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Abstract
We study the new feature utility prediction
problem: statistically testing whether adding
a feature to the data representation can im-
prove the accuracy of a current predictor. In
many applications, identifying new features
is the main pathway for improving perfor-
mance. However, evaluating every poten-
tial feature by re-training the predictor can
be costly. The paper describes an efficient,
learner-independent technique for estimating
new feature utility without re-training based
on the current predictor’s outputs. The
method is obtained by deriving a connec-
tion between loss reduction potential and the
new feature’s correlation with the loss gradi-
ent of the current predictor. This leads to
a simple yet powerful hypothesis testing pro-
cedure, for which we prove consistency. Our
theoretical analysis is accompanied by empir-
ical evaluation on standard benchmarks and
a large-scale industrial dataset.

1. Introduction

In many mature learning applications, training algo-
rithms are advanced and well-tuned, making the dis-
covery and addition of new, informative features the
primary driver of error reduction. New feature de-
sign strategies include addition of previously unused
descriptive signal sources, as well as various methods
that derive new features from the existing represen-
tation. A newly proposed feature is typically evalu-
ated by augmenting it to the data representation and
re-running the training and validation procedures to
observe the resulting difference in predictive accuracy.
However, re-training carries significant costs in many
real-world applications:
• Computational costs: large-scale domains (e.g.,

web search and advertising) often employ com-
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putationally expensive learners and large training
datasets. This imposes experimentation latency
that is a barrier to rapid feature prototyping.

• Logistical costs: training processes for industry
tasks are often componentized across large infras-
tructure pipelines, running which requires domain
expertise. Potential feature contributors lacking
such expertise are hence deterred from evaluating
their features by the training pipeline complexity.

• Monetary costs: in the domains of medical and fi-
nance applications, new feature values may be un-
available for the entire training set or may carry
non-negligible costs, calling for methods that pre-
dict their utility based on a sampled subset.

These costs call for feature utility prediction meth-
ods that do not rely on re-training, instead view-
ing the learner as a black box constructing a best-
possible predictor from a chosen model class. The
black-box assumption implies that the only description
of the learned predictor is provided via its evaluation
on labeled data (e.g., on a hold-out set or via cross-
validation), on which its outputs are compared with
true target values via a task-appropriate loss func-
tion. Thus, our objective is to design a computation-
ally inexpensive algorithm for statistically determining
whether adding a new feature can potentially reduce
the expected loss, given the current predictor.

To derive a principled algorithm for the problem, we
prove that under mild assumptions, testing whether a
feature can yield predictive accuracy gains is equiva-
lent to testing its correlation with the negative loss gra-
dient, against which we train a squared-loss regressor.
To construct a provably consistent hypothesis test, we
form a null distribution by bootstrapping the marginal
distributions. The overall algorithm is easily paral-
lelizable, does not require re-training, and works on
subsampled datasets, making it particularly appropri-
ate for large data contexts. The method is applicable
to a wide variety of learning tasks, requiring only esti-
mates of the functional gradient of the loss, which can
be approximated even for discontinuous losses that are
common in structured tasks, i.e., ranking.
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The rest of the paper is organized as follows: Section
2 describes related work, followed by Section 3 that
formally defines the problem and motivates the ap-
proach. Section 4 describes our method and provides
theoretical analysis. Section 5 summarizes empirical
evaluation of the approach, followed by discussion of
future work and conclusions in Sections 6 and 7.

2. Related Work

The task addressed in this paper – efficient esti-
mation of predictive utility for new features with-
out re-training – is related yet distinct from three
known problems: feature selection (Guyon & Elisse-
eff, 2003), active feature acquisition (Saar-Tsechansky
et al., 2009), and feature extraction (Krupka et al.,
2008). While these tasks also involve estimating mea-
sures of feature importance, they have different objec-
tives. Critically, many techniques for these problems
rely on re-training, while our motivation is avoiding it.

In contrast to our setting, where the objective is to
efficiently triage new features for addition, feature
selection aims to remove unnecessary existing fea-
tures (Guyon & Elisseeff, 2003). Representatives in-
clude wrapper approaches that utilize multiple rounds
of re-training with feature subsets, methods that use
prediction results for instances with permuted or dis-
torted feature values (Breiman, 2001; Kononenko,
1994), and filter techniques that rely on joint statis-
tics of features and class labels (Song et al., 2007).

