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Abstract

When searching for characteristic subpat-
terns in potentially noisy graph data, it ap-
pears self-evident that having multiple ob-
servations would be better than having just
one. However, it turns out that the inconsis-
tencies introduced when different graph in-
stances have different edge sets pose a serious
challenge. In this work we address this chal-
lenge for the problem of finding maximum
weighted cliques.

We introduce the concept of most persistent
soft-clique. This is subset of vertices, that
1) is almost fully or at least densely con-
nected, 2) occurs in all or almost all graph
instances, and 3) has the maximum weight.
We present a measure of clique-ness, that es-
sentially counts the number of edge missing
to make a subset of vertices into a clique.
With this measure, we show that the prob-
lem of finding the most persistent soft-clique
problem can be cast either as: a) a max-min
two person game optimization problem, or
b) a min-min soft margin optimization prob-
lem. Both formulations lead to the same solu-
tion when using a partial Lagrangian method
to solve the optimization problems. By ex-
periments on synthetic data and on real so-
cial network data we show that the proposed
method is able to reliably find soft cliques in
graph data, even if that is distorted by ran-
dom noise or unreliable observations.
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1. Introduction

Graphs are used ubiquitously in computer science in
order to represent data objects and their interrelations.
Consequently, machine learning and data mining re-
search has developed a large number of methods to an-
alyze given graph structures and to identify substruc-
tures of predefined properties, in particular cliques, i.e.
subsets of vertices that are fully connected with respect
to the graph’s edge set.

In this work, we extend this reasoning to the case
where multiple, potentially noisy or incomplete, in-
stances of a graph are available for analysis. The hard
criterion of a set of vertices being fully connected be-
comes too limiting in this case, so instead we look for
persistent soft-cliques, i.e. subgraphs that are almost
fully or at least densely connected, and that persists
through all or most instances of the graph. For given
several instances of a weighted graph, we are interested
to find a persistent soft-clique with the highest weight.
We call this a most persistent soft-clique problem.

By solving the most persistent clique problem we can
extend a wide range of applications that relied on find-
ing cliques in graphs to situations where a collection
of graphs is available, e.g. measurements at different
points of times, but where each graph instance might
have a different edge set, e.g. due to noisy or incom-
plete observations. These noisy snapshots of the same
graph pose challenging tasks related to inconsistent
patterns, but could give us more confidence in charac-
terizing the inherent pattern or phenomenon. Take as
an illustrative example, the usage of dense subgraphs
in mobile phone or location-based social networks to
identify groups of friends or families. A temporal di-
mension arises naturally for such a graph where, for
example, different hours in a day lead to several sam-
ples of the graphs. It is reasonable to assume that
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dense subgraphs that appear in all of the samples of
the graphs are the groups of friends or families that we
would like to identify. However, it can also be expected
that in each individual observation of the graphs not
every person will be observed within the subgraph: he
or she could have left the group temporarily due to
other commitments, or the measurement itself could
be faulty, e.g. due to a network outage.

Contribution In this work, we make the following
contributions: 1) We introduce a simple clique-ness
measure that is suitable for finding a persistent soft-
clique across multiple noisy instances of a graph. Intu-
itively, the measure counts and penalizes the number
of edges missing to make the selected subset of ver-
tices into a clique. 2) We show how this measure can
be used in an optimization framework either as a two
person game or as a relaxation of the hard-clique prob-
lem with slack variables, to find a maximum weighted
persistent soft-clique. 3) We show that both formula-
tions lead to the same solution when using a partial La-
grangian method to solve the optimization problems:
the upper bound obtained for the max-min two player
game formulation coincides with the lower bound of
the min-min slack formulation. 4) We perform an ex-
periment on synthetic data and provide an application
in social network data where the graphs are sampled
across time.

First, however, we give a short overview of related
work to provide some context for our contributions.

