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Abstract

We show that the variational representations
for f-divergences currently used in the litera-
ture can be tightened. This has implications
to a number of methods recently proposed
based on this representation. As an exam-
ple application we use our tighter represen-
tation to derive a general f-divergence esti-
mator based on two i.i.d. samples and derive
the dual program for this estimator that per-
forms well empirically. We also point out a
connection between our estimator and MMD.

1. Introduction

An important class of discrepancy measures between
probability distributions is the family of f-divergences
(also known as Ali-Silvey (Ali & Silvey, 1966) or Csisz-r
divergences (Csiszar, 1967)). These include the vari-
ational divergence, the Hellinger distance, and the
well-known Kullback-Leibler (KL) divergence. Esti-
mates of these measures from two i.i.d. samples can
be used to test whether or not those samples come
from similar distributions. Due to the convexity of the
eponymous f function defining them, f-divergences
can be expressed variationally as the maximum of
an optimisation problem. This variational represen-
tation has been recently used for f-divergence estima-
tion (Nguyen et al., 2010; 2007; Kanamori et al., 2011)
homogeneity testing (Kanamori et al., 2011) and pa-
rameter estimation (Broniatowski & Keziou, 2009).

This paper stems from a simple observation: the vari-
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ational representation currently being used in the lit-
erature fails to take into account the fact that di-
vergences are defined between probability distribu-
tions. In an analysis similar to that of Altun and
Smola’s (Altun & Smola, 2006), we present a deriva-
tion of a quantifiably tighter variational representation
of f-divergences. Our derivation restricts the convex
dual used in the variational representation of an f-
divergence to the space of probability distributions.
This generalises similar observations for the specific
case of the KL divergence, such as Banerjee’s com-
pression lemma (Banerjee, 2006). These results are
given in the remainder of this section.

Clearly, use of this tighter variational representation in
any algorithm relying on the previous bounds would
be advantageous. Thus, we suspect this tighter bound
will find broad applicability as the weaker variational
form is already widely used. As an example of this,
in section 2. we derive a general dual program for an
RKHS estimator which has a simple closed form for
any f-divergence. We show this dual program has a
natural interpretation as a trade off between the min-
imisation of the f-divergence in question and the mini-
mum mean discrepancy (MMD) (Gretton et al., 2008)
between the empirical distributions. Experiments in
section 3 confirm that the tighter variational form un-
derlying our approach leads to better KL divergence
estimates than the well known estimator of (Nguyen
et al., 2010; 2007) which is based on the looser rep-
resentation. We also provide an empirical comparison
to other state of the art methods for f-divergence es-
timation.

1.1. Convex Duality

We briefly introduce some key ideas from convex du-
ality. The reader is referred to (Barbu & Precupanu,
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1986) for details. For functions f : X — R defined
over a Banach space X the (Fenchel or convez) dual
f*: X* = R of a function is defined over the dual
space X* by f*(2*) := sup,cx(2*,x) — f(x) where
(-,+) is the dual pairing of X and X*. In finite di-
mensional spaces such as R? the dual space is also
R? and (-,-) is the usual inner product. The bidual
f**: X — R of fis just the dual of f* (restricted to
X), that is, f**(z) = sup.cx+(z,2*) — f*(z*). For
convex, lower semi-continuous (l.s.c.) functions f the
bidual is the identity transformation, that is, f** = f.
As seen below, this fact forms the basis of many vari-
ational representations of operators defined by convex
functions.®

We make use of a few specific, one-dimensional in-
stances of duals. Specifically, when f(t) = |t — 1]
we have f*(t*) = t* for t* € [-1,1]; and when
f(t) = —Int for t > 0 we have f*(t*) = —1 — Int*
for t* < 0. Further details and properties of convex
duals can be found in texts on convex analysis, e.g.,
(Hiriart-Urruty & Lemaréchal, 2001).

