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Abstract

Inverse optimal control, also known as inverse
reinforcement learning, is the problem of re-
covering an unknown reward function in a
Markov decision process from expert demon-
strations of the optimal policy. We introduce
a probabilistic inverse optimal control algo-
rithm that scales gracefully with task dimen-
sionality, and is suitable for large, continuous
domains where even computing a full policy is
impractical. By using a local approximation
of the reward function, our method can also
drop the assumption that the demonstrations
are globally optimal, requiring only local op-
timality. This allows it to learn from exam-
ples that are unsuitable for prior methods.

1. Introduction

Algorithms for inverse optimal control (IOC), also
known as inverse reinforcement learning (IRL), recover
an unknown reward function in a Markov decision pro-
cess (MDP) from expert demonstrations of the corre-
sponding policy. This reward function can be used
to perform apprenticeship learning, generalize the ex-
pert’s behavior to new situations, or infer the expert’s
goals (Ng & Russell, 2000). Performing I0C in con-
tinuous, high-dimensional domains is challenging, be-
cause [IOC algorithms are usually much more computa-
tionally demanding than the corresponding “forward”
control methods. In this paper, we present an I0C
algorithm that efficiently handles deterministic MDPs
with large, continuous state and action spaces by con-
sidering only the shape of the learned reward function
in the neighborhood of the expert’s demonstrations.

Since our method only considers the shape of the re-
ward function around the expert’s examples, it does
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not integrate global information about the reward
along alternative paths. This is analogous to trajec-
tory optimization methods, which solve the forward
control problem by finding a local optimum. However,
while the lack of global optimality is a disadvantage
for solving the forward problem, it can actually be
advantageous in IOC. This is because it removes the
assumption that the expert demonstrations are glob-
ally optimal, thus allowing our algorithm to use exam-
ples that only exhibit local optimality. For complex
tasks, human experts might find it easier to provide
such locally optimal examples. For instance, a skilled
driver might execute every turn perfectly, but still take
a globally suboptimal route to the destination.

Our algorithm optimizes the approximate likelihood of
the expert trajectories under a parameterized reward.
The approximation assumes that the expert’s trajec-
tory lies near a peak of this likelihood, and the result-
ing optimization finds a reward function under which
this peak is most prominent. Since this approach only
considers the shape of the reward around the exam-
ples, it does not require the examples to be globally
optimal, and remains efficient even in high dimensions.
We present two variants of our algorithm that learn the
reward either as a linear combination of the provided
features, as is common in prior work, or as a nonlin-
ear function of the features, as in a number of recent
methods (Ratliff et al., 2009; Levine et al., 2010; 2011).

2. Related Work

Most prior IOC methods solve the entire forward con-
trol problem in the inner loop of an iterative proce-
dure (Abbeel & Ng, 2004; Ratliff et al., 2006; Ziebart,
2010). Such methods often use an arbitrary, possi-
bly approximate forward solver, but this solver must
be used numerous times during the learning process,
making reward learning significantly more costly than
the forward problem. Dvijotham and Todorov avoid
repeated calls to a forward solver by directly learn-
ing a value function (Dvijotham & Todorov, 2010).
However, this requires value function bases to impose
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structure on the solution, instead of the more common
reward bases. Good value function bases are difficult
to construct and are not portable across domains. By
only considering the reward around the expert’s tra-
jectories, our method removes the need to repeatedly
solve a difficult forward problem, without losing the
ability to utilize informative reward features.

More efficient IOC algorithms have been proposed for
the special case of linear dynamics and quadratic re-
wards (LQR) (Boyd et al., 1994; Ziebart, 2010). How-
ever, unlike in the forward case, LQR approaches are
difficult to generalize to arbitrary inverse problems,
because learning a quadratic reward matrix around
an example path does not readily generalize to other
states in a non-LQR task. Because of this, such meth-
ods have only been applied to tasks that conform to
the LQR assumptions (Ziebart, 2010). Our method
also uses a quadratic expansion of the reward func-
tion, but instead of learning the values of a quadratic
reward matrix directly, it learns a general parameter-
ized reward using its Hessian and gradient. As we
show in Section 5, a particularly efficient variant of
our algorithm can be derived when the dynamics are
linearized, and this derivation can in fact follow from
standard LQR assumptions. However, this approxi-
mation is not required, and the general form of our
algorithm does not assume linearized dynamics.