Feature acquisition aims to incrementally select indi-
vidual feature values for addition to the dataset via
estimating their expected utility, and can be viewed
as a feature-focused variant of active learning (Li-
zotte et al., 2003; Saar-Tsechansky et al., 2009). Pro-
posed solutions rely on expensive value-of-information
computation, making them prohibitive for our setting.
Feature extraction methods attempt to construct new
joint features that combine individual attributes by
evaluating their dependency structure (Della Pietra
et al., 1997; Krupka et al., 2008). In contrast, our
approach seeks to directly evaluate the possibility of
improvement in prediction accuracy for new features.

On the theoretical side, several approaches have used
bootstrapping or permutation tests to assess predictive
value of features (Fromont, 2007; Anderson & Robin-
son, 2001; Ojala & Garriga, 2010). These methods
typically utilize the tests to assess the generalizability
of results obtained on the finite sample case, a well-
known property (Van der Vaart & Wellner, 1996).

Also of note is recent work on testing for the statis-
tical independence of features, a key component of
our analysis (Gretton & Györfi, 2010). In particular,

there has been active work for kernel methods that use
the Hilbert-Schmidt Independence Criteria (Sriperum-
budur et al., 2010; Song et al., 2007; Gretton et al.,
2008). While our approach also relies on functional
analysis techniques, it provides an alternative that
does not rely on kernels, instead using standard corre-
lation methods, similarly in spirit to (Huang, 2010).

3. New Feature Utility & Independence

We consider the standard inductive learning setting,
where training data is a set of samples of random vari-
able pairs, (Xi, Yi) from an unknown joint distribution
function PX,Y , corresponding to data instances de-
scribed by feature values Xi and prediction targets Yi.
Learning corresponds to finding a predictor function f0
from some function class FX that minimizes expected
loss EL(f(X), Y ) for a given loss function L encoding
the application-appropriate error measure:

f0 = argmin
f∈FX

EL(f(X), Y ) (1)

The new feature utility prediction problem can be
posited as determining whether adding an additional
random variable, X ′, to the data representation can
result in reduction of expected loss if the predictor
was re-trained with it. We designate the function
class for predictors on the resulting representation as
FX,X′ = F ; it subsumes function classes FX and FX′

which are restricted to predictors that depend only on
feature sets X or X ′ respectively. Formally,

FX =
{
f ∈ F : ∃ g s.t. f(X,X ′)

a.s.
= g(X)

}
FX′ =

{
f ∈ F : ∃ g s.t. f(X,X ′)

a.s.
= g(X ′)

}
Then, the new feature utility prediction problem can
be formalized as the hypothesis test of:

(H1) min
f∈F

EL(f(X,X ′), Y ) < EL(f0(X), Y )

against the null hypothesis H0 in which they are equal.
In other words, we define feature utility as the capa-
bility of the feature to lower the expected predictor
loss in the infinite sample case (i.e., w.r.t. to the true
distributions). Thus, we use the theoretical paradigm
in which our “test set” is the true distribution.

To motivate the approach, consider the ideal feature
evaluation test: determining whether X ′ ⊥ Y | X, i.e.
if X ′ is independent of Y given X. If this is answered
in the affirmative – the null hypothesis H0 is true –
then X ′ contains no additional information about Y
that is not already contained in X, and hence the loss
cannot be reduced. Otherwise, knowing X ′ provides
information that can be exploited to construct a better
predictor as long as F is sufficiently rich. However, this
ideal test is expensive to perform (Huang, 2010; Song,
2009; Su & White, 2008).
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Instead of the ideal conditional independence test, we
consider a more restricted test that seeks to determine
whether X ′ ⊥ λ(f0(X), Y ) for some function λ capable
of capturing the part of Y that could not be predicted
by f0(X). If this is answered in the affirmative for an
appropriate λ, then X ′ contains no additional infor-
mation about Y that is not already contained in X.
Otherwise, knowing X ′ provides some new informa-
tion that can be utilized to create a better predictor.
In the next section, we show that for a broad class of
loss functions and predictor classes, we can construct
a λ and test independence by maximizing the correla-
tion between g(X ′) and λ(f0(X), Y ) for g ∈ FX′ . We
show this test to be equivalent to testing:

(H ′1) ∃ g ∈ FX′ such that

EL(f0(X) + g(X ′), Y ) < EL(f0(X), Y )

against the null (H ′0) in which such g does not exist. In
the following sections, we develop a consistent test for
(H ′1) against (H ′0) under mild regularity assumptions
on the predictor class and the loss function L(·, Y ).