One obvious but important property we make use of
is that the restriction of a supremum leads to smaller
optima. Specifically, if X’ C X then sup,¢x: ¢(z) <
sup,cx ¢(x). When applied to convex duals, this
means if R C X* is a restriction of the dual space
then

fla) = fi(2) = sup (a*,2) — f*(z")

T*ER

for all xeX.
(1)

1.2. Variational Approximations of
f-divergences

An f-divergence is defined via a convex function
f:[0,00) — R satistying f(1) = 0. Given such a func-
tion, the f-divergence from a finite measure P to a
distribution Q defined on a common space X is de-
fined? as

1@ =50 |1 (50)] = [ 1(fw) daw)

if P < @ and +oo otherwise. We will refer to the
definition above as the general (or unrestricted) f-
divergence in contrast to the restricted f-divergence
that is only defined when P and ) are both prob-
ability distributions. When necessary, the restricted

!For finite dimensional spaces, this is, in some sense,
the only dual that can be used for the kind of variational
representations we are interested in (see (Artstein-Avidan
& Milman, 2009) for details).

2The choice of order of the arguments P and Q is ar-
bitrary and other authors, notably (Nguyen et al., 2010),
define f-divergence in terms of dQ/dP.

f-divergence will be distinguished by a superscript
R: ]IJI?(P,Q). We emphasise this distinction to later
show how a tighter variational representation can be
obtained from explicitly taking into account the re-
striction. Several common divergences are members
of this class: the variational divergence is obtained
by choosing f(t) = |t — 1|, Hellinger divergence via
f(t) = Vt?2 — 1, and the KL divergence via f(t) = tInt
(see, e.g., (Reid & Williamson, 2011)). For technical
reasons we also require f to be lower semi-continuous.
All f-divergences discussed above and used in practice
satisfy this condition.

As in (Altun & Smola, 2006; Barbu & Precu-
panu, 1986; Broniatowski & Keziou, 2009), we now
wish to consider f-divergences as acting over spaces
of functions. Given a measure p over X (with
some o-algebra), the norms |glli := [y |g| du and
lgllco := inf{K >0:|g(z)| < K for p-almost all x}
can be used to define the space of absolutely in-
tegrable functions L'(u) := {g: X = R:||g|l; < oo}
and its dual space L= (u) := {g: X = R: ||g|lcc < o0}
of functions with bounded essential supremum. The
space of probability densities w.r.t. p will be denoted
Ap) :=={ge€ L' (n):9>0,|glli =1}. On finite do-
mains X = {x1,...,2,}, the space of densities will be
denoted A™. A general f-divergence can be seen as
acting on L'(Q) by defining I g (r) := Eq [f (r)] for
all 7 € LY(Q). The restricted f-divergence is then just
H?Q(r) :=1I;o(r) when r € A(Q) and +oo otherwise.

Figure 1. Illustration of Theorem 1. The dashed line and
solid line represent our new expression and the expression
used by (Nguyen et al., 2010) respectively as they vary over
L°°(Q). While both expressions have the same supremum,
everywhere else ours is closer to the supremum.

As shown below, these functions are convex and lower
semi-continuous and therefore admit dual representa-
tions. As explored in (Nguyen et al., 2010; Altun &
Smola, 2006) and in section 2 below, variational repre-
sentations such as these readily admit approximation
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techniques via a restriction of the optimisation for I g
to functions from F C L*(Q) (e.g., an RKHS). Our
main result is that the restricted variational form guar-
antees tighter lower bounds on f-divergences than the
unrestricted form for any choice of function class.

Theorem 1. For any distributions P and @ such that
P < @ we have

L(P.Q)= s Epld]- (o) (@) (@

and for any choice of function class F C L>=°(Q)

I;(P,Q) > sup Ep [¢] — (1¥,)" (¢)
peF

> sup Ep [¢] — Eq [f*()]. (3)
PEF

We illustrate the result of Theorem 1 in Figure 1.
While our new expression and that of (Nguyen et al.,
2010) have the same supremum, our expression is
closer to the supremum at every point ¢ € L*(Q).
In particular, if one restricts ¢ to vary over a subset
F C L*° then the supremum of our expression over F
will yield a better estimate of Iy (P, Q).