1.1. Related Work

The first work on the use of cliques in social net-
work graphs by far predates recent efforts in machine
learning, data mining or network science. Luce &
Perry (1949) studied adjacency matrices of friendship
graphs in order to identify cliques of friends. They
already observed that the criterion of all vertices be-
ing connected to each other can be overly strict, and
they introduced the softer n-clique criterion. Later,
Alba (1973) showed, however, some non-intuitive facts
about n-cliques, e.g. that their elements might be com-
pletely disconnected with respect to the original graph
structure. Afterwards, many alternative constructions
were introduced, see, e.g., (Scott, 1988) for a textbook
overview, and (Brunato et al., 2008; Robardet, 2009)
for some recent developments. Besides the social sci-
ences, other areas of research that deal with network
structured data have adopted the search for cliques
as part of their research methodology, in particular
bioinformatics, chemistry and (electrical) engineering.
Mathematics, on the other hand, studied properties of
graphs and subgraphs more formally, through the anal-

ysis of function optima defined on the graph (Motzkin
& Straus, 1965), or statistical properties of graphs with
random edge sets (Bollobás, 2001). In theoretical com-
puter science and operations research graph-based al-
gorithms are today objects of core interest, e.g. in the
analysis of their computational complexity, or as tools
to abstractly model the process of computation in a
computer itself.

With the rise of machine learning and data mining,
a lot of more applied work on identifying structure
within graphs of empirical data has emerged, see, e.g.,
(Schaeffer, 2007) for a survey. For example, Gupta
& Ghosh (2005) and Crammer et al. (2008) looked at
a one-class clustering or classification problem which,
given a dataset, aims at identifying a coherent yet
small subset of data points. This one-class cluster-
ing problem finds itself applications in bioinformatics
to find gene modules and natural language to extract
documents’ topics. Pavan & Pelillo (2007) use the
weighted version of maximal (non-extendable) clique
to perform a pairwise clustering. In a recent time, the
maximum weighted clique concept has also found in-
creased use in computer vision problems for perform-
ing image segmentation tasks, for example (Brendel &
Todorovic, 2010; Ion et al., 2011).

While all the above learning methods rely on only a
single (noisy) graph to be analyzed, it is intuitive that
having access to multiple observations should make the
result of the analysis more robust against random ef-
fects, missing observations, and outliers. Achieving
this intuition is our goal for the rest of the paper.

2. Persistent Soft-Cliques

In this section we formulate our main contributions:
a measure how close a set of vertices is to being a
clique, and its generalization to multiple graph in-
stances. First, we introduce the necessary notation
for this. In Section 2.1, we cast the problem of find-
ing a maximal clique in a single graph as an integer
optimization problem, and in Section 2.2 we extend
this notion to the case of soft-cliques persisting across
multiple instances of a graph.

Notation For a set of vertices V = {v1, . . . , vn}, let
Et ⊆ V ×V, for t = 1, . . . , T , be multiple observed sets
of edges, and let kt : V ×V → R+ denote non-negative
weight functions between the vertices of V. We form
weighted graphs Gt = (V, Et, kt), for t = 1, . . . , T .
In the following, we will refer to t as a ‘time’ variable,
but note that this is meant in a broad sense: while
t = 1, . . . , T can correspond to an actual temporal se-
quence, it can also just denote different instances of a
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graphs in arbitrary order. Furthermore, we will inter-
pret the values of kt(vi, vj) as measures of similarity
between vertices, e.g. given by a positive definite kernel
function (Schölkopf & Smola, 2001), but the method
we describe does not depend on kt having any specific
structure.

2.1. Soft Clique-ness

In the following, we will define a measure of clique-
ness. Let S ⊂ V be a vertex subset. For this, we iden-
tify S with its binary indicator vector xi ∈ {0, 1}|V|,
where xi = 1 if vi ∈ S, and xi = 0 otherwise. The
problem of finding a maximum weighted clique in a
weighted graph (V, E , k) can then be cast as the fol-
lowing integer optimization problem (Pardalos & Xue,
1994):

max
x∈{0,1}|V|

∑
1≤i<j≤n

xixjk(vi, vj) (1a)

subject to
∑

1≤i<j≤n

xixjI[(i, j) /∈ E ] = 0. (1b)

In the above, we make use of Iverson’s bracket nota-
tion: I[P ] = 1 for the condition P is true and it is 0
otherwise. The constraint enforces that any two vari-
ables in the selected subset are connected by an edge,
i.e. the subgraph given by x is a clique. For a non-
negative weight function k(·, ·), the above optimization
also ensures that the inferred clique is maximal, i.e. no
extension of the clique by adding one or more vertices
is possible.