4. A Consistent Feature Utility Test
In this section, we present a theoretical description
of our approach and prove, under reasonable assump-
tions, that it provides an accurate test of whether a
new feature X ′ can improve prediction performance.
The key part of the proof, detailed in Section 4.2, is
the use of the bootstrap to test for the statistical inde-
pendence of the new feature to a residual function of
the current predictions. To set up this test, we first list
and discuss several assumptions on the predictor class
and the loss function. Then, in Section 4.1, we show a
sequence of equivalent formulations of our problem in
the context of the true joint distribution of (X,X ′, Y ).
The goal, reached in statement T4 of Theorem 4.2, is
a formulation that can be accurately tested in the fi-
nite sample case using the bootstrap. This formula-
tion, combined with a way to handle the optimization
component of the bootstrap test, leads to the practical
algorithm presented in Section 4.3.[Above summary

can be com-

pressed/culled

as-neeeded.]

Loss Function Assumptions. Our assumptions on
the loss minimized when searching for a predictor from
F are quite weak: finiteness, a type of strict mono-
tonicity, and an available direction of descent:

L1. Finiteness: ∀f ∈ F , E |L(f(X,X ′), Y )| <∞.
L2. Weak augmenting functional convexity:

For all f ∈ FX and g ∈ FX′ such that
EL(f(X), Y ) ≥ EL(f(X) + g(X ′), Y ) + η for
some η > 0, there ∃β > 0 s.t. ∀α ∈ [0, 1],
EL(f(X), Y ) ≥ EL(f(X) + αg(X ′), Y ) + αβη.

L3. A functional descent direction:
Let f0 be optimal in FX as given by (1).
Then either f0 is also optimal in F , or there

exists a random variable Λf0 dependent on
(X,X ′, Y ), with std (Λf0) = 1, such that,
∀h ∈ F in a sufficiently small neighborhood of
f0, E [Λf0(h(X,X ′)− f0(X))] > 0 implies that
EL(h(X,X ′), Y ) < EL(f(X), Y ).

Condition (L2) essentially imposes a type of strict
monotonicity on the function class away from the min-
imum. It is much weaker than convexity; all it requires
is that moving in the direction of a better optimizer
gives some improvement, even if it is relatively small.
Condition (L3) intuitively says there exists a direction
along which improvement in the expected loss is guar-
anteed – provided improvement is possible.

These assumptions are quite weak and cover many
non-convex, discontinuous loss functions. In the case
of a convex, differentiable loss function, however, we
show below that conditions (L2) and (L3) are satisfied
and Λf0 has an easy and natural form.

Prediction Functions Assumptions. The assump-
tions on the classes of prediction functions F , FX and
FX′ needed to prove consistency are the following:

F1. Closure under scaling: cf ∈ F ∀ f ∈ F , c ∈ R+.
F2. Closure under shifting: d+f ∈ F ∀ f ∈ F , d ∈ R.
F3. min

f∈F
EL(f(X,X ′), Y )≤min

g∈FX′
EL(f0(X)+g(X ′), Y ).

F4. ∀f ∈ F , f(X,X ′) is bounded, or, generally, F is
P -Donsker (Van der Vaart & Wellner, 1996).

These conditions, while seemingly obscure, are gener-
ally satisfied by most modern predictor classes. Condi-
tion (F3) states that training on all features will result
in a better predictor than one obtained by first train-
ing on a subset of features, then “patching” it with
the remaining features. This bound guarantees that
the improvement in loss on the full predictor can only
be greater than that obtained by a decomposed model.

The assumption (F4) – that F is P -Donsker – bounds
the flexibility of the class of classifiers. Intuitively, it
means that when working with an asymptotically large
sample, the behavior of the classifier is not inordinately
dominated by a few outlier values. This assumption
ensures the behavior of the bootstrap is reasonable –
two classifiers trained on different bootstrapped sam-
ples should not be wildly different. The boundedness
of f ∈ F , along with measurability assumptions, im-
plies this (Van der Vaart & Wellner, 1996), but virtu-
ally all machine learning algorithms used in practice
satisfy this assumption.

Correlated Features and the XOR Problem.
An obvious question to ask is: what about new fea-
tures that are only useful in conjunction with ex-
isting features (of which Y = X1 XOR X2, with
X1, X2

iid∼ Bernoulli
(
1�2
)

is the canonical example),
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wouldn’t assumption (L3) be violated and the ap-
proach fail to predict their utility? This intuition is
correct; however, when this situation occurs in prac-
tice, it is rarely in the absence of other modeling in-
formation indicating that it might be the case. As our
method allows for multiple variables to be tested as
a block, or existing features to be recycled by setting
one or more dimension of X ′ to specific dimensions of
X, such cases can easily be handled.