Proof. We first establish that I g is a convex func-
tion over L'(Q) via Proposition 2.7 in (Barbu & Pre-
cupanu, 1986) which states that for any finite mea-
sure @@ over X and any proper convex l.s.c. function
f :]0,00) = RU {400} the function F : LI(Q) —
(=00, +00] is convex and l.s.c when defined by F(u) :=
Jx f(uw)dQ for f(u) € L*(Q) and 400 otherwise. Since
Iq(r) = [y f(r)dQ and f satisfies the conditions of
the proposition, we have that Iy ¢ is convex and ls.c.

The variational representation for I 7 g is then obtained
by using Lemma 4.5.8 of (Dembo & Zeitouni, 2009).
This states that for any Banach space X with dual X™*,
it F: X — RU{+o0} is convex and l.s.c. then F(x) =
SUP,«cx+ { (%, x) — F*(«*)}. Since I ¢ is convex and
ls.c. on L}(Q) we see that

Irq(r)= sup ){EQ [or] = (Ir.0)" (9)} = (I1.0)™ (1)

peL>(Q

for all » € LY(Q) since L*(Q) is the dual space to
L'(Q). In particular, we can conclude that for all r €
LY(Q) and all ¢ € L>(Q)

I1.q(r) > Eq lpr] — (T1.0)" (¢)- (4)

Now, since HP”’ is defined to be Iy o on A(Q) and +o0
on the rest of L;(Q) we see that for all ¢ € L>=(Q)

(Fo) (6) = swp {Eqlor] -1 (1)

= sup {Eq[¢p] —Irqo()}t. (5)
PEA(Q)

This implies that for all ¢ € L*°(Q) and for all p €
*

AQ) we have (I£,) (6) +I1.q(p) = Eq[¢p] which

rearranged and optimised over ¢ € L*°(Q) yields (2).
We now observe that (5) is just a constrained version
of the optimisation defining (I7,g)", and so by (1) we

*

must have (]IJI?,Q> < (Ifq)". Substituting this into
(4) we see that for any p € A(Q),¢ € L™ (Q)

Ir.q (p) > Eq [¢p]— (I o) " () = Eq lép]—(I1.0)" (¢).

Taking supremums over these inequalities for ¢ € F C
L>(Q) yields (3), as required. O

For the particular case of KL divergence estimation the
above theorem specialises to show that for any choice

of ¢ € L>®(Q)
KL(P,Q) > Ep [¢]-InEq [e?] > Ep [¢]-Eq [e? + 1]

The first inequality is the well-known representation
of the KL divergence in the large deviations literature
(Donsker & Varadhan, 1983) which has been rediscov-
ered in the PAC-Bayes community as the compression
lemma (Banerjee, 2006). Although the second inequal-
ity can be obtained immediately from the fact that
—log(y) > —y + 1 for all y > 0, Theorem (1) shows
that a similar result holds for general f-divergences.

2. Estimation using RKHS methods

Given two samples® X,, = {z1,...,7,} and Y,, :=
{y1,...,yn} from P and Q respectively, we wish to use
the empirical measures P, := %Z?:l 0z, and @ =

% > i 8y, as proxies for P and Q. However, since we
no longer have P, < @, some form of smoothing is
required. We make use of the restricted dual varia-
tional representation of the f-divergence and choose a
sufficiently constrained function class over which the
supremum is taken when computing the dual. Specifi-
cally, we let H C Lo (Q) be an RKHS with reproduc-
ing kernel K and corresponding feature map ® and
choose some convex regularizer Q : H — R U {+o0},
for example, some function of the RKHS norm || - ||4.
As in (Nguyen et al., 2010), our estimator is then de-
fined via the dual representation of ]I?_Qn that takes

3We assume that the samples are of equal size for sim-

plicity. The analysis also goes through in the general case.
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into account the regulariser 2, i.e.,

E(Pa, Q) 1= sup {Ep, 1] — (If,)" (1) = Q) } .

hEH
(6)
The following result gives an explicit dual optimisation
program for computing E in the RKHS H.

