chain.

Theorem 2. For αq > 0, the sequence Y 0, . . . , Y T

with Y t+1 ∼ P (Y t+1
(t mod n)|Y

t
−(t mod n), X,α) is an er-

godic Markov chain.

Proof. The sequence is a Markov chain because each
element is sampled from a distribution that is param-
eterized only with the preceding matrix and the row
that is to be resampled. For it to be ergodic we have
to prove that from any state Y, every other state Y ′

can be reached. With the αq > 0, Equation 5 is posi-
tive for all states in YX that are reflexive, symmetric,
and minimal with respect to X. In each step the sam-
pler can only change row and column i. Hence, any
chain of states with Y t+1 ∈ YY t

(t mod n) can be reached

because by Theorem 1, all elements of YY t

(t mod n) are
reflexive, symmetric, minimal with respect to X and
differ from Y t only in row and column i.

To begin with, we argue that from any state Y the
identity matrix I can be reached which connects each
node only to itself. To prove this, it suffices to show
that for any i and any Y , a state IY,i with IY,iii = 1
for all i, IY,iij = 0 for all j 6= i, and IY,ijk = Yjk for
all j, k 6= i can be reached directly from state Y by
sampling row and column Yi. By the definition of YY

i ,
the Gibbs sampler can directly reach state IY,i from Y

if IY,i is symmetric, reflexive, minimal with respect to
X, and differs from Y only in the i-th row and column.
By its definition, it is clear that IY,i differs from Y only
in the i-th column and row, and that it is reflexive.
Since Y is symmetric and the i-th row and column of
IY,i are identical, IY,i has to be symmetric as well. It

remains to be shown that IY,i = IY,i
+ ◦ X. We split

the proof of this claim into two parts. First, we show
that the i-th row and column of IY,i are equal to the

i-th row and column of IY,i
+ ◦X. Intuitively, because

IY,i connects node i only to itself, the transitive closure
adds nothing, and the Hadamard product has no effect
because X is reflexive. Formally, this can be shown via
an inductive proof along the following construction of
the transitive closure of IY,i. Let R0 = IY,i. For all
l > 0, let Rl

ij = 1 if Rl−1
ij = 1 or if there is a k such that

Rl−1
ik = 1 and Rl−1

kj = 1; otherwise, Rl
ij = 0. When

Rl−1 contains an open triangle of edges Rl−1
ik = 1 and

Rl−1
kj = 1, then Rl is defined to add an edge Rl

ij =

1. Then the limit liml→∞Rl is the transitive closure
(IY,i)+. Now inductively, if for all j : Rl−1

ij = 0, then

for all j : Rl
ij = 0, and from IY,ii = 0 it follows that

IY,i
+
i = IY,ii, and (IY,i

+ ◦X)i = IY,ii.

Secondly, we show that all elements in IY,i
+

except
the i-th row and column remain unchanged from Y +:
From the monotonicity of the transitive closure op-

erator and IY,i ≤ Y it follows that (IY,i
+ ◦ X)−i ≤

(Y + ◦X)−i. Furthermore, since the transitive closure

operator only adds positive edges, (IY,i
+ ◦ X)−i ≥

(IY,i ◦ X)−i = (Y ◦ X)−i, which is in turn equal to
(Y + ◦X)−i because Y itself is minimal with respect to

X. Both inequalities together give us (IY,i
+ ◦X)−i =

(Y + ◦ X)−i, and because IY,i−i = Y−i we have that

IY,i−i = (IY,i
+ ◦ X)−i. Together with the first part

finally IY,i = IY,i
+ ◦X.

This establishes that IY,i can be reached by the Gibbs
sampler from any state Y for any i, and thus by repeat-
edly using this state transition for all i, I is reachable.
The reachability relation is symmetric because Y t+1

is constructed from Y t by reassigning one column and
row which can be reversed, and Y t is required to be in
YX , and therefore can be reached from Y t+1. Hence,
from any state Y , every other state Y ′ can be reached
via the state I, and ergodicity holds.

3.3. Prediction

The Gibbs sampler creates a chain Y 0, . . . , Y T of ma-
trices, governed by the posterior P (Y |X,α). In order
to predict which campaign s a given IP address a will
participate in, we can approximate the Bayesian infer-
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ence of c (Equation 9) using the chain (Equation 10).

P (s|a,X,α) =
∑

Y ∈YX

P (CY |X,α)P (s|a,CY ) (9)

≈
∑

Y ∈{Y 0,...,Y T }

P (s|a,CY ) (10)

Equation 1 decomposes P (s|a,CY ) into two multi-
nomial distributions that can be estimated from the
available data.

4. Case Study

In this section, we conduct a case study on botnet de-
tection. Since the gound truth about which botnets
are currently active and which hosts they are com-
posed of is not available, we evaluate the model in
terms of its accuracy of predicting which spam cam-
paign a given IP address will participate in.

We record incoming spam emails over a period of 11
days in January 2012 at a large email service provider.
We select only emails that have been blacklisted on
the grounds of three content-based filtering techniques:
The first is a set of manually maintained regular ex-
pressions, each tailored to match against all spams
of one particular campaign. The second is a list of
semi-automatically generated, campaign-specific fea-
ture sets (Haider & Scheffer, 2009). A feature set con-
sists of words and structure flags and is the intersection
of all previously observed emails from the campaign.
The third is a blacklist of URLs that spam emails link
to. Thus, we have a reliable partitioning of all emails
into spam campaigns.

We exclude IP addresses of known legitimate forward-
ing servers that relay inbound emails according to their
users’ personal filtering policies. To this end, we track
the IP address from the last hop in the transmission
chain. If the address has a valid reverse DNS entry
that matches a domain from a list of well-known email
service providers, we omit the message.

Equation 5 allows for individual values of the concen-
tration parameters αq for each clique q in the email
graph X. We use two distinct values: a value of αa for
all cliques that share a joint IP address, and a value of
αs for all cliques that match a joint campaign. Param-
eters αa and αs are tuned to maximize the AUC metric
on the data recorded on the first day. The data of the
remaining ten days is then used for evaluation. Within
each day, the Gibbs sampler infers a chain of cluster-
ings on the data of the first 16 hours. The emails of
the last 8 hours with a sender IP address that has pre-
viously occurred are used as test data. Emails from
IP addresses that have not been seen before are ex-

cluded, since no informed decision can be made for
them. The proportion of IP addresses that have not
previously been observed depends on the proportion of
the global email traffic that the server gets to observe.
Also, we exclude emails from campaigns that appear
less than 100 times. In total, this data collection pro-
cedure results in 701,207 unique pairs of campaigns
and IP addresses in the training sets and 71,528 in the
test sets. Each test email serves as a positive example
for its campaign and a negative example for all other
campaigns.

4.1. Reference Methods

We compare the Minimal Graph Clustering model to
three baselines. The first, threshold-based baseline
is an agglomerative clustering algorithm based on a
threshold heuristic, adapted from Zhuang et al. (2008).
It operates on the assumption that each campaign is
sent by only one botnet. Initially, every campaign con-
stitutes its own cluster. Clusters c and c′ are greedily
merged if their fraction of overlapping IP addresses
exceeds a threshold. This fraction is defined as∑

i∈c I(∃j ∈ c′ : si = sj)

2|c|
+

∑
j∈c′ I(∃i ∈ c : sj = si)

2|c′|
,

where I is the indicator function and si the campaign
of the i-th email. Given a clustering C of emails,
P (s|a,C) =

∑
c∈C P (s|c, C)P (c|a,C) is inferred after

multinomial distributions P (s|c) and P (c|a,C) have
been estimated on the training data. The clustering
threshold is tuned for performance on the first day.

The second baseline is spectral clustering, where we
tune the number of clusters and similarity values for
emails with matching campaign or IP address. We use
the implementation of Chen et al. (2011).

The third baseline is a straightforward generative clus-
tering model for email graphs with a Chinese Restau-
rant process prior and a likelihood function that factor-
izes over the edges of the email graph X, assuming in-
dependence for the edges inX. The likelihood function
has a set of four parameters θ = {θins , θins , θouta , θouta }
that quantify the probability of the presence of a link
when the nodes are and are not elements of a joint
botnet. The likelihood for an edge that connects two
emails from the same campaign is given as

P (Xij = 1|C,θ) =

{
θins , if C(i) = C(j)

θouts , if C(i) 6= C(j),

where C(i) denotes the cluster that clustering C as-
signs email i to. The likelihood of an edge between two
emails from the same IP address is defined analogously,
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Figure 1. ROC-curves for cam-
paign prediction.
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Figure 3. AUC depending on train-
ing set size.

using the paramters θouta and θouta . The joint probabil-
ity of the email matrix and a clustering C is then given
as P (X,C|α,θ) = PCRP (C|α)

∏
i,j<i P (Xij |C,θ).

The parameters are adjusted using gradient-ascent on
the joint data likelihood.

4.2. Results

We measure ROC curves; IP addresses for which the
likelihood P (s|a,X,α) of the correct campaign ex-
ceeds the threshold are counted as true positives, ad-
dresses for which the likelihood of an incorrect cam-
paign exceeds the threshold as false positives. Figure 4
shows ROC curves for the four methods under study.

Minimal graph clustering attains the highest area un-
der the ROC curve of 0.784, compared to 0.675 for
threshold-based clustering, 0.671 for spectral cluster-
ing, and 0.651 for the generative edge model baseline.
The threshold-based method is marginally more accu-
rate than the Minimal Graph Clustering model for low
threshold values, and less accurate for all other thresh-
old values. Threshold-based clustering infers P (s|c)
and P (c|a,C) and consequently P (s|a,C) to be zero
for many values of s and a. Therefore, a large interval
of points on the ROC curve cannot be attained by any
threshold value; this is indicated by a dashed line.

Typically, the number of requests during a DDoS at-
tack exceeds the capacity to serve requests by far. An
unprotected system will serve only a small, random
fraction of requests and will be unable to serve all oth-
ers; this amounts to a false positive rate of close to
one. In order to defend against such an attack, one
has to select a small proportion of requests which can
be served. Therefore, in defending against DDoS at-
tacks, the right hand side of the ROC curve that allows
high true positive rates is practically relevant.

Figure 4 shows execution times for running all four
methods until convergence depending on the number

of examples. The Minimal Graph Clustering model
is computationally more expensive than the baselines.
For continuously maintaining a clustering that sub-
sequently incorporates newly available messages, it is
thus advisable to use the previous clustering as a start-
ing point of the Gibbs sampler in order to reduce the
number of necessary iterations until convergence.

Figure 4 shows area under ROC curve depending on
what fraction of the training sample is used. For test-
ing, only emails with IP addresses that are present in
the smallest subset are used. The plots indicate that
having access to a larger sample of the overall email
traffic could increase performance considerably.

5. Conclusion and Discussion

The identification of spam-disseminating botnets can
be reduced to the problem of clustering the graph of
email messages in which messages are linked if they
originate from the same IP address or match the same
campaign template. We devised a probabilistic model
that directly describes the conditional probability of a
clustering given the input graph without making dis-
tributional assumptions about the generation of the
observable data. We derived a Gibbs sampler; we
showed that resampling rows and edges of the output
matrix creates an ergodic Markov chain, and that each
sampling step can be carried out in O(n2). We argue
that botnet models can be evaluated in terms of their
ability to predict which spam campaign a given IP ad-
dress is going to participate in. From a case study
carried out with an email service provider we conclude
that the minimal graph clustering model outperforms
a number of reference methods—spectral clustering, a
generative model, and a threshold-based, agglomera-
tive clustering model—in terms of its area under the
ROC curve.

The botnet model draws a picture of the current size
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and activity of botnets. From the IP addresses, the ge-
ographical distribution of each botnet can be derived.
The botnet model can be used to select particularly
prolific botnets for in-depth analysis and possible le-
gal action. Widespread botnet software is versatile
and supports both, dissemination of email spam and
the staging of network attacks (Stern, 2008). When
both, a mailing campaign and a network attack are
carried out by a single network within the typical IP-
address reassignment interval of one day, then the
botnet model which has been trained on email data
can score HTTP requests by the likelihood that their
sender IP address is part of an attacking botnet. This
allows to prioritize requests and to maintain a service
during an attack. Alternatively, the botnet model can
be trained with HTTP requests instead of emails; the
recipient domain of an HTTP request plays the role
of the campaign template. Again, the botnet model
allows to infer the likelihood that an individual sender
IP address acts as part of an attacking botnet.

Direct evaluation of the model’s ability to decide
whether an IP request is part of a network attack
would require evaluation data in the form of a col-
lection of individual HTTP requests labeled with the
botnet that has sent the request. While it is relatively
easy to collect the entire stream of legitimate and at-
tacking HTTP requests that reach a domain during
an attack, there is no practical means of labeling indi-
vidual requests. In general, HTTP requests contain no
information that allows even a human expert to decide
whether a request is part of an attack, let alone which
botnet a request has really been sent from.
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