Connection to Convex Loss Functions. In the
case of a convex, differentiable loss functions, we show
that (L2) and (L3) are satisfied, and direction of de-
scent Λf0 can be defined by the distribution of the
negative gradient of the loss function, making it easily
computable in practice.

Theorem 4.1: Suppose that for ∀ y in the support
of Y , L(u, y) is convex and differentiable in u and sat-
isfies assumption (L1). Then (L2) and (L3) hold with
Λf0 given by

Λf0 = − 1

σ
λ(f0(X), Y ), λ(u, y) =

∂

∂u
L(u, y) (2)

where σ is defined to produce std (Λf0) = 1.

Proof. (L2)immediately follows;∀f ∈FX and h∈FX′,

L(f(X), Y )− L(f(X) + αh(X ′), Y )

≤ α [L(f(X), Y )− L(f(X) + h(X ′), Y )]

by the definition of convexity; taking expectations
yields the result. Now, using (L1) and the differen-
tiability of L, it is easy to show that the Gateaux
functional derivative dΓ(f ; h) (Van der Vaart, 2000)
of the functional Γ(f) = EL(f(X,X ′), Y ) is given
by dΓ(f ; h) = E [λ(f(X,X ′), Y )h(X,X ′, Y )] , with λ
given in (2). Now, dΓ(f ; h) defines a linear operator
in functional space in which dΓ(f ; h) gives the change
in Γ(f) in the direction h. (L3) and (2) immediately
follow from geometry.

4.1. Equivalent Tests

In this section, we show that testing (H ′1) is equivalent
to testing for the existence of a feature transform pos-
itively correlated with the loss gradient, which allows
designing a consistent bootstrap algorithm for it.

When evaluating a new feature, we are interested in
finding a function in FX′ that improves the expected
loss. In light of condition (L3), define

g0 = argmax
g∈FX′ : std (g(X′))=1

E g(X ′)Λf0 . (3)

as the function that most closely aligns with a direc-
tion of improvement. The following theorem connects
improvement in expected loss to this function.

Theorem 4.2: Suppose the loss function L and pre-
dictor class F satisfy conditions (L1)-(L3) and (F1)-
(F4). Let f0 = argmin f∈FX

EL(f(X), Y ), and let

Λf0 and g0 be as defined in (L3) and Eq. (3). Then
the following are equivalent:

T1. ∃ g ∈ FX′ that improves the expected loss:
EL(f0(X) + g(X ′), Y ) < EL(f0(X), Y ).

T2. min
β∈R+

EL(f0(X) + βg0(X ′), Y ) < EL(f0(X), Y ).

T3. E [g0(X ′) · Λf0 ] > 0.
T4. E [g0(X ′) · Λf0 ]− E g0(X ′)EΛf0 > 0.

Proof. First, we show that T1 implies T3. Suppose
that T1 is true. By (L2), EL(f0(X) + αg(X ′), Y ) <
EL(f0(X), Y ) for all α ∈ (0, 1]. As αg(X ′) ∈ FX′ ∀α,
by (F1), E [(αg(X ′)) · Λf0 ] > 0 for α > 0 sufficiently
small. Now, by (F1), g(X ′)/ std g(X ′) ∈ FX′ , thus

E [g0(X ′) · Λf0 ] ≥ E {[g(X ′)/ std (g(X ′)) ] · Λf0} > 0

as g(X ′)/ std (g(X ′)) is included in the optimization
of equation (3). Now, by (L3), T3 implies that
EL(f0(X) + β0g0(X ′), Y ) < EL(f0(X), Y ) for some
β0 > 0 sufficiently small. T2 follows, as

minβ∈R+ EL(f0(X) + βg0(X ′), Y )

≤ EL(f0(X) + β0g0(X ′), Y ) < EL(f0(X), Y )

T2 trivially implies T1, thus T1 - T3 are equivalent.
For the equivalence of T3 and T4 we show that, given
the closure of F under constant shifts, EΛf0 = 0.

Suppose EΛf0 = c 6= 0. Let ε > 0, and consider
the function g0(·) = εc. Now E εcΛf0 = εc2 > 0.
As f0(·) + εc ∈ FX ⊂ F by (F2), (L3) implies
that, for ε sufficiently small, EL(f0(X) + εc, Y ) <
EL(f0(X), Y ). This contradicts the optimality of f0 in
FX ; thus EΛf0 = 0, making T3 equivalent to T4.