Theorem 2. Let H be an RKHS of functions over
X with associated feature map ®. Then the estimator
E(P,,Q,) satisfies, for all P, and Q,

E(P,,Qn) —aHEuAnn{ Zf (na)

ok (; Z P (z;) — %Znav@ (lh‘)) }
) ) (7)

where the minimisation is over the n-simplex A™.

Proof. The proof techniques here are based on those
in (Nguyen et al., 2007). Since H is a RKHS, we can
represent each function h € H by h(z) = (w, P (z))
for z € X where @ is the feature map corresponding
to K. In this case, the estimator in (6) is given by

w

Letting ¢ (w) = =2 3" (w, ® (z;)) and ¢ (w) :=
*

(HJ}‘%,Q") ((w,® (+))) and substituting into the above

expression gives

S?Up{<w,0> -

by the definition of a dual. By the infimal convolution
theorem (Rockafellar, 1997) we therefore have

E(Pa, @a) = min {u" () + ¢* (1) + 97 (=5 = 1)} .

(8)

Now, since ¥ is linear in w its dual is simply

y ifSZ—l ?:1(1)(1‘1‘)

n
400 , otherwise.

*
To compute the dual of ¢ we observe that (H?Qn) (h)

only depends on the values of h at y1, ..., y, so we can

S {rlz > (w, @ () = (Ifg,)" ((w, @ () -0 (w)} .

(¥ (w) + o) +2w)} = +e+Q)" O)gr

write
SO* (T) = Sli}p {<’w7'r‘> _ (H?Qn)* (<w, > ()>)}
= su w.r) — (I8~ )"
"o {w.r) = (1Fq,)" (1)
_ Za(yz‘) (w, ® (y;)) — h(yi))}
= su w.r) — (I8~ )"
a w,aI,)h {< ") (]IfiQn) (h)

- <w > a(y)® (yz-)> + % > na(y) h(yz-)}
=1

i=1
by the introduction of Lagrange multipliers a(y;) for

the constraints h(y;) = (w,®(y;)). Noting that
& 2iz1 na(yi)h(yi) = Eq,, [nah] we get

#'r) = sup {Eq, [nah] - (1fq,)" (h)

- <w7r =) o (yi)>}
i=1

= sup {s%p {EQn [nah] — (H?Qn)* (h)}

)

—sup{]IfQ no) Zaz (yi) }

i=1

since the first inner supremum is the bidual of H?Qn
and the second supplies the constraint. Furthermore,
since ®(y;) are linearly independent, each r uniquely
determines « at yq, ..., Yn S0 *(r) = ]IJI?’Q" (nar). Sub-
stituting ¥*, ¢*, and the corresponding constraints on
s and r back into the minimisation (8) and noting that
0, 18 +o0 for na ¢ A(Qy) = A" gives the required
result:

E(P,,Qn) —arggln{ Zf (na)

* (:LZ‘I)(IZ) ;Z(naz)q)(yz)>}

1=1

We note that E(P,,Q,) is not a direct estimate of
I;(P, Q) due to the inclusion of the regularisation term
Q(h). However, p*(r) = I¥, (na) = £ 371, f (na)
can be used as an empirical estimate of I¢(P, Q)) once
the values of «; are obtained and 7 = na can be seen
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as an estimate of dP/dQ. Thus, the theorem above
gives an easily implementable algorithm for estimating
f-divergences.

Computing Q* for particular choices of €2 in equation
(7) immediately gives the following corollary which de-
fines two concrete estimators.

Corollary 3. For Q(g) = %‘Hg“%

aEeA™

E(P,,Q,) = min {711 Zf (noy)

n

1 n
o | @ @) - 1> nad (u)
=1 i=1 H
9)
and for Q(g) = vV Aullglln

aEeA™

(P’an) = min {Tllz.f(naz)

n

Z xz - — Znaz yz)
H

(10)

The minimisation in (10) is similar to the one discussed
in (Altun & Smola, 2006) which is concerned with den-
sity estimation from a single sample. Our estimator
can be seen as an extension of that procedure to the
two sample setting. The estimator M2 proposed in
(Nguyen et al., 2010) uses square norm regularisation
in a two sample setting and is therefore directly com-
parable to (9). The key difference is that we restrict
the minimisation to A™ whereas the M2 minimisation
is over o > 0.