Most previous methods also assume that the expert
demonstrations are globally optimal or near-optimal.
Although this makes the examples more informative
insofar as the learning algorithm can extract relevant
global information, it also makes such methods unsuit-
able for learning from examples that are only locally
optimal. As shown in the evaluation, our method can
learn rewards even from locally optimal examples.

3. Background

We address deterministic, fixed-horizon control tasks
with continuous states x = (x1,...,xr)"T, continuous
actions u = (uy,...,ur)?, and discrete time. Such
tasks are characterized by a dynamics function F,
which we define as

]:(Xt—h llt) = Xt,

as well as a reward function r(x¢, u;). Given the initial
state xg, the optimal actions are given by

u = arg max E r(xe, ug).
u
t

IOC aims to find a reward function r under which the
optimal actions match the expert’s demonstrations,

—

Figure 1. A trajectory that is locally optimal but glob-
ally suboptimal (black) and a globally optimal trajectory
(grey). While prior methods usually require globally opti-
mal examples, our approach can use examples that are only
locally optimal. Warmer colors indicate higher reward.

given by D = {(x((Jl), u), ..., (x((Jn)7 u™)}. The al-
gorithm might also be presented with reward features
f: (x¢,us) — R that can be used to represent the un-
known reward r. Unfortunately, real demonstrations
are rarely perfectly optimal, so we require a model
for the expert’s behavior that can explain subopti-
mality or “noise.” We employ the maximum entropy
IRL (MaxEnt) model (Ziebart et al., 2008), which is
closely related to linearly-solvable MDPs (Dvijotham
& Todorov, 2010). Under this model, the probability
of the actions u is proportional to the exponential of
the rewards encountered along the trajectory:*

P(ulxg) = %exp <Z T(Xt,ut)> ) (1)

t

where Z is the partition function. Under this model,
the expert follows a stochastic policy that becomes
more deterministic when the stakes are high, and more
random when all choices have similar value. In prior
work, the log likelihood derived from Equation 1 was
maximized directly. However, computing the partition
function Z requires finding the complete policy under
the current reward, using a variant of value iteration
(Ziebart, 2010). In high dimensional spaces, this be-
comes intractable, since this computation scales expo-
nentially with the dimensionality of the state space.

In the following sections, we present an approxima-
tion to Equation 1 that admits efficient learning in
high dimensional, continuous domains. In addition to
breaking the exponential dependence on dimensional-
ity, this approximation removes the requirement that
the example trajectories be globally optimal, and only
requires approximate local optimality. An example of
a locally optimal but globally suboptimal trajectory is
shown in Figure 1: although another path has a higher
total reward, any local perturbation of the trajectory

decreases the reward total.

'In the case of multiple example trajectories, their prob-
abilities are simply multiplied together to obtain P(D).
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4. I0C with Locally Optimal Examples

To evaluate Equation 1 without computing the par-
tition function Z, we apply the Laplace approxima-
tion, which locally models the distribution as a Gaus-
sian (Tierney & Kadane, 1986). Note that this is not
equivalent to modeling the reward function itself as a
Gaussian, since Equation 1 uses the sum of the rewards
along a path. In the context of IOC, this corresponds
to assuming that the expert performs a local optimiza-
tion when choosing the actions u, rather than global
planning. This assumption is strictly less restrictive
than the assumption of global optimality.

Using r(u) to denote the sum of rewards along path
(x0,u), we can write Equation 1 as

—1
P(ulxg) = "W {/ er(ﬁ)dﬁ] .

We approximate this probability using a second order
Taylor expansion of r around u:

@)~ () + (@ - w5 )T (- ),

Denoting the gradient % as g and the Hessian g—f;; as

H, the approximation to Equation 1 is given by

-1
P(ufxo) ~ e"™ {/ er(u)+(ﬁu)Tg+é(ﬁ“)TH(ﬁ“)dﬁ}

- {/ e—égTH1g+é(H(ﬁ—u)+g)THI(H(ﬁ—U)+g)dﬁ]

u

= che e ] om) %,
from which we obtain the approximate log likelihood

L= 1gTHflg + 1log |-H| — b log2m.  (2)
2 2 2
Intuitively, this likelihood indicates that reward func-
tions under which the example paths have small gradi-
ents and large negative Hessians are more likely. The
magnitude of the gradient corresponds to how close
the example is to a local peak in the (total) reward
landscape, while the Hessian describes how steep this
peak is. For a given parameterization of the reward,
we can learn the most likely parameters by maximizing
Equation 2. In the next section, we discuss how this
objective and its gradients can be computed efficiently.