4.2. A Consistent Hypothesis Test

The above proofs work for random variables with re-
spect to their true distributions; the bridge between
this and a practical algorithm is the bootstrap. As dis-
cussed earlier, we are interested in assessing the perfor-
mance of our predictor on the true distribution, which
requires a consistent test of whether

(H∗1 ) ∃ g∈FX′ s.t. E [g(X ′)− E g(X ′)] [Λf0− EΛf0 ]>0

against the null, where equality holds. By Theorem
4.2, we have that test (H∗1 ) is equivalent to (H ′1).

In the next theorem, we define an accurate hypoth-
esis test of (H∗1 ) and prove its consistency. The last
step needed is a good estimator Λ̂f0 of Λf0 generated
by the minimum-risk predictor f0 ∈ FX on the true
distribution. This is because we show the bias in the
bootstrap to be controlled by the standard deviation
of
√
n
(
Λf0−Λ̂f0

)
; in general, this is non-zero.

There are several ways to effectively control this bias.
One can assume that the true Λf0 is known or comes
from training on a much larger dataset, against which
the performance is actually evaluated. This is a com-
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mon scenario for many large-data domains. Also, one
can use methods known to asymptotically reduce the
bias, such as k-fold cross validation (Cornec, 2010).

Theorem 4.3: Let

K(Un, Vn) =
√
n

{
max
g∈FX′

(
E g(Un)Vn − [E g(Un)] [EVn]

)}
Let X̃ ′

D
=X ′ be a bootstrap sample of X ′, and let

Λ̃f0
D
= Λ̂f0 be a bootstrap sample of Λ̂f0, independent

from X̃ ′. Let F be the c.d.f. of K(X̃ ′,Λ̃f0), with quantile

function F−1(t) = inf
{
u>0 : P

(
K(X̃ ′, Λ̃f0)>u

)
≤ t
}
.

Fix α ∈ (0, 1), and set the critical point cα =
F−1(α). The test that accepts the alternative hypoth-
esis, (H∗1 ), for values of K(X ′,Λf0) ≥ cα, and re-
jects otherwise, has asymptotic level α and bias at
most max (F (cα + η)− α, α− F (cα − η)), where η =
√

8n
√

1− E Pn
Λf0Λ̂f0 .

Proof. Drop the subscript f0 from Λ and Λ̂ for con-
venience. From Th.4.2, we need a consistent test of

‖H − P ×Q‖G = max
g∈FX′

∣∣∣E g(X ′)Λ̂− E g(X ′)E Λ̂
∣∣∣ > 0

where H is the joint measure of X ′ and Λ̂, P , Q are the
respective marginal distributions, and G = FX′ × {I},
where I is the identity function. However, only their
empirical samples Hn, Pn, and Qn are available.

Let P̂n and Q̂n be the measures formed from an inde-
pendent bootstrap sample of X ′n = (x′1, ..., x

′
n) and

Λ̂ = (λ̂1, ..., λ̂n), and let Ĥn be the joint measure

formed from P̂n and Q̂n. Then let

Ẑn =
√
n
∥∥∥Ĥn − P̂n × Q̂n∥∥∥

G
, cα = inf

{
c : P (Ẑn > c) ≤ α

}
under these conditions, we reject the null if

√
n ‖Hn − Pn ×Qn‖G > cα.

From (Van der Vaart & Wellner, 1996), this test is
consistent with asymptotic level α. To complete the
proof, note that

max
g∈FX′

∣∣∣E g(X ′)Λ̂− E g(X ′)E Λ̂
∣∣∣

= max
g∈FX′

∣∣E g(X ′)Λ− E g(X ′)EΛ
∣∣

⊕ max
g∈FX′

∣∣∣E g(X ′)
(

Λ− Λ̂
)
− E g(X ′)E

(
Λ− Λ̂

)∣∣∣
where a = b⊕ c denotes |a− b| ≤ c. Now

max
g∈FX′

∣∣∣E g(X ′)
(

Λ− Λ̂
)
− E g(X ′)E

(
Λ− Λ̂

)∣∣∣
≤ max
g∈FX′

∣∣∣E g(X ′)
(

Λ− Λ̂
)∣∣∣+

∣∣∣E g(X ′)E
(

Λ− Λ̂
)∣∣∣

≤ max
g∈FX′

2

√
E g2(X ′)E

(
Λ− Λ̂

)2
(4)

≤ 2

√
E
(

Λ2 − 2ΛΛ̂ + Λ̂2
)

= 2
√

2

√
1− EΛΛ̂ (5)

where (4) follows from Liapunov’s and Jensen’s in-

equalities, and (5) uses std(Λ) = 1. Combing this
result with the bootstrap completes the proof.