2.1. Connections with Maximum Mean
Discrepancy

The relation of the optimisation program in (9) to
the original f-divergence is compelling. The first term
% iy f (noy) is simply the empirical estimate of the

f divergence of the likelihood ratio % since each

no; = 1‘;—1” is an estimate of %(yi) when Q,, is taken
to be uniform over yi,...,y,. Since f(1) = 0, min-
imising this term alone would force the «; = % for all
1. In this sense, the first term can be seen as a kind of
generalised MaxEnt regularisation.

The second term can be seen as a term that forces the
a; terms to “match” empirical means of the feature
vectors ®(x;) and ®(y;). Following (Gretton et al.,
2008), we can formalise the observation regarding the
second term by considering the mean map p from

<\/E}.

distributions R over X to functions in an RKHS #H
defined by R — p[R] = Epor[®(z)]. The maxi-
mum mean discrepancy (MMD) between distributions
P and @ is then defined to be the distance between
their respective images under p, that is, MMD(P, Q) =
| [P] = 1 [@Q]ll;- The second term in our estimator
is then just MMD?(P,, «) which is a measure of the
discrepancy between the distributions corresponding
to the densities dP,, and nad@,. Thus, minimising
that term alone corresponds to an unregularised es-
timation of the density ratio dP/dQ. Similarly, for
other choices of regularisation €2 which are a function
of || - ||, this “data matching” term will be a dual
function of MMD(P,, a).

This analysis also leads to an intuitive explanation
why we should use the regularisation schedule A, =
(C) (nil) as per (Nguyen et al., 2009). It was shown in
(Gretton et al., 2008) that the MMD estimator

1 & 1 &
PPN

converges to a normal distribution with constant vari-
ance. If « is suitably bounded away from infinity,
the same holds for the second term in (9) as long as
A = ©(n71). If A\, is of smaller order, then the
MMD term will eventually dominate the general Max-
Ent term which converges to a positive constant if
P # Q. On the other hand if A, diminishes more
slowly, then the MMD term will go to zero even for an
incorrect density ratio.

Vn

H

3. Experiments

Theorem 1 shows the restricted variational bound de-
rived here is strictly tighter than the one proposed
by (Nguyen et al., 2010) (henceforth NWJ) for ev-
ery function r € L'(Q) except when r = dP/dQ
in which case they coincide and attain the optimum.
This suggests that the optimisation problem derived
using our tighter bound should result in an estimator
with a smaller bias. This section presents some em-
pirical results demonstrating this improvement. We
also conducted experiments to compare our method
and Nguyen et al’s method to others methods in the
literature which are not based on variational represen-
tations of f-divergence. While these non variational
methods are not the focus of the experiments, we in-
clude them here as they may be of interest to oth-
ers. In the context of the current work however, we
emphasise the superior performance of our estimator
compared to that of NWJ illustrating the utility of
the tighter variational representation. We include the
following recent estimators for comparison:
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e Wang et al (Wang et al., 2009): This estimator is
based on nearest neighbour estimates of the two
densities and does not make use of a variational
representation.

e Kanamori et al (Kanamori et al., 2009): This
is a least-squares estimator for the density ratio,
bypassing individual density estimations. Once
the density ratio is estimated, it can be directly
plugged in the f-divergence formulae. We also ex-
perimented with another density ratio estimation
method (Sugiyama et al., 2008), with very similar
results.

e Garcia et al (Garcia-Garcia et al., 2011): This
estimator uses nearest neighbour misclassifica-
tion rates and a reformulation of f-divergences
in terms of risks.