For graphs based on noisy observations it is clear that
the constraint (1b) is too strict: a single missing edge
will exclude a subset of vertices from further consider-
ation. Instead it makes sense to look for soft-cliques,
i.e. subgraphs that are almost fully or at least densely
connected. To formalize this, we observe that the left
hand side of the clique-constraint (1b) has a simple
interpretation: for any fixed x ∈ {0, 1}|V|,

β :=
∑

1≤i<j≤n

xixjI[(i, j) /∈ E ] (2)

counts how many edges are missing in E for the se-
lected vertices to be a clique. Consequently, we will
use Equation (2) as a measure of how far a set of ver-
tices is from being a clique: for a set with k elements,
β can take values between 0 (x is a clique), and

(
k
2

)
(x is a completely disconnected), see Figure 1 for an
illustration.

2.2. Persistency of a Clique over Time

Given multiple instances of a graph, Gt = (V, Et, kt),
for t = 1, . . . , T , finding a clique x ∈ {0, 1}|V| that

persists through time is a straight-forward extension
of the above single-graph case. We enforce the clique
constraint (1b) simultaneously in all time slices, yield-
ing the optimization problem

max
x∈{0,1}|V|

∑
1≤i<j≤n

xixjk(vi, vj) (3a)

subject to
∑

1≤i<j≤n

xixjI[(i, j) /∈ Et] = 0, ∀t = 1, . . . , T,

(3b)

where k(vi, vj) =
∑
t kt(vi, vj) encodes the total sim-

ilarity of vertices during the time of consideration.
Deriving an analogue soft-clique formulation is less
straight-forward, since at different time steps, a dif-
ferent subset of edges might be missing to make a set
of vertices a clique. In the next sections we present
two ways to formalize the concept of a finding a soft-
clique that persists over time. Subsequently, we will
show that both formulation lead to identical solutions
if solved in a Lagrangian relaxation framework.

Slack Perspective We start by making each of
the hard-cliques constraints Equation(3b) into a soft-
clique constraints by introducing slack variables, βt,
for t = 1, . . . , T , on the right hand side. To avoid
degenerate solutions, we penalize the resulting slack
vector β = (β1, . . . , βT ) in the objective function by a
multiple of its Lp-norm for some p ≥ 1. For reasons
that will become clear later we furthermore replace the
maximization by a minimization of the negative objec-
tive. This leads to the following optimization problem

min
x∈{0,1}|V|

min
β∈RT

+

−
∑

1≤i<j≤n

xixjk(vi, vj) + η‖β‖pLp

(4a)

subject to
∑

1≤i<j≤n

xixjI[(i, j) /∈ Et] ≤ βt ∀t = 1, . . . , T.

(4b)

Note that the form of (4) also allows interpretation
as a regularized risk functional : ‖βt‖pLp is a loss term
that measures how bad the choice of x is as can-
didate for a most persistent soft-clique. The term
−
∑

1≤i<j≤n xixjk(vi, vj) acts as a regularizer that en-
courages the opposite direction: minimizing it requires
as many vertices as possible to be selected, in particu-
lar those that have high similarity values. The variable
η is a trade-off parameter that controls the relative
influence of loss and regularization terms. Intuitively,
by solving (4) we look for the optimal balance between
the goal of collecting as many similar vertices, and the
goal to not include vertices that are frequently discon-
nected.
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β = 0 β = 3β = 2

Figure 1. A soft measure of clique-ness. The measure
counts the number of missing edges that will otherwise
make the group of vertices a clique. The measure value is
given assuming the size of the clique is 4.

Two-Person Game Perspective Alternatively,
we can view the spatio-temporal cliques identification
as a game of two competing players: inlier and out-
lier. The inlier player controls x ∈ {0, 1}|V| and aims
at finding a group of variables with as large weight
as possible. The outlier aims at reducing the objec-
tive value by controlling variables β1, . . . , βT , which
he or she can increase up a limit given by the number
of edges missing to make x a clique. Mathematically,
this game is expressed by the following optimization
problem:

max
x∈{0,1}|V|

min
β∈RT

+

∑
1≤i<j≤n

xixjk(vi, vj)−
∑
t

βpt (5a)

subject to, for all t = 1, . . . , T ,∑
1≤i<j≤n

xixjI[(i, j) /∈ Et] ≥ βt (5b)

for some p ≥ 1. The intuition behind this resembles
the one above: one player aims at forming sets with
many similar vertices, the other player aims at exclud-
ing vertices if they are disconnected in many of the
graph instances.

3. The Optimization

The key idea to solve the optimization problems in
(4) and (5) is to relax the soft clique-ness constraint
further. We replace the clique-ness constraint by a
Lagrangian. This does not ensure that we will be able
to meet the clique-ness constraints exactly anymore.
We will instead only be able to state ex-post that the
relaxed solution is optimal for the observed clique-ness
distribution.