4.3. A Feature Evaluation Algorithm

Performing the test requires obtaining a transform
that maximizes the inner product between the function
and the negative loss gradient. The following theorem
allows doing this by via squared-error loss minimiza-
tion for an appropriately weighted expectation.

Theorem 4.4: Suppose F satisfies assumptions (F1)
and (F2), and let Λf0 be defined as in (L3). Let

f∗1 = argmin
g∈FX′

E
[
g(X ′)− (Λf0 − EΛf0)

]2
f∗2 = argmax

g∈FX′ : std(g(X′))=1

E
[
g(X ′)Λf0

]
−
[
E g(X ′)

]
[EΛf0 ]. (6)

Then f∗2 (·) a.s.
= f∗1 (·)/ std (f∗1 (X ′)) .

Proof. Let Z = (Λf0 − EΛf0). Now, consider Eq.(6).
We can enforce std(g(X ′)) = 1 as follows:

f∗2 = argmax
g∈FX′

E
{[

g(X ′)

std(g(X ′))

]
Z

}
= argmax

g∈FX′

E (g(X ′)Z)

std(g(X ′))
.

This is invariant to scaling of g, and FX′ is closed
under scaling, so g is scaled to make std(g(X ′)) =
std(f∗1 (X ′)). Furthermore, E {(g(X ′)+c)Z} =
E g(X ′)Z+E cZ= E g(X ′)Z, so g is invariant to shifts.
As FX′ is closed under shifts, g is shifted so that
E g(X ′) = 0. Thus

g∗= argmax
g∈G

E g(X ′)Z= argmin
g∈G

E g2(X ′)−2E g(X ′)Z+ EZ2

where

G={g∈FX′ : std(g(X ′))=std(f∗1 (X ′)), E g(X ′)=0} .
Thus g∗ is exactly f∗1 , proving the theorem.

The practical implication of the theorem is that for
new feature values X′n = (X ′1, ..., X

′
n) and standard-

ized gradient samples Λ̂n = (Λ̂1, ..., Λ̂n), K in Theo-
rem 4.3 becomes

g∗= argmin
g∈FX′

1

n

n∑
i=1

[
g(X ′i)−Λ̂i

]2
= argmin

g∈FX′
E
[
g(X′n)−Λ̂n

]2
K(X′n, Λ̂n) =

√
n
[
E g∗(X′n)Λ̂n− E g∗(X′n) · E Λ̂n

]
(7)

which corresponds to least-squares regression regard-
less of loss L. This surprising result allows reducing
the new feature utility problem for a wide array of
learning tasks and loss functions to a standard task
for which powerful algorithms are readily accessible.

Using the bootstrap, this method is turned into a rig-
orous test for feature significance, summarized in Al-
gorithm 1. The p-value score corresponds to rejecting
or accepting the hypothesis that the new value will
lead to loss reduction. The algorithm also outputs the
number of null standard deviations by which the test
statistic v is above the null mean (the z-score), here
refered to as the utility score. As empirical evaluation
demonstrates, this score provides an accurate measure



Fast Prediction of New Feature Utility

Algorithm 1: Feature Relevance Test

Input: (X ′i, Λ̂i), i = 1, ..., n.
Output: Relevance Score of X ′ (p-value).
v ← K(X′n, Λ̂n), // K defined in (7).
for i = 1, ..., Nbootstrap do

X̃′ ← i.i.d. sample of n values from X′n.

Λ̃
† ← i.i.d. sample of n values from Λ̂n.

Λ̃ ←
(
Λ̃
† −mean(Λ̃

†
)
)
/ std

(
Λ̃
†)

ti ← K(X̃′, Λ̃),
return utility score as (v −mean(t))/ std(t),

p-value as prop. of t1,...,tn greater than v.

of relative feature utility, allowing to rank features for
which no null statistic ti is greater than v.

The method scales well to large-data tasks as the
Nbootstrap + 1 evaluations of K can be easily par-
allelized, X ′ is typically lower-dimensional than X,
and efficient distributed algorithms for least-squares
regression are well-studied (Bekkerman et al., 2012).

It is important to note that training a regressor g to
maximize correlation with the loss function gradient is
central to AnyBoost and MART views of boosting as
gradient descent in function space (Mason et al., 1999;
Friedman, 2001). Analogously, our approach can be
viewed as coordinate descent in function space.