5. Efficient Likelihood Optimization

We can optimize Equation 2 directly with any opti-
mization method. The computation is dominated by
the linear system H~'g, so the cost is cubic in the

path length T" and the action dimensionality. We will
describe two approximate algorithms that evaluate the
likelihood in time linear in T" by linearizing the dynam-
ics. This greatly speeds up the method on longer ex-
amples, though it should be noted that modern linear
solvers are well optimized for symmetric matrices such
as H, making it quite feasible to evaluate the likeli-
hood without linearization for moderate length paths.

To derive the approximate linear-time solution to
H™ g, we first express g and H in terms of the deriva-
tives of r with respect to x and u individually:

o "o

€7 9u "ou ox’
g J g

w0 oxT o ox 0 or
T Qu2 du I9x2 Ou  OuZ Ix
S e N
H J H JT H g

Since 7(x¢, u;) depends only on the state and action at
time ¢, H and H are block diagonal, with T" blocks. To
build the Jacobian J, we differentiate the dynamics:

oF Oxp
Tm(xt_hut) = 87ut = By,
(9}— 6xt
—_— _ = = A .
%1 (Xt 17ut) %1 t

Future actions do not influence past states, so J is
block upper triangular. Using the Markov property,
we can express the nonzero blocks recursively:

J axtl T B;Il, tl = t2
tity = =
PR Owy, Jtl,t171A;Fl, t1 > 12

We can now write g and H almost entirely in terms of
matrices that are block diagonal or block triangular.
Unfortunately, the final second order term H does not
exhibit such convenient structure. In particular, the
Hessian of the last state x7 with respect to the actions
u can be arbitrarily dense. We will therefore disregard
this term. Since H is zero only when the dynamics are
linear, this corresponds to linearizing the dynamics.

5.1. Direct Likelihood Evaluation

We first describe an approach for directly evaluating
the likelihood under the assumption that H is zero.
We first exploit the structure of J to evaluate Jg in
time linear in 7', which is essential for computing g.
This requires a simple recursion from ¢ =T to 1:

D8l « Bl (g +2{) 20"V « AT (g +2"), (3)

where zg accumulates the product of g with the off-
diagonal elements of J. The linear system h = H™ g
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can be solved with a stylistically similar recursion. We
first use the assumption that H is zero to factor H:

H = (HP + JH)JT,
where PJT = I. The nonzero blocks of P are
P = BI Pii1= —BIAt,

and BI is a pseudoinverse of the potentially nonsquare
matrix B;. This linear system is solved in two passes:
an upward pass to solve (fIP + JI:I)B =g, and a
downward pass to solve JTh = h. Each pass is a block
generalization of forward or back substitution and, like
the recursion in Equation 3, can exploit the structure
of J to run in time linear in T. However, the upward
pass must also handle the off-diagonal entries of P
and the potentially nonsquare blocks of J, which are
not invertible. We therefore only construct a partial
solution on the upward pass, with each h, expressed
in terms of h;_;. The final values are reconstructed
on the downward pass, together with the solution h.
The complete algorithm computes h = H™!g and the
determinant |—H]| in time linear in 7', and is included
in Appendix A of the supplement.

For a given parameterization of the reward, we deter-
mine the most likely parameters by maximizing the
likelihood with gradient-based optimization (LBFGS
in our implementation). This requires the gradient of
Equation 2. For a reward parameter 0, the gradient is

oL 49g 1. 40H 1 [ OH
=G gh G g (H ae)

As before, the gradients of g and H can be expressed
in terms of the derivatives of r at each time step, which
allows us to rewrite the gradient as

3£ 08 081 T
— ——hy; J hly 4
1 aH i _
2 Z = Yetij — huihyy) +

tig
3 Z 8Hm (DTH " 3ss5 — (306 [ITh]y;) +

tig

08t v

o Z Sti Z tthjkI - htljhtzk) Ht1t2jkti7

tltgjk

where [H™1];;; denotes the ij*® entry in the block tt.
The last sum vanishes if H is zero, so all quantities
can be computed in time linear in 7. The diagonal
blocks of H™! and JTH™'J can be computed while
solving for h = H~'g, as shown in Appendix A of
the supplement. To find the gradients for any reward
parameterlzatlon we can compute the gradients of g,
g, H and H, and then apply the above equation.

5.2. LQR-Based Likelihood Evaluation

While the approximate likelihood in Equation 2 makes
no assumptions about the dynamics of the MDP,
the algorithm in Section 5.1 linearizes the dynam-
ics around the examples. This matches the assump-
tions of the commonly studied linear-quadratic regula-
tor (LQR) setting, and suggests an alternative deriva-
tion of the algorithm as IOC in a linear-quadratic sys-
tem, with linearized dynamics given by A; and By,
quadratic reward matrices given by the diagonal blocks
of H and H, and linear reward vectors given by g and
g. A complete derivation of the resulting algorithm
is presented in Appendix B of the supplement, and is
similar to the MaxEnt LQR IOC algorithm described
by Ziebart (Ziebart, 2010), with an addition recursion
to compute the derivatives of the parameterized re-
ward Hessians. Since the gradients are computed re-
cursively, this method lacks the convenient form pro-
vided by Equation 4, but may be easier to implement.

6. Algorithms for IOC with Locally
Optimal Examples

We can use the objective in Equation 2 to learn reward
functions with a variety of representations. We present
one variant that learns the reward as a linear combi-
nation of features, and a second variant that uses a
Gaussian process to learn nonlinear reward functions.

6.1. Learning Linear Reward Functions

In the linear variant, the algorithm is provided with
features f that depend on the state x; and action u,.
The reward is given by r(x;, us) = 07f(x¢, uy), and the
weights 0 are learned. Letting g(®), g(®), H® and
H*) denote the gradients and Hessians of each feature
with respect to actions and states, the full gradients
and Hessians are sums of these quantities, weighted
by 0 —eg, 8=, g#)@,. The gradient of g with
respect to 6y is simply g*), and the gradients of the
other matrices are given analogously. The likelihood
gradient is then obtained from Equation 4.

When evaluating Equation 2, the log determinant of
the negative Hessian is undefined when the determi-
nant is not positive. This corresponds to the example
path lying in a valley rather than on a peak of the
energy landscape. A high-probability reward function
will avoid such cases, but it is nontrivial to find an
initial point for which the objective can be evaluated.
We therefore add a dummy regularizer feature that
ensures that the negative Hessian has a positive deter-
minant. This feature has a gradient that is uniformly
zero, and a Hessian equal to the negative identity.
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The initial weight 6, on this feature must be set such
that the negative Hessians of all example paths are
positive definite. We can find a suitable weight simply
by doubling 6, until this requirement is met. During
the optimization, we must drive 6, to zero in order
to solve the original problem. In this way, 6, has the
role of a relaxation, allowing the algorithm to explore
the parameter space without requiring the Hessian to
always be negative definite. Unfortunately, driving
0, to zero too quickly can create numerical instabil-
ity, as the Hessians become ill-conditioned or singular.
Rather than simply penalizing the regularizing weight,
we found that we can maintain numerical stability and
still obtain a solution with 6, = 0 by using the Aug-
mented Lagrangian method (Birgin & Martinez, 2009).
This method solves a sequence of maximization prob-
lems that are augmented by a penalty term of the form
69)(0,) = %Mu‘)@g LA,

where 1119 is a penalty weight, and AU) is an estimate
of the Lagrange multiplier for the constraint 6, = 0.
After each optimization, U+ is increased by a factor
of 10 if 6, has not decreased, and AU is set to

AGHD G @D,

This approach allows 6, to decrease gradually with
each optimization without using large penalty terms.