3.1. Lagrange Relaxations

In the following, we will show that slack and two-
person game formulations lead to the same solution

when using a partial Lagrangian method to solve the
optimization problems: the lower bound of the min-
min slack formulation coincides with the upper bound
obtained for the two player game formulation.

Lower Bound of Slack Perspective By weak du-
ality theorem (Boyd & Vandenberghe, 2004), we arrive
at the following lower bound of (4):

max
λ∈RT

+

min
x∈{0,1}|V|,β∈RT

+

−
∑

1≤i<j≤n

xixjk(vi, vj)

+ η‖β‖pLp
+
∑
t

λt

 ∑
1≤i<j≤n

xixjI[(i, j) /∈ Et]− βt

 .

(6)

Upper Bound of Game Perspective Similarly
with the bound on slack perspective, by weak dual-
ity, we have the following upper bound of (5):

min
λ∈RT

−

max
x∈{0,1}|V|

min
β∈RT

+

∑
1≤i<j≤n

xixjk(vi, vj)

−
∑
t

βpt +
∑
t

λt

 ∑
1≤i<j≤n

xixjI[(i, j) /∈ Et]− βt


(7)

A standard approach to dualize the problem of (6)
and (7) is to eliminate the primal variables x and β.
We take the approach to partially dualize the problem
by only finding the stationary point with respect to
the primal variables β. In this paper, we give explicit
formulation for the case of p = 1 and p = 21. The
p = 1 case leads to a maximum weighted clique in a
single graph with modified weight functions, and the
p = 2 case leads to a series of maximum weighted
clique problems.

`1 Soft Clique-ness Measure For simplicity of
presentation, in what follows, we show the case for
the trade-off parameter η = 1. In (6), taking the point
where the gradient with respect to βt vanishes leads
to the dual variables take the form of λt = +1 for
t = 1, . . . , T . Similarly, for (7), the vanishing gradient
point leads to λt = −1 for t = 1, . . . , T . Plugging this
constraint on the dual variables back to the (6) and
(7) leads us to the following problem:

max
x∈{0,1}|V|

∑
1≤i<j≤n

xixj

{
k(vi, vj)−

∑
t

I[(i, j) /∈ Et]

}
.

(8)

1One could also choose p = ∞ which leads to a single
global variable β. However, this choice is not robust against
missing edges as a single instance with an empty edge set
would render the whole procedure vacuous.
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Algorithm 1 `1 Soft Clique-ness Measure

Input A spatio-temporal graph Gt(V, Et, kt)
Compute the total similarity, k(i, j) =

∑
t kt(i, j)

Compute the measure, c(i, j) =
∑
t I[(i, j) /∈ Et]

Solve argmax
x

{
xTKx− xTCx

}
with Ki,j = k(i, j)

and Ci,j = c(i, j)
Return x ∈ {0, 1}|V|

The above problem takes the appealing form of a
maximum weighted clique optimization with the re-
adjusted weight functions taking into account the
number of missing edges to make group of vertices into
a clique. Finding the maximum weighted clique is NP-
complete and hard to approximate to a given bound
(Pardalos & Xue, 1994). Numerous heuristics have
been proposed to obtain local solutions, and eventu-
ally the best performing strategy often depends on the
application. For a very small graph, any integer pro-
gramming solvers, such as CPLEX, can in principle
be used to solve (8). In our case, we deal with graphs
of moderate to large size. For this reason, we use the
Quadratic Pseudo-Boolean Optimization with Probing
(QPBOP) solver2 of Rother et al. (2007).

`2 Soft Clique-ness Measure Similarly to the `1
case, we find the point where the gradient with re-
spect to βt vanishes leads to the dual variables take
the form of λt = 2ηβt for (6) and λt = −2βt for (7).
We again use this to eliminate the primal variables βt.
The optimization problem of (6) is now in the form
of3:

max
λ∈RT

+

min
x∈{0,1}|V|

−
∑

1≤i<j≤n

xixjk(vi, vj)

− 1

4η

∑
t

λ2t +
∑
t

λt

 ∑
1≤i<j≤n

xixjI[(i, j) /∈ Et]

 .