3.1. Method

Both our estimator based on (9) and the M2 estimator
of NWJ were implemented using the nonlinear convex
optimisation routine from the python package Cvx-
OPT to perform the optimization. The implementa-
tion of the Wang et al. (Wang et al., 2009) estimator
(henceforth WKV) was based on the cKDTree nearest
neighbour routine from the SciPy library. Kanamori
et al 4. (uLSIF) and Garcfa et al 5 ((f,1)) algorithms
were implemented using code provided by the respec-
tive authors 6. The method for choosing the parame-
ters A, and o for the NWJ estimator are not specified
in (Nguyen et al., 2010). For both NWJ and our es-
timator, we therefore set A, = L (as discussed above)
and set o to the sample variance over X,,UY,, to ensure
invariance with respect to rescaling of the data.

In every experiment, the distributions P and @) were
set to beta distributions B(«, ) for some choice of
parameters a, 5 > 0. Beta distributions were chosen
as they cover a wide variety of shapes and have a KL
divergence with the following analytic form

KL(B(au, 1), B(az, B2)) = hlm
—do(a1) — dgp(B1) + (da + dg)P (a1 + B1)

where d, = as — ay and ¥(v) = ?/((5)) is the digamma

function. For each choice of P and (), a 1-dimensional
and a 10-dimensional experiment was performed. In
the I-d experiment, samples of n = 100 values, X1qg

‘http://sugiyama-www.cs.titech.ac.jp/ sugi/
software/ulLSIF

Shttp://www.tsc.uc3m.es/ dggarcia/code.html

5All code has been submitted as supplementary mate-
rial.

and Yigg, were each drawn i.i.d. from P and @ respec-
tively. In the 10-d experiment, each x € X199 C R
and y € Yigo C R'Y was drawn i.i.d. from the re-
spective product distributions P X H?:l N(0,0.01) and
Q x H?:l N(0,0.01). This gives samples from two dis-
tributions embedded in a 10-dimensional space where
all but one of the dimensions is zero mean Gaussian
noise. The KL divergences for the 10-d product distri-
butions for each choice of P and @) are the same as for
the 1-d case, that is, KL(P, Q). The specific P and Q
in the experiments were chosen to give a range of dif-
ferent KL divergence values and explore a few different
pairings of distributional shapes.

3.2. Results

Table 1 summarises the application of all five esti-
mators over 250 runs of the 1-d (odd rows) and 10-
d experiments (even rows) for various choices of P
and @ shown in the first column. The pairs of rows
are ordered in increasing value of true KL divergence
(shown in the second column) and is the same for both
rows. The table lists the divergence estimates averaged
over the different runs as well as the empirical Mean
Squared Error (MSE). The bold values for the MSE
correspond to the lowest amongst the different esti-
mators. Where the MSE of our estimator or that of
NWJ is strictly lower than the other, we have italicised
the MSE. The last three columns are in grey as they
are not the main point of the experiments.

3.3. Discussion

For the most part our estimator performs better in
terms of MSE than that of the NWJ. When the true
divergence is large, the difference is especially pro-
nounced. This is unsurprising as our estimator is
based on a tighter bound for the divergence as The-
orem 1 shows. For small divergences the difference is
smaller since roughly speaking, 0 < NWJ < Ours <
KL(P,Q). Thus, for small divergences the estimators
must necessarily return similar values.

In contrast, the nearest neighbour-based methods
(WKYV and (f,1)) behave very differently to variational
estimators. In general, their bias is significantly lower
than both variational methods when the real diver-
gence is large. This is a natural conclusion, since
the variational methods presented here are intrinsi-
cally lower bounds of the real divergence. Finally, we
note that uLSIF does not perform as well as the other
methods. This is to be expected as uLSIF is primar-
ily designed for density ratio estimation while the rest
of the methods are derived specifically for divergence
estimation.
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Table 1. Summary of results for KL divergence estimation by the restricted variational estimator (Ours), Nguyen et al.’s
(NWJ), Wang et al.’s (WKV), Kanamori et al (uLSIF) and Garcia et al ((f,1))