6.2. Learning Nonlinear Reward Functions

In the nonlinear variant of our algorithm, we represent
the reward function as a Gaussian process (GP) that
maps from feature values to rewards, as proposed by
Levine et al. (Levine et al., 2011). The inputs of the
Gaussian process are a set of inducing feature points
F = [f'...£f"]T, and the noiseless outputs y at these
points are learned. The location of the inducing points
can be chosen in a variety of ways, but we follow Levine
et al. and choose the points that lie on the example
paths, which concentrates the learning on the regions
where the examples are most informative. In addition
to the outputs y, we also learn the hyperparameters A
and f that describe the GP kernel function, given by

k(£ f7) = Bexp (—; Z)\k [(f,ﬁ — f,Z)2 + 1#]'02}) )
k

This kernel is a variant of the radial basis function
kernel, regularized by input noise o2 (since the outputs
are noiseless). The GP covariance is then defined as
K;; = k(f%, £7), producing the following GP likelihood:

1 oo
logP(y, A, BIF)=—-y K

1
5 1y—§ log |K|+log P(A

The last term in the likelihood is the prior on the
hyperparameters. This prior encourages the feature
weights A to be sparse, and prevents degeneracies that
occur as y — 0. The latter is accomplished with
a prior that encodes the belief that no two inducing
points are deterministically dependent, as captured by
their partial correlation:

log P(\, B|F) = —ftr

Zlog (M +1)

This prior is discussed in more detail in previous work
(Levine et al., 2011). The reward at a feature point
f(x¢,u:) is given by the GP posterior mean, and can
be augmented with a set of linear features f;:
r(xp,uz) = ke + 0T (x4, 1),

where o« = K~ 'y, and k; is a row vector corresponding
to the covariance between f(x¢,u;) and each inducing
point f¢ given by ki = k(f(x¢,us),f?). The exact
log likelihood, before the proposed approximation, is
obtained by using the GP likelihood as a prior on the
10C likelihood in Equation 1:

log P(ufxo) = Y r(xs,ur) — log Z + log P(y, A, B|F).

t

Only the IOC likelihood is altered by the proposed ap-
proximation. The gradient and Hessian of the reward
with respect to the states are

0%k,
8Xt

. ok .
gt = —La+ gy)

[,
8Xt @t

and I:It =

and the kernel derivatives are given by

ok, Z Ok 1

aXt 8ft
0%ky akt ® 0Kt (k) 4 (k)
02 Z off off Bt B

1,72

The feature derivatives g(*) and H®*) are defined in the
previous section, and g and H are given analogously.
Using these quantities, the likelihood can be computed
as described in Section 5. The likelihood gradients are
derived in Appendix C of the supplement.

This algorithm can learn more expressive rewards in
domains where a linear reward basis is not known, but
with the usual bias and variance tradeoff that comes
with increased model complexity. As shown in our
evaluation, the linear method requires fewer examples
when a linear basis is available, while the nonlinear
variant can work with much less expressive features.
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true reward linear variant nonlinear variant

N K

Figure 2. Robot arm rewards learned by our algorithms for
a 4-link arm. One of eight examples is shown.

7. Evaluation

We evaluate our method on simulated robot arm con-
trol, planar navigation, and simulated driving. In the
robot arm task, the expert sets continuous torques on
each joint of an n-link planar robot arm. The reward
depends on the position of the end-effector. Each link
has an angle and a velocity, producing a state space
with 2n dimensions. By changing the number of links,
we can vary the dimensionality of the task. An exam-
ple of a 4-link arm is shown in Figure 2. The complex-
ity of this task makes it difficult to compare with prior
work, so we also include a simple planar navigation
task, in which the expert takes continuous steps on a
plane, as shown in Figure 3. Finally, we use human-
created examples on a simulated driving task, which
shows how our method can learn complex policies from
human demonstrations on a more realistic domain.

The reward function in the robot arm and navigation
tasks has a Gaussian peak in the center, surrounded
by four pits. The reward also penalizes each action
with the square of its magnitude. The IOC algorithms
are provided with a grid of 25 evenly spaced Gaussian
features and the squared action magnitude. In the
nonlinear test in Section 7.2, the Cartesian coordinates
of the arm end-effector are provided instead of the grid.

We compare the linear and nonlinear variants of our
method with the MaxEnt IRL and OptV algorithms
(Ziebart et al., 2008; Dvijotham & Todorov, 2010). We
present results for the linear time algorithm in Sec-
tion 5.1, though we found that both the LQR variant
and the direct, non-linearized approach produced sim-
ilar results. MaxEnt used a grid discretization for both
states and actions, while OptV used discretized actions
and adapted the value function features as described
by Dvijotham and Todorov. Since OptV cannot learn
action-dependent rewards, it was provided with the
true weight for the action penalty term.

To evaluate a learned reward, we first compute the op-
timal paths with respect to this reward from 32 ran-
dom initial states that are not part of the training set.
We also find the paths that begin in the same initial
states but are optimal with respect to the true reward.
In both cases, we compute evaluation paths that are

MaxEnt OptV

. i 2 b i B b A < —
o e o T ~
el atel ate A

Y -—- L -— -—
Figure 3. Planar navigation rewards learned from 16 lo-
cally optimal examples. Black lines show optimal paths for
each reward originating from example initial states. The

rewards learned by our algorithms better resemble the true
reward than those learned by prior methods.

true reward linear nonlinear

globally optimal, by first solving a discretization of
the task with value iteration, and then finetuning the
paths with continuous optimization. Once the evalu-
ation paths are computed for both reward functions,
we obtain a reward loss by subtracting the true reward
along the learned reward’s path from the true reward
along the true optimal path. This loss is low when the
learned reward induces the same policy as the true
one, and high when the learned reward causes costly
mistakes. Since the reward loss is measured entirely
on globally optimal paths, it captures how well each
algorithm learns the true, global reward, regardless of
whether the examples are locally or globally optimal.

7.1. Locally Optimal Examples

To test how well each method handles locally optimal
examples, we ran the navigation task with increasing
numbers of examples that were either globally or lo-
cally optimal. As discussed above, globally optimal
examples were obtained with discretization, while lo-
cally optimal examples were computed by optimizing
the actions from a random initialization. Each test
was repeated eight times with random initial states
for each example.

The results in Figure 4 show that both variants of
our algorithm converge to the correct policy. The lin-
ear variant requires fewer examples, since the features
form a good linear basis for the true reward. MaxFnt
assumes global optimality and does not converge to the
correct policy when the examples are only locally op-
timal. It also suffers from discretization error. OptV

. globally optimal examples . locally optimal examples

— Linear

— Nonlinear
MaxEnt

= QptV.

— Linear

— Nonlinear
MaxEnt

— OptV

w
w

reward loss
~

reward loss
N

—

— S—

4 32 64 4

o
o

32 64

16
examples

16
examples

Figure 4. Reward loss for each algorithm with either glob-
ally or locally optimal planar navigation examples. Prior
methods do not converge to the expert’s policy when the
examples are not globally optimal.
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grid features position features

4 4
BN —Linear —— e
N
Bar — Nonlinear a3 — Nonlinear
~
Ko} — MaxEnt o off scale MaxEnt
D2 B seale Qptv T2 off scale OptV
@ — @
2 2
e ;\ :: 2 \\L
0 0
4 8 64 4 8 64

16 32 16 32
examples examples

Figure 5. Reward loss for each algorithm with the Gaussian
grid and end-effector position features on the 2-link robot
arm task. Only the nonlinear variant of our method could
learn the reward using only the position features.

has difficulty generalizing the reward to unseen parts
of the state space, because the value function features
do not impose meaningful structure on the reward.

7.2. Linear and Nonlinear Rewards

On the robot arm task, we evaluated each method with
both the Gaussian grid features, and simple features
that only provide the position of the end effector, and
therefore do not form a linear basis for the true reward.
The examples were globally optimal. The number of
links was set to 2, resulting in a 4-dimensional state
space. Only the nonlinear variant of our algorithm
could successfully learn the reward from the simple
features, as shown in Figure 5. Even with the grid
features, which do form a linear basis for the reward,
MaxEnt suffered greater discretization error due to
the complex dynamics of this task, while OptV could
not meaningfully generalize the reward due to the in-
creased dimensionality of the task.

7.3. High Dimensional Tasks

To evaluate the effect of dimensionality, we increased
the number of robot arm links. As shown in Figure 6,
the processing time of our methods scaled gracefully
with the dimensionality of the task, while the qual-
ity of the reward did not deteriorate appreciably. The
processing time of OptV increased exponentially due
to the action space discretization. The MaxEnt dis-
cretization was intractable with more than two links,
and is therefore not shown.

robot arm reward loss

- robot arm processing time

— Linear

23 — Nonlinear 1500
»
o off scale MaxEnt o
c
22 off scale OptV g 1000
g @
z »
1 500
%2 3 4 5 6 7 8 0
links

Figure 6. Reward loss and processing time with increasing
numbers of robot arm links n, corresponding to state spaces
with 2n dimensions. Our methods efficiently learn good
rewards even as the dimensionality is increased.

average time time in
style path speed behind front
. learned | 158.1 kph | 3.5 sec 12.5 sec
ABBICSSIVE iman | 158.2 kph | 3.5 sec | 16.7 sec
ovasive learned | 150.1 kph | 7.2 sec 3.7 sec
human | 149.5 kph | 4.5 sec 2.8 sec
tailgater learned | 97.5 kph 111.0 sec | 0.0 sec
human | 115.3 kph | 99.5 sec 7.0 sec

Table 1. Statistics for sample paths for the learned driv-
ing rewards and the corresponding human demonstrations
starting in the same initial states. The statistics of the
learned paths closely resemble the holdout demonstrations.

7.4. Human Demonstrations

We evaluate how our method handles human demon-
strations on a simulated driving task. Although driv-
ing policies have been learned by prior IOC methods
(Abbeel & Ng, 2004; Levine et al., 2011), their discrete
formulation required a discrete simulator where the
agent makes simple decisions, such as choosing which
lane to switch to. In constrast, our driving simulator
is a fully continuous second order dynamical system.
The actions correspond directly to the gas, breaks, and
steering of the simulated car, and the state space in-
cludes position, orientation, and linear and angular
velocities. Because of this, prior methods that rely on
discretization cannot tractably handle this domain.

We used our nonlinear method to learn from sixteen
13-second examples of an aggressive driver that cuts off
other cars, an evasive driver that drives fast but keeps
plenty of clearance, and a tailgater who follows closely
behind the other cars. The features are speed, devi-
ation from lane centers, and Gaussians covering the
front, back, and sides of the other cars on the road.
Since there is no ground truth reward for these tasks,
we cannot use the reward loss metric. We follow prior
work and quantify how much the learned policy resem-
bles the demonstration by using task-relevant statistics
(Abbeel & Ng, 2004). We measure the average speed
of sample paths for the learned reward and the amount
of time they spend within two car-lengths behind and
in front of other cars, and compare these statistics with
those from an unobserved holdout set of user demon-
strations that start in the same initial states. The re-
sults in Table 1 show that the statistics of the learned
policies are similar to the holdout demonstrations.

Figure 7. Learned driving style rewards.
reward is high in front of other cars, the evasive one avoids
them, and the tailgater reward is high behind the cars.

The aggressive
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Plots of the learned rewards are shown in Figure 7.
Videos of the optimal paths for the learned rewards
can be downloaded from the project website, along
with the supplementary appendices and source code:
http://graphics.stanford.edu/projects/cioc.

8. Discussion and Future Work

We presented an I0C algorithm designed for continu-
ous, high dimensional domains. Our method remains
efficient in high dimensional domains by using a local
approximation to the reward function likelihood. This
approximation also removes the global optimality re-
quirement for the expert’s demonstrations, allowing
the method to learn the reward from examples that
are only locally optimal. Local optimality can be eas-
ier to demonstrate than global optimality, particularly
in high dimensional domains. As shown in our evalua-
tion, prior methods do not converge to the underlying
reward function when the examples are only locally op-
timal, regardless of how many examples are provided.

Since our algorithm relies on the derivatives of the re-
ward features to learn the reward function, we require
the features to be differentiable with respect to the
states and actions. These derivatives must be pre-
computed only once, so it is quite practical to use fi-
nite differences when analytic derivatives are unavail-
able, but features that exhibit discontinuities are still
poorly suited for our method. Our current formulation
also only considers deterministic, fixed-horizon control
problems, and an extension to stochastic or infinite-
horizon cases is an interesting avenue for future work.

In addition, although our method handles examples
that lack global optimality, it does not make use of
global optimality when it is present: the examples
are always assumed to be only locally optimal. Prior
methods that exploit global optimality can infer more
information about the reward function from each ex-
ample when the examples are indeed globally optimal.

An exciting avenue for future work is to apply this ap-
proach to other high dimensional, continuous problems
that have previously been inaccessible for inverse opti-
mal control methods. One challenge with such applica-
tions is to generalize and impose meaningful structure
in high dimensional tasks without requiring detailed
features or numerous examples. While the nonlinear
variant of our algorithm takes one step in this direc-
tion, it still relies on features to generalize the reward
to unseen regions of the state space. A more sophisti-
cated way to construct meaningful, generalizable fea-
tures would allow IOC to be easily applied to complex,
high dimensional tasks.
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