(9)

The problem (9) is concave quadratic with respect to
the dual variables given all the binary indicator vari-
ables x, and is in the form of standard maximum
weighted clique problem with respect to the indica-
tor variables given the dual variables λ. With these
observations, to solve (9), we pursue an alternating
approach:

• Step 1: given all the dual variables, solve the fol-
lowing maximum weighted clique problem

2http://pub.ist.ac.at/~vnk/software.html
3Problem (7) leads to the same form with different con-

stant in front of the term
∑

t λ
2
t .

Algorithm 2 `2 Soft Clique-ness Measure

Input A spatio-temporal graph Gt(V, Et, kt), num-
ber of iterations N , regularization constant η
Compute the total similarity, k(i, j) =

∑
t kt(i, j)

for i = 1 to N do
Compute the measure, c(i, j) =

∑
t λtI[(i, j) /∈ Et]

Solve argmax
x

{
xTKx− xTCx

}
with Ki,j =

k(i, j) and Ci,j = c(i, j)
Update λt ← 2η

∑
ij xixjI[(i, j) /∈ Et]

end for
Return x ∈ {0, 1}|V|

min
x∈{0,1}|V|

∑
1≤i<j≤n

xixj

{
−k(vi, vj) +

∑
t

λtI[(i, j) /∈ Et]

}
.

• Step 2: subsequently, given the indicator vari-
ables, update dual variables with a closed-form
solution, λt = 2η

∑
1≤i<j≤n xixjI[(i, j) /∈ Et].

The above two steps are repeated until certain number
of alternating steps is reached. The initialization plays
a crucial role for this alternating approach. We set all
the dual variables to zeros at the start. Those dual
variables that are associated with the time slices where
the clique-ness constraints are not violated (there are
no missing edges) will stay at zeros (this is a comple-
mentary slackness of necessary KKT condition for the
optimal points (Boyd & Vandenberghe, 2004)).

4. Experiments

We perform two experiments to assess the efficacy of
our soft clique-ness measure: first on synthetic data
where a collection of noisy snapshots of the same graph
is observed, and second on real location-based social
network graph where we would like to identify a clique
of friends. We discuss both experiments in turn4.

4.1. Synthetic Data

We generate the data in the following ways: a) At
time 1, we draw 18 2D data points from a mixture of
3 Gaussian distributions where 7 samples drawn from
N ([0, 0], 1.0I), 6 samples drawn from N ([−6, 3], 2.0I),
and 5 points sampled from N ([8,−3], 2.0I), b) For
time t = 2, . . . , T , we add to each point of the initial
graph, at each time slice, an independent Gaussian
noise. This procedure simulates the situation where
inconsistent patterns are observed in the several shots

4The code is available at http://mlg.eng.cam.ac.uk/

~nquadrianto/.

http://pub.ist.ac.at/~vnk/software.html
http://mlg.eng.cam.ac.uk/~nquadrianto/
http://mlg.eng.cam.ac.uk/~nquadrianto/


The Most Persistent Soft-Clique in a Set of Sampled Graphs

(a) High noise at time 2 and low noise at time 3

(b) High noise for both time 2 and 3

(c) Another high noise for both time 2 and 3

Figure 2. Synthetic experiments with data at time 1 are drawn from a mixture of Gaussian distributions with 3 compo-
nents. At time 2 and 3, the data are corrupted with a random Gaussian noise. Red dots depict the group of vertices that
we want to identify as a clique. (a) Under high noise level at time 2 and low noise level at time 3, our method is able
to correctly capture the clique. (b) As expected, under high noise levels for time 2 and 3, our approach is only able to
recover partial vertices of the clique. (c) Another draw of high noise levels setting.

of the initial graph depending on the amount of noise.

We produce 4 sets of synthetic data with the above
procedure. Syn.Data A and Syn.Data B have 3 time
slices where at time 2 a noise of N ([0, 0], 10.0I) is
added, and at time 3 a noise of N ([0, 0], 0.8I) is in-
troduced for A and N ([0, 0], 10.0I) is introduced for
B. We repeat the data generation process 10 times.
Figure 2 shows examples of draws from this process.
Syn.Data C has 5 time slices and is corrupted by the
same noise as A and B at time 2. Subsequently,
the noises at time 3, 4, and 5 are N ([0, 0], 2.0I),
N ([0, 0], 5.0I), andN ([0, 0], 0.8I), respectively. Lastly,
there are 7 time slices at Syn.Data D, with the same
type of corrupted noises as C for the first four time
slices, and the last two time slices have N ([0, 0], 2.5I)
and N ([0, 0], 0.5I) random noises.

We run our `1 (refer to Algorithm 1) and `2 (refer
to Algorithm 2) soft clique-ness measure methods on
the generated synthetic data. We use a Gaussian RBF
kernel k(vi, vj) = exp(− 1

σ2 ‖vi − vj‖2`2) with the kernel

width σ2 set to the median distance (Schölkopf, 1997),

as the similarity function. Some visualizations of the
results of our algorithms are depicted in Figure 2. As a
baseline, we use the graph shift algorithm proposed in
(Liu & Yan, 2010)5. This algorithm finds a mode, i.e.
a dense subgraph, on a single graph (Pavan & Pelillo,
2007). We can extend this algorithm to work on sam-
ples of graphs by simply finding the mode defined by
the temporal average of similarity or affinity matrices.
The graph shift returns different local modes depend-
ing on different initializations. We use the default set-
ting, which use each vertex as one initialization, and
choose the output with the best score. We use the

Jaccard Index (Jaccard, 1901), J(X, X̂) = |X∩X̂|
|X∪X̂| for

a predicted set of fully connected vertices X̂ while a
true clique is X, as an evaluation metric. The em-
pirical results are summarized in Table 1. The soft
clique-ness measure is clearly important for handling
inconsistent patterns inherent in the data. Evidently,
our `1 and `2 soft clique-ness measure methods also
produce lower variances in the Jaccard Index metric in

5http://sites.google.com/site/lhrbss/

http://sites.google.com/site/lhrbss/
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Table 1. Synthetic Experiments Results. Jaccard Index
mean ± std over 10 random repeats (the higher the bet-
ter). GS: Graph Shift algorithm (Liu & Yan, 2010); Soft
`1: Our soft `1 measure; Soft `2: Our soft `2 measure.
For the descriptions of the data, please see texts.

Data GS Soft `1 Soft `2
Syn.Data A 0.82±0.28 0.92±0.12 0.89±0.14
Syn.Data B 0.58±0.31 0.62±0.16 0.64±0.17
Syn.Data C 0.79±0.28 0.88±0.18 0.87±0.16
Syn.Data D 0.85±0.26 0.93±0.12 0.89±0.15

comparison to the graph shift algorithm. As expected,
our two algorithms will (mostly) recover the same solu-
tions. It is also observed that a collection of snapshots
of the same graph could give us more confidence of the
clique pattern, for example the mean Jaccard Index in
Syn.Data D is higher than in Syn.Data B .

4.2. Real Social Network Data

In this experiment, we are interested to apply our
clique-ness measure to the samples of real network
graphs for identifying a soft-clique of friends.

Data We use a Brightkite location-based social net-
work graph6. The network contains data of users’
”check-ins” where users shared their locations by us-
ing text messaging or other mobile applications. The
numbers of check-ins varies widely among users, thus
we filter the data and only use data from persons with
above average number of check-ins. This leaves us with
4, 429 persons or nodes and 9, 805, 806 connections.

Set Kernels Exploiting studies in Cho et al. (2011)
that mobility patterns of humans are mostly periodic
(moving back and forth between homes and work-
places) and the remaining patterns could be explained
by social relationships, we define different after -hours
in a day as samples of the graphs. Specifically, we
uniformly divide the hours between 17 : 00 and mid-
night into 7 time slices. Each person or node now is
represented as a vector of location and date of check-
in. To define kernels between persons in this (location-
date)-based representation, we are faced with the chal-
lenge that persons are represented by different num-
bers of locations at different dates depending on how
(ir)-regular their check-ins behaviors. We pursue a so-
lution of representing a person with a set or a bag of
vectors. In this paper, we use the following set ker-
nel between x = {x1, . . . , xn} and y = {y1, . . . , ym}:
kset =

∑n
i=1

∑m
j=1 kbase(xi, yj), where xi and yi are

6http://snap.stanford.edu/data/loc-brightkite.
html

the persons (location-date) descriptors. A Gaussian
RBF is used as the base kernel.

Diagonal Dominance We observe that our set ker-
nel matrices at each time slice are diagonally domi-
nant, i.e. a person tends to be much more similar
to himself or herself than to others. Sub-polynomial
kernels (Schölkopf et al., 2003) are designed to specifi-
cally address such diagonal dominance issue. This sub-
polynomial kernel is generated