5. Experimental Evaluation
5.1. Datasets

We evaluate the proposed approach on three learn-
ing tasks: calibrated binary classification, regression
and ranking. Standard loss functions are used for
each task: cross-entropy (log-loss) for calibrated clas-
sification, squared loss for regression, and NDCG for
ranking (Järvelin & Kekäläinen, 2002). Despite the
fact that NDCG is discontinuous, it satisfies assump-
tions (L1)-(L3), and its pointwise functional gradient
estimates can be approximated by aggregating pair-
wise cost differentials as described in (Burges, 2010).

For classification and regression, we use standard real-
task benchmarks from the UCI collection, Adult and
Housing. For ranking, we employ a large-scale indus-
trial search engine dataset, WebRanking. While it
uses thousands of individual features, they are grouped

into several dozen distinct information sources. Each
information source captures some document property
and yields multiple numeric features derived from the
property for a given query. For example, the Doc-
umentBody source yields features based on the doc-
ument’s text contents (e.g., various similarity mea-
sures w.r.t. the query), while the DocumentAnchor-
Text source yields analogous features based on the an-
notations of the document’s incoming links. The op-
erational setting for feature utility prediction in this
domain is to triage potential new information sources
considered for addition to the index, reducing the
computational and logistical costs that full re-training
would involve. Hence, we overload terminology and
refer to each source as a multi-dimensional “feature”.

Table 1 summarizes the datasets and loss functions
used in the experiments. We employ 10-fold cross-
validation for experiments on Adult and Housing,
and hence the number of instances refers to the en-
tire dataset size. For WebSearch, the number of
instances refers to the size of the validation fold (the
training set is much larger), and the number of features
refers to the number of information sources evaluated.

5.2. Methodology

Accuracy of feature utility prediction is evaluated
w.r.t. actual error improvements obtained via re-
training with the new feature included. Experimental
procedure can be summarized as follows:

1. Given dataset X comprised of d features,
X(1)..X(d), perform evaluation with all features
included to obtain complete data loss L(f∗).

2. For each feature X(i), perform evaluation on an
ablated dataset which excludes the feature, ob-

taining d corresponding predictors f
(¬i)
0 , i = 1..d.

Difference in accuracy ∆Li = L(f∗)−L(f
(¬i)
0 ) for

each predictor defines the actual utility of feature
X(i). For each trained predictor, per-instance val-
ues of loss gradient Λ̂

¬i are obtained.
3. Using Algorithm 1, a p-value and utility score for

each held-out feature is computed, where the util-
ity score is the correlation K(X(i), Λ̂¬i) normal-
ized w.r.t. bootstrap-based null distribution.

4. Feature scores and p-values are compared to the
actual utilities ∆Li.

Table 1. Dataset summary.

Name Task #Features #Instances Loss Loss gradient, ∂
∂fL(f, y)

Adult Classification 14 45222 Cross-entropy f−y
f(f−1)

Housing Regression 13 506 Squared loss f − y
WebSearch Ranking 26 741,325 NDCG λ-estimates (Burges, 2010)
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Figure 1. Predicted vs. actual feature utility

In the above procedure, “evaluation” in steps 1 and 2
refers to 10-fold cross-validation for UCI datasets, and
training followed by testing on the validation fold for
WebSearch. Gradient boosted trees were used for all
tasks (Friedman, 2001), using training loss correspond-
ing to each task. For ranking, the LambdaMART
tree boosting algorithm that optimizes NDCG was
used (Burges, 2010). Solving for optimal g(·) with
maximal correlation to negative loss gradient and the
corresponding bootstrap trials were performed using
boosted regression trees, optimizing for squared-error
loss as dictated by Theorem 4.4. Bootstrapping was
performed for 100 rounds.

5.3. Results and Discussion

Per-dataset plots in Figure 1 illustrate predicted vs.
actual utilities for each feature, reported as percent-
ages of the range obtained across all features, with ac-
tual utilities based on loss reduction due to feature be-
ing added, and predicted utilities based on scores pro-
duced by Algorithm 1. In other words, the feature with
highest actual and predicted utility appears at 100%
on horizontal and vertical axes, respectively. Features
for which actual utility is significant at p < 0.05 (over
validation folds) are demarkated.

As the results demonstrate, the proposed method iden-
tifies the features that produce actual accuracy gains
with very high recall: all features that are determined
to be insignificant indeed produce no meaningful ac-

curacy gains. While some of the features identified as
relevant did not in fact produce sizable accuracy gains,
this is expected: while a feature may have some pre-
dictive value, the predictor class or learning algorithm
may be unable to realize it. The practical motiva-
tion for the problem is feature triage, where a feature
engineer seeks to quickly prioritize features by their
potential for improving prediction quality, and the re-
sults demonstrate that our approach indeed provides
such prioritization accurately.

Comparison with Feature Selection Heuristics.
We also evaluated several commonly used feature se-
lection heuristics that do not rely on re-training. Fig-
ure 2 illustrates the performance of χ2 Statistic, Infor-
mation Gain Ratio, and Correlation-based Feature Se-
lection (CFS) (Guyon & Elisseeff, 2003; Hall, 1999) for
the Adult dataset. These results demonstrate that
methods that compute feature utility greedily (χ2 and
Information Gain Ratio) can significantly overestimate
the value of features that are not informative given
others, as evidenced by the two top-scoring features
that have near-zero actual utility (in top left corner of
corresponding figures). CFS works better as it takes
into account the new feature’s correlation with other
features as well as the label, yet it underestimates the
utility of the best feature dramatically, demonstrating
the shortcoming of label-based estimates vs. utilizing
losses of the current predictor used by our approach.

χ2 InfoGainRatio Correlation-based FS
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Figure 2. Performance of feature selection heuristics (Adult dataset)
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6. Future Work

While this paper demonstrated that the feature utility
prediction problem can be solved by posing it as a hy-
pothesis test in function space, it would be interesting
to see alternative algorithms for the problem designed
via information-theoretic formulations. Another po-
tentially fruitful direction for future work is develop-
ing semi-supervised methods that can utilize unlabeled
data for improving new feature utility estimates, given
its abundance in large-scale domains. Additionally,
designing modifications of the described approach for
feature selection, extraction and active feature-value
acquisition could yield new efficient methods for these
tasks, as the overall idea of exploiting outputs of an
existing predictor is clearly relevant for these prob-
lems. Finally, another attractive future work direction
lies along creating new feature utility prediction algo-
rithms that remove the “black-box” assumption and
utilize properties of a specific learning algorithm or
predictor class, possibly yielding better performance.

7. Conclusions

This paper considered the problem of predicting new
feature utility without re-training the original learner.
A solution was proposed based on a consistent test-
ing procedure, derived by establishing a function-space
relationship between loss gradient and a maximizing
transform of the new features. The approach is gen-
eral, supporting many common learning tasks and loss
functions for which the problem is reduced to squared-
error regression. This can be performed for just the
new features in isolation or in conjuction with exist-
ing features. The resulting algorithm allows easy par-
allelization, making it appropriate for large-scale do-
mains. Empirical evaluation demonstrated the accu-
racy of the approach on several learning tasks.

Acknowledgements: The authors thank Tom Fin-
ley for help with ranking experiments and anonymous
reviewers for helpful feedback. This work was done
while the first author visited Microsoft Research.

References

Anderson, M.J. and Robinson, J. Permutation tests for
linear models. Australian & New Zealand Journal of
Statistics, 43(1):75–88, 2001.

Bekkerman, R., Bilenko, M., and Langford, J. Scaling Up
Machine Learning: Parallel and Distributed Approaches.
Cambridge University Press, 2012.

Breiman, L. Random forests. Machine Learning, 45(1):
5–32, 2001.

Burges, C.J.C. From RankNet to LambdaRank to Lamb-
daMART: An overview. Technical Report MSR-TR-
2010-82, Microsoft Research, 2010.

Cornec, M. Concentration inequalities of the cross-
validation estimator for empirical risk minimiser. Arxiv
preprint arXiv:1011.0096, 2010.

Della Pietra, S., Della Pietra, V., and Lafferty, J. Inducing
features of random fields. IEEE PAMI, 19(4):380–393,
1997.

Friedman, J. Greedy function approximation: a gradient
boosting machine. Annals of Statistics, 25(5):1189–1232,
2001.

Fromont, M. Model selection by bootstrap penalization for
classification. Machine Learning, 66(2):165–207, 2007.

Gretton, A. and Györfi, L. Consistent nonparametric tests
of independence. Journal of Machine Learning Research,
99:1391–1423, 2010.

Gretton, A., Fukumizu, K., Teo, C.H., Song, L., Schölkopf,
B., and Smola, A. A kernel statistical test of indepen-
dence. In NIPS, 2008.

Guyon, I. and Elisseeff, A. An introduction to variable and
feature selection. Journal of Machine Learning Research,
3:1157–1182, 2003.

Hall, M.A. Correlation-based feature selection for machine
learning. PhD thesis, The University of Waikato, 1999.

Huang, T.M. Testing conditional independence using max-
imal nonlinear conditional correlation. Annals of Statis-
tics, 38(4):2047–2091, 2010.

Järvelin, Kalervo and Kekäläinen, Jaana. Cumulated
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