Estimates MSE
Distributions KL Ours NWJ Ours NwWJ
B(2,2) vs B(4,4) 0.183 | 0.15 0.13 0.006 0.006
0.15 0.13 0.006 0.006
B(1,1) vs B(2,2) 0.208 | 0.17  0.16 0.008 0.008
0.18 0.17 0.007 0.007
B(14,14) vs B(1,1) 0.959 | 0.83 0.79 0.036  0.046
0.82 0.79 0.040 0.051
B(1,2) vs B(2,1) 1.000 | 0.87  0.86 0.074  0.072
0.86 0.84 0.06 0.06
B(1,1) vs B(5,5) 1.554 | 0.77  0.63 0.647 0.859
0.72 0.59 0.737 0.954
B(1,4) vs B(3,1) 3.704 | 2.79 2.68 0.985 1.153
2.19 2.11 2.561 2.653
B(1,1) vs B(10,10) 4.264 | 1.40 0.99 8.257  10.741
1.20 0.83 9.434  11.829

On the 10-d experiments, the MSE performance of the
WKV estimator is typically much worse than the rest
of methods. It consistently over-estimates the true KL
divergence and, for B(1,4) vs B(3, 1), drastically over-
shoots it, resulting in an order of magnitude larger
MSE than the other estimators. One likely explana-
tion of this poor performance of WKV on the higher
dimensional problems is that its estimated values scale
with the dimension of the data. This scaling occurs
even if the two distributions differ only on a low di-
mensional manifold, as they do in the 10-d experi-
ments. The success of this estimator in the B(1,1)
vs B(10,10) experiment is likely a coincidence. All
the estimators underestimate this divergence in the 1-
d case and we expect that the scaling of WKV with the
dimension has pushed its estimate up to the true KL.
The (f,1) estimator, although also based on nearest
neighbour techniques, does not suffer from this prob-
lem since it does not present a explicit dependance of
the estimated divergence with respect to the ambient
dimension.

In light of these observations, we offer some guide-
lines as to which estimator to use if one has some
prior knowledge or suspicion about the data. Use our
method when suspecting a low divergence; use (f,)
for high divergence. We also recommend using varia-
tional methods over nearest neighbour estimators for
hypothesis testing if false positives are a concern since
the variational methods are much more likely to con-
sistently underestimate the true divergence. It is im-
portant however to note that if running time is an
issue then WKV becomes a very attractive option.
There are many fast approximate nearest neighbour

algorithms resulting in fast estimation of the WKV
statistic.

4. Summary and Discussion

We have shown how tighter variational representations
for f-divergences can be derived by restricting the ef-
fective domain of the divergence functional to the set
of probability measures. Since many works in the lit-
erature are based on variational representations, this
tighter version presents many potential applications.
As an example of this, a dual program for f-divergence
estimators based on this tighter representation was de-
rived for density ratios within an RKHS #H and ar-
bitrary convex regularizers. This tightened and ex-
tended the M2 estimator proposed in (Nguyen et al.,
2010) and we demonstrated empirically the benefits of
our analysis. We also gave a novel interpretation of the
dual program in terms of MMD which showed that our
estimator can be seen to find an approximation 7 € H
of the density ratio that attempts to simultaneously
minimises MMD between P,, and 7@),, and the empiri-
cal f-divergence Eq, [f (7)]. This second minimisation
can be seen as a generalised maximum entropy regular-
isation. We have also provided a comparison to other
state of the art estimators. We concluded that vari-
ational methods are good for settings in which a low
divergence is suspected or in scenarios where overesti-
mation is detrimental.

As future work we intend to investigate the impact of
this tightened representation on other divergence es-
timators based on the looser representation such as
(Kanamori et al., 2011), as well as to areas other than
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f-divergence estimation (hypothesis testing and sta-
tistical inference). We also plan to find general con-
ditions under which consistency of our family of esti-
mators holds. The work of (Nguyen et al., 2010) has
already paved the way for this investigation. Failing
that, the very general consistency results of (Altun &
Smola, 2006) for single sample divergence estimation
may also be amenable to the analysis of our estimator.
The performance of our estimator on distributions on
low dimensional manifolds suggests that it would be
worth testing on domains involving audio or images.
It would also be interesting to apply our method for
estimating divergences other than KL. For instance we
could study a-divergence estimation as in (Poczos &
Schneider, 2011).
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