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Abstract

In this paper, we propose a PAC-Bayes
bound for the generalization risk of the
Gibbs classifier in the multi-class classifica-
tion framework. The novelty of our work is
the critical use of the confusion matrix of a
classifier as an error measure; this puts our
contribution in the line of work aiming at
dealing with performance measure that are
richer than mere scalar criterion such as the
misclassification rate. Thanks to very recent
and beautiful results on matrix concentra-
tion inequalities, we derive two bounds show-
ing that the true confusion risk of the Gibbs
classifier is upper-bounded by its empirical
risk plus a term depending on the number of
training examples in each class. To the best
of our knowledge, this is the first PAC-Bayes
bounds based on confusion matrices.

1. Introduction

The PAC-Bayesian framework, first introduced in
(McAllester, 1999a), is an important field of research
in learning theory. It borrows ideas from the phi-
losophy of Bayesian inference and mixes them with
techniques used in statistical approaches of learning.
Given a family of classifiers F , the ingredients of a
PAC-Bayesian bound are a prior distribution P over
F , a learning sample S and a posterior distribution Q
over F . Distribution P conveys some prior belief on
what are the best classifiers from F (prior any access to
S); the classifiers expected to be the most performant
for the classification task at hand therefore have the
largest weights under P. The posterior distribution
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Q is learned/adjusted using the information provided
by the training set S. The essence of PAC-Bayesian
results is to bound the risk of the stochastic Gibbs
classifier associated with Q (Catoni, 2004).

When specialized to appropriate function spaces F and
relevant families of prior and posterior distributions,
PAC-Bayes bounds can be used to characterize the er-
ror of different existing classification methods, such as
support vector machines (Langford & Shawe-Taylor,
2002; Langford, 2005). PAC-Bayes bounds can also
be used to derive new supervised learning algorithms.
For example, Lacasse et al. (2007) have introduced an
elegant bound on the risk of the majority vote, which
holds for any space F . This bound is used to derive
an algorithm, MinCq (Laviolette et al., 2011), which
achieves empirical results on par with state-of-the-art
methods. Some other important results are given in
(Catoni, 2007; Seegerr, 2002; McAllester, 1999b; Lang-
ford et al., 2001).

In this paper, we address the multi-class classifica-
tion problem. Given the ability of PAC-Bayesian
bounds to explain performances of learning methods,
related contributions to our work are multi-class for-
mulations for the SVMs, such as those of Weston &
Watkins (1998); Lee et al. (2004) and Crammer &
Singer (2002). As majority vote methods, we may
relate our work to boosting multi-class extensions of
AdaBoost (Freund & Schapire, 1996), such as in the
framework of Mukherjee & Schapire (2011), and to
the algorithms AdaBoost.MH/AdaBoost.MR (Schapire
& Singer, 1999) and SAMME (Zhu et al., 2009).

The originality of our work is that we consider the con-
fusion matrix of the Gibbs classifier as an error mea-
sure. We believe that in the multi-class framework, it
is more relevant to consider the confusion matrix as the
error measure than the mere misclassification error,
which corresponds to the probability for some classifier
h to err for its prediction on x. The information as to
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what is the probability for an instance of class p to be
classified into class q (with p 6= q) by some predictor is
indeed crucial in some applications (think of the differ-
ence between false-negative and false-positive predic-
tions in a diagnosis automated system). To the best
of our knowledge, we are the first to propose a gener-
alization bound on the confusion matrix in the PAC-
Bayesian framework. The result we propose heavily
relies on a matrix concentration inequality for sums of
random matrices of Tropp (2011).

The rest of this paper is organized as follows. Sec. 2
introduces the setting of multi-class learning and some
of the basic notation used throughout the paper. Sec.
3 briefly recalls the folk PAC-Bayes bound as intro-
duced in (McAllester, 2003). In Sec. 4, we present
the main contribution of this paper, our PAC-Bayes
bound on the confusion matrix, followed by its proof
in Sec. 5. We discuss some future works in Sec. 6.

2. Setting and Notation

This section presents the general setting that we con-
sider and the different tools that we will make use of.

2.1. General Problem Setting

We consider classification tasks over some input space
X. The output space is Y ={1, . . . , Q}, where Q is the
number of classes. The learning sample is denoted by
S = {(xi, yi)}mi=1 where each example is drawn i.i.d.
from a fixed (but unknown) probability distribution
D over X × Y ; Dm denotes the distribution of an m-
sample. We consider the family F ⊆ Y X of classifiers,
and P and Q will respectively refer to prior and poste-
rior distributions over F . Given the prior distribution
P and the training set S, learning aims at finding a
posterior Q leading to good generalization.

The Kullback-Leibler divergence KL(Q||P) between Q
and P is

KL(Q||P) = Ef∼Q log
Q(f)

P(f))
; (1)

sign(x) = 1 if x ≥ 0 and −1 otherwise; The indicator
function I(x) is equal to 1 if x is true and 0 otherwise.

2.2. Conventions and Basics on Matrices

Throughout the paper we consider only real-valued
square matrices C of order Q (the number of classes).
tC is the transpose of the matrix C, IdQ denotes the
identity matrix of size Q and 0 is the zero matrix.

The results given in this paper are based on a con-
centration inequality of Tropp (2011) for sums of ran-

dom self-adjoint matrices, which extends to general
real-valued matrices thanks to the dilation technique
Paulsen (2002): the dilation S(C) of matrix C is

S(C)
def
=

(
0 C
tC 0

)
. (2)

Notation ‖·‖ refers to the operator or spectral norm. It
returns the maximum singular value of its argument:

‖C‖ = max{λmax(C),−λmin(C)}, (3)

where λmax and λmin are respectively the algebraic
maximum and minimum singular value of C. Note
that dilation preserves spectral information, so

λmax

(
S(C)

)
= ‖S(C)‖ = ‖C‖. (4)

3. The Usual PAC-Bayes Theorem

Here, we recall the main PAC-Bayesian bound in the
binary classification case as presented in (McAllester,
2003; Seegerr, 2002; Langford, 2005), where the set
of labels is Y = {−1, 1} The true risk R(f) and the
empirical error RS(f) of f are defined as:

R(f)
def
= E(x,y)∼DI(f(x 6= y)),

RS(f)
def
=

1

m

m∑
i=1

I(f(xi 6= yi)).

The learner’s aim is to choose a posterior distribution
Q on F such that the risk of the Q-weighted majority
vote (also called the Bayes classifier) BQ is as small as
possible. BQ makes a prediction according to

BQ(x) = sign [Ef∼Qf(x)] .

The true risk R(BQ) and the empirical error RS(BQ)
of the Bayes classifier are defined as the probability
that it commits an error on an example:

R(BQ)
def
= P(x,y)∼D (BQ(x) 6= y) . (5)

However, the PAC-Bayes approach does not directly
bound the risk of BQ. Instead, it bounds the risk of
the stochastic Gibbs classifier GQ which predicts the
label of x ∈ X by first drawing f according to Q and
then returning f(x). The true risk R(GQ) and the
empirical error RS(GQ) of GQ are therefore:

R(GQ) = Ef∼QR(f) ; RS(GQ) = Ef∼QRS(f). (6)

Note that in this setting, we have R(BQ) ≤ 2R(GQ).

We present the PAC-Bayes theorem which gives a
bound on the error of the stochastic Gibbs classifier.
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Theorem 1. For any D, any F , any P of support F ,
any δ ∈ (0, 1], we have,

PS∼Dm

(
∀Q on F , kl

(
RS(GQ), R(GQ)

)
≤

1

m

[
KL(Q‖P) + ln

ξ(m)

δ

])
≥1− δ,

where kl(a, b)
def
= a ln a

b + (1− a) ln 1−a
1−b ,

and ξ
def
=
∑m
i=0

(
m
i

)
(i/m)i(1− i/m)m−i.

We now provide a novel PAC-Bayes bound in the con-
text of multi-class classification by considering the con-
fusion matrix as an error measure.

4. Multiclass PAC-Bayes Bound

4.1. Definitions and Setting

As said earlier, we focus on multi-class classification.
The output space is Y = {1, . . . , Q}, with Q> 2. We
only consider learning algorithms acting on learning
sample S={(xi, yi)}mi=1 where each example is drawn
i.i.d according to D, such that |S| ≥ Q and myj ≥ 1
for every class yj ∈ Y , where myj is the number of
examples of real class yj . In the context of multi-class
classification, an error measure can be a performance
tool called confusion matrix. We consider the classical
definition of the confusion matrix based on conditional
probabilities: it is inherent (and desirable) to minimize
the effects of unbalanced classes. Concretely, for a
given classifier f ∈F and a sample S = {(xi, yi)}mi=1∼
Dm, the empirical confusion matrix Df

S=(d̂pq)1≤p,q≤Q
of f is defined as follows:

∀(p, q), d̂pq
def
=

m∑
i=1

1

myi

I(f(xi) = q)I(yi = p).

The true confusion matrix Df = (dpq)1≤p,q≤Q of f
over D corresponds to:

∀(p, q), dpq
def
= Ex|y=pI

(
f(x) = q

)
= P(x,y)∼D(f(x) = q|y = p).

If f correctly classifies every example of the sample S,
then all the elements of the confusion matrix are 0,
except for the diagonal ones which correspond to the
correctly classified examples. Hence the more there
are non-zero elements in a confusion matrix outside
the diagonal, the more the classifier is prone to err.
Recall that in a learning process the objective is to
learn a classifier f ∈F with a low true error (i.e. with

good generalization guarantees), we are thus only in-
terested in the errors of f . Our objective is then to find
f leading to a confusion matrix with the more zero el-
ements outside the diagonal. Since the diagonal gives
the conditional probabilities of ’correct’ predictions,
we propose to consider a different kind of confusion
matrix by discarding the diagonal values. Then the
only non-zero elements of the new confusion matrix
correspond to the examples that are misclassified by
f . For all f ∈F we define the empirical and true con-
fusion matrices of f by respectively Cf

S=(ĉpq)1≤p,q≤Q
and Cf =(cpq)1≤p,q≤Q such that for all (p, q):

ĉpq
def
=

{
0 if q = p

d̂pq otherwise,
(7)

cpq
def
=

{
0 if q = p
dpq=P(x,y)∼D(f(x) = q|y = p) otherwise.

(8)

Note that if f correctly classifies every example of a
given sample S, then the empirical confusion matrix
Cf
S is equal to 0. Similarly, if f is a perfect classi-

fier over the distribution D, then the true confusion
matrix is equal to 0. Therefore a relevant task is to
minimize the size of the confusion matrix, thus having
a confusion matrix as close to 0 as possible.

4.2. Main Result: Confusion PAC-Bayes
Bound for the Gibbs Classifier

Our main result is a PAC-Bayes generalization bound
over the Gibbs classifier GQ in this particular context,
where the empirical and true error measures are re-
spectively given by the confusion matrices from (7)
and (8). In this case, we can define the true and the
empirical confusion matrices of GQ respectively by:

CGQ = Ef∼QES∼Dm
Cf
S ; CGQ

S = Ef∼QCf
S .

Given f∼Q and a sample S∼Dm, our objective is to
bound the difference between CGQ and CGQ

S , the true
and empirical errors of the Gibbs classifier. Remark
that the error rate P (f(x) 6= y) of a classifier f might
be directly computed as the 1-norm of tCfp, where
p is the vector of prior probabilities. However, in our
case, concentration inequalities are only available for
the operator norm. Since we have ‖u‖1≤

√
Q‖u‖2 for

any Q-dimensional vector u, we have that P (f(x) 6=
y)≤
√
Q‖Cf‖op. Thus trying to minimize the operator

norm of Cf is a relevant strategy to control the risk.
Here is our main result, a bound on the operator norm
of the difference between CGQ and CGQ

S .

Theorem 2. Let X ⊆ Rd be the input space, Y =
{1, . . . , Q} the output space, D a distribution over X×
Y (with Dm the distribution of a m-sample) and F a
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family of classifiers from X to Y . Then for every prior
distribution P over F and any δ ∈ (0, 1], we have:

PS∼Dm

{
∀Q on F , ‖CGQ

S −CGQ‖ ≤√
8Q

m− − 8Q

[
KL(Q||P) + ln

(m−
4δ

)]}
≥1− δ,

where m−= miny=1,...,Qmy is the minimal number of
examples from S which belong to the same class.

Proof. Deferred to Section 5.

Note that, for all y ∈ Y , we need the following hypoth-
esis: my > 8, which is not too strong a limitation.

Finally, we rewrite Theorem 2 in order to provide a
bound on the size ‖CGQ‖.
Corollary 1. We consider the hypothesis of the The-
orem 2. We have:

PS∼Dm

{
∀Q on F , ‖CGQ‖ ≤ ‖CGQ

S ‖+√
8Q

m−−8Q

[
KL(Q||P) + ln

(m−
4δ

)]}
≥1− δ.

Proof. By application of the reverse triangle inequality
|‖A‖ − ‖B‖| ≤ ‖A−B‖ to Theorem 2.

Both Theorem 2 and Corollary 1 yield a bound on the
estimation (through the operator norm) of the true
confusion matrix of the Gibbs classifier over the poste-
rior distribution Q, though this is more explicit in the
corollary. Let the number of classes Q be a constant,
then the true risk is upper-bounded by the empiri-
cal risk of the Gibbs classifier and a term depending
on the number of training examples, especially on the
value m− which corresponds to the minimal quantity
of examples that belong to the same class. This means
that the larger m−, the closer the empirical confusion
matrix of the Gibbs classifier is to its true matrix.

4.3. Upper Bound on the Risk of the Majority
Vote Classifier

We recall that the Bayes classifier BQ is well known
as majority vote classifier under a given posterior dis-
tribution Q. In the multiclass setting, BQ is such that
for any example it returns the majority class under the
measure Q and we define it as:

BQ(x) = argmaxc∈Y

[
Ef∈QI(f(x) = c)

]
. (9)

We define the conditional Gibbs risk R(GQ, p, q) and
Bayes risk R(GQ, p, q) as

R(GQ, p, q) = Ex∼D|y=p
Ef∼QI(f(x) = q), (10)

R(BQ, p, q) = Ex∼D|y=p
I (argmaxc∈Y g(c, q)) . (11)

where
g(c, q) =

[
Ef∈QI(f(x) = c) = q

]
The former is the (p, q) entry of CGQ (if p 6= q) and
the latter is the (p, q) entry of CBQ .

Proposition 1. Let Q ≥ 2 be the number of classes.
Then R(BQ, p, q) and R(GQ, p, q) are related by the
following inequality :

∀(q, p), R(BQ, p, q) ≤ QR(GQ, p, q). (12)

Proof. Given in (Morvant et al., 2012).

This proposition implies the following result on the
confusion matrices associated to BQ and GQ.

Corollary 2. Let Q ≥ 2 be the number of class. Then
CBQ and CGQ are related by the following inequality:

‖CBQ‖ ≤ Q‖CGQ‖. (13)

Proof. Given in (Morvant et al., 2012).

5. Proof of Theorem 2

This section gives the formal proof of Theorem 2. We
first introduce a concentration inequality for a sum of
random square matrices. This allows us to deduce the
PAC-Bayes generalization bound for confusion matri-
ces by following the same “three step process” as the
one given in (McAllester, 2003; Seegerr, 2002; Lang-
ford, 2005) for the classic PAC-Bayesian bound.

5.1. Concentration Inequality for the
Confusion Matrix

The main result of our work is based on the following
corollary of a result on the concentration inequality for
a sum of self-adjoint matrices given by Tropp (2011)
(see Theorem 3 in Appendix) – this theorem general-
izes Hoeffding’s inequality to the case self-adjoint ran-
dom matrices. The purpose of the following corollary
is to restate Theorem 3 so that it carries over to ma-
trices that are not self-adjoint. It is central to us to
have such a result as the matrices we are dealing with,
namely confusion matrices, are rarely symmetric.

Corollary 3. Consider a finite sequence {Mi} of in-
dependent, random, square matrices of order Q, and
let {ai} be a sequence of fixed scalars. Assume that
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each random matrix satisfies EiMi=0 and ‖Mi‖≤ai
almost surely.. Then, with σ2def=

∑
i a

2
i , we have,

∀ε ≥ 0, P

{
‖
∑
i

Mi‖ ≥ ε

}
≤ 2Q exp

(
−ε2

8σ2

)
. (14)

Proof. We want to verify the hypothesis given in The-
orem 3 in order to apply it.
Let {Mi} be a finite sequence of independent, ran-
dom, square matrices of order Q such that EiMi = 0
and let {ai} be a sequence of fixed scalars such that
‖Mi‖ ≤ ai. We consider the sequence {S(Mi)} of ran-
dom self-adjoint matrices with dimension 2Q. By the
definition of the dilation, we obtain EiS(Mi)=0.
From Equation (4), the dilation preserves the spectral
information. Thus, on the one hand, we have:

‖
∑
i

Mi‖ = λmax

(
S
(∑

i

Mi

))
= λmax

(∑
i

S(Mi)
)
.

On the other hand, we have:

‖Mi‖ = ‖S(Mi)‖ = λmax

(
S(Mi)

)
≤ ai.

To assure the hypothesis S(Mi)
2 4 A2

i , we need
to find a suitable sequence of fixed self-adjoint ma-
trices {Ai} of dimension 2Q (where 4 refers to
the semidefinite order on self-adjoint matrices). In-
deed, it suffices to construct a diagonal matrix de-
fined as λmax

(
S(Mi)

)
Id2Q for ensuring S(Mi)

2 4(
λmax

(
S(Mi)

)
Id2Q

)2
. More precisely, since for every

i we have λmax

(
S(Mi)

)
≤ ai, we fix Ai as a diagonal

matrix with ai on the diagonal, i.e. Ai
def
= aiId2Q, with

‖
∑
i A

2
i ‖ =

∑
i a

2
i = σ2. Finally, we can invoke Theo-

rem 3 to obtain the concentration inequality (14).

In order to make use of this corollary, we rewrite the
confusion matrices as sums of example-based confu-
sion matrices. That is, for each example (xi, yi) ∈ S,

we define its empirical confusion matrix by Cf
i =

(ĉpq(i))1≤p,q≤Q as follows:

∀p, q, ĉpq(i)
def
=

 0 if q = p
1

myi

I(f(x) = q)I(yi = p) otherwise.

where myi is the number of examples of class yi ∈ Y
belonging to S. Given an example (xi, yi) ∈ S, the
example-based confusion matrix contains at most one
non zero-element when f misclassifies (xi, yi). In the
same way, when f correctly classifies (xi, yi) then the
example-based confusion matrix is equal to 0. Our er-
ror measure is then Cf

S =
∑m
i=1 Cf

i , that is we penalize
only when f errs.

We further introduce the random square matrices C′
f
i :

C′
f
i = Cf

i − ES∼DmCf
i , (15)

which verifies EiC′fi = 0.

We have yet to find a suitable ai for a given C′
f
i . Let

λmaxi
be the maximum singular value of C′

f
i . It is

easy to verify that λmaxi
≤ 1

myi
. Thus, for all i we fix

ai equal to 1
myi

.

Finally, with the introduced notations, Corollary 3
leads to the following concentration inequality:

P

{
‖
m∑
i=1

C′
f
i ‖ ≥ ε

}
≤ 2Q exp

(
−ε2

8σ2

)
. (16)

This inequality (16) allows us to demonstrate our The-
orem 2 by following the process of (McAllester, 2003;
Seegerr, 2002; Langford, 2005).

5.2. “Three Step Proof” Of Our Bound

First, thanks to the concentration inequality (16), we
prove the following lemma.

Lemma 1. Let Q be the size of Cf
S and C′

f
i =

Cf
i −ES∼DmCf

i defined as in (15). Then the following
bound holds for any δ ∈ (0, 1]:

PS∼Dm

{
Ef∼P

[
exp

(
1− 8σ2

8σ2
‖
m∑
i=1

C′
f
i ‖2
)]
≤ 2Q

8σ2δ

}
≥ 1− δ

Proof. For readability reasons, we note C′
f
S =∑m

i=1 C′
f
i . If Z is a real valued random vari-

able so that P (Z ≥ z) ≤ k exp(−n.g(z)) with g(z)
non-negative, non-decreasing and k a constant, then
P (exp ((n− 1)g(Z)) ≥ ν) ≤ min(1, kν−n/(n−1)). We
apply this to the concentration inequality (16). Choos-
ing g(z) = z2 (non-negative), z = ε, n = 1

8σ2 and
k = 2Q, we obtain the following result:

P
{

exp

(
1− 8σ2

8σ2
‖C′fS‖

)
≥ν
}
≤min

(
1, 2Qν−1/(1−8σ

2)
)
.

Note that exp
(

1−8σ2

8σ2 ‖C′fS‖
)

is always non-negative.
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Hence it allows us to compute its expectation as:

E

[
exp

(1− 8σ2

8σ2
‖C′fS‖

)]

=

∫ ∞
0

P
{

exp
(1− 8σ2

(8σ2)
‖C′fS‖

)
≥ ν

}
dν

≤ 2Q+

∫ ∞
1

2Qν−1/(1−8σ
2)dν

= 2Q− 2Q
1− 8σ2

8σ2

[
ν−8σ

2/(1−8σ2)
]∞
1

=
2Q

8σ2
.

For a given classifier f ∈ F , we have:

ES∼Dm

[
exp

(
1− 8σ2

8σ2
‖C′fS‖

)]
≤ 2Q

8σ2
(17)

Then, if P is a probability distribution over F , Equa-
tion (17) implies that:

ES∼Dm

[
Ef∼P exp

(
1− 8σ2

8σ2
‖C′fS‖

)]
≤ 2Q

8σ2
(18)

Using Markov’s inequality1, we obtain the result of the
lemma.

The second step to prove Theorem 2 is to use the shift
given in (McAllester, 2003). We recall this result in
the following lemma.

Lemma 2 (Donsker-Varadhan inequality Donsker &
Varadhan (1975)). Given the Kullback-Leibler diver-
gence2 KL(Q‖P) between two distributions P and Q
and let g(·) be a function, we have:

Eb∼Q
[
g(b)

]
≤ KL(Q‖P) + lnEb∼Q

[
exp(g(b))

]
.

Proof. See (McAllester, 2003).

Recall that C′
f
S =

∑m
i=1 C′

f
i . With g(b) = 1−8σ2

8σ2 b2

and b = ‖C′fS‖, Lemma 2 implies:

Ef∼Q

[
1− 8σ2

8σ2
‖C′fS‖2

]

≤KL(Q‖P)+lnEf∼P

[
exp

(
1− 8σ2

8σ2
‖C′fS‖2

)]
. (19)

1see Theorem 4 in Appendix.
2The KL-divergence is defined in Equation (1).

The last step that completes the proof of Theorem 2
consists in applying the result we obtained in Lemma
1 to Equation (19). Then, we have:

Ef∼Q
[

1− 8σ2

8σ2
‖C′fS‖2

]
≤ KL(Q‖P)+ln

2Q

8σ2δ
. (20)

Since g(·) is clearly convex, we apply Jensen’s inequal-
ity3 to (20). Then, with probability at least 1− δ over
S, and for every distribution Q on F , we have:(

Ef∼Q‖C′
f
S‖
)2
≤ 8σ2

1−8σ2

(
KL(Q‖P)+ln

2Q

8σ2δ

)
.

(21)

Since C′
f
S =

∑m
i=1

[
Cf
i − ES∼DmCf

i

]
, then the bound

(21) is quite similar to the one given in Theorem 2.

We present in the next section, the calculations leading
to our PAC-Bayesian generalization bound.

5.3. Simplification

We first compute the variance parameter σ2 =∑m
i=1 a

2
i . For that purpose, in Section 5.1 we showed

that for each i ∈ {1, . . . ,m}, we can choose ai = 1
myi

,

where yi is the class of the i-th example and myi is the
number of examples of class yi. Thus we have:

σ2 =

m∑
i=1

1

m2
yi

=

Q∑
y=1

∑
i:yi=y

1

m2
y

=

Q∑
y=1

1

my
.

For sake of simplification of Equation (21) and since
the term on the right side of this equation is an in-
creasing function with respect to σ2, we propose to
upper-bound σ2:

σ2 =

Q∑
y=1

1

my
≤ Q

miny=1,...,Qmy
. (22)

Let m−
def
= miny=1,...,Qmy, then using Equation (22),

we obtain the following bound from Equation (21):(
Ef∼Q[‖C′fS‖]

)2
≤ 8Q

m− − 8Q

(
KL(Q‖P) + ln

m−
4δ

)
.

Then:

Ef∼Q[‖C′fS‖] ≤

√
8Q

m− − 8Q

(
KL(Q‖P) + ln

m−
4δ

)
.

(23)

It remains to replace C′
f
S =

∑m
i=1

[
Cf
i − ES∼DmCf

i

]
.

Recall that CGQ = Ef∼QES∼Dm
Cf
S and CGQ

S =

3see Theorem 5 in Appendix.
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Ef∼QCf
S , we obtain:

Ef∼Q[‖C′fS‖] = Ef∼Q

[
‖
m∑
i=1

[
Cf
i − ES∼DmCf

i

]
‖

]

= Ef∼Q

[
‖
m∑
i=1

[
Cf
i

]
−

m∑
i=1

[
ES∼Dm

Cf
i

]
‖

]
= Ef∼Q

[
‖Cf

S − ES∼Dm
Cf
S‖
]

≥ ‖Ef∼Q
[
Cf
S − ES∼Dm

Cf
S

]
‖

= ‖Ef∼QCf
S − Ef∼QES∼DmCf

S‖

= ‖CGQ

S −CGQ‖. (24)

By substituting the left part of the inequality (23) with
the term (24), we find the bound of our Theorem 2.

6. Discussion and Future Work

This work gives rise to many interesting questions,
among which the following ones.

Some future works will be focused on instantiating
our bound given in Theorem 2 for specific multi-class
frameworks, such as multi-class SVM and multi-class
boosting. Taking advantage of our theorem while us-
ing the confusion matrices, may allow us to derive new
generalization bounds for these methods.

Additionally, we are interested in seeing how effective
learning methods may be derived from the risk bound
we propose. For instance, in the binary PAC-Bayes
setting, the algorithm MinCq proposed by Laviolette
et al. (2011) minimizes a bound depending on the first
two moments of the margin of theQ-weighted majority
vote. From our Theorem 2 and with a similar study, we
would like to design a new multi-class algorithm and
observe how sound such an algorithm could be. This
would probably require the derivation of a Cantelli-
Tchebycheff deviation inequality in the matrix case.

Besides, it might be very interesting to see how
the noncommutative/matrix concentration inequali-
ties provided by Tropp (2011) might be of some use
for other kinds of learning problem such as multi-
label classification, label ranking problems or struc-
tured prediction issues.

Finally, the question of extending the present work to
the analysis of algorithms learning (possibly infinite-
dimensional) operators as proposed by Abernethy
et al. (2009) is also very exciting.

7. Conclusion

In this paper, we propose a new PAC-Bayesian gen-
eralization bound that applies in the multi-class clas-
sification setting. The originality of our contribution
is that we consider the confusion matrix as an error
measure. Coupled with the use of the operator norm
on matrices, we are capable of providing generalization
bound on the ‘size’ of confusion matrix (with the idea
that the smaller the norm of the confusion matrix of
the learned classifier, the better it is for the classifica-
tion task at hand). The derivation of our result takes
advantage of the concentration inequality proposed by
Tropp (2011) for the sum of random self-adjoint ma-
trices, that we directly adapt to square matrices which
are not self-adjoint.

The main results are presented in Theorem 2 and
Corollary 1. The bound in Theorem 2 is given on the
difference between the true risk of the Gibbs classifier
and its empirical error. While the one given in Corol-
lary 1 upper-bounds the risk of the Gibbs classifier by
its empirical error.

An interesting point is that our bound depends on the
minimal quantity m− of training examples belonging
to the same class, for a given number of classes. If
this value increases, i.e. if we have a lot of training
examples, then the empirical confusion matrix of the
Gibbs classifier tends to be close to its true confusion
matrix. A point worth noting is that the bound varies
as O(1/

√
m−), which is a typical rate in bounds not

using second-order information.

Last but not least, the present work has given rise to a
few algorithmic and theoretical questions that we have
discussed in the previous section.

Appendix

Theorem 3 (Concentration Inequality for Random
Matrices Tropp (2011)). Consider a finite sequence
{Mi} of independant, random, self-adjoint matrices
with dimension Q, and let {Ai} be a sequence of fixed
self-adjoint matrices. Assume that each random ma-
trix satisfies EMi = 0 and M2

i 4 A2
i almost surely.

Then, for all ε ≥ 0,

P

{
λmax

(∑
i

Mi

)
≥ ε

}
≤ Q exp

(
− ε2

8σ2

)
,

where σ2 def= ‖
∑
i A

2
i ‖ and 4 refers to the semidefinite

order on self-adjoint matrices.

Theorem 4 (Markov’s inequality). Let Z be a random
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variable and z ≥ 0, then:

P (|Z| ≥ z) ≤ E(|Z|)
z

.

Theorem 5 (Jensen’s inequality). Let X be an inte-
grable real-valued random variable and g(·) be a convex
function, then:

f(E[Z]) ≤ E[g(Z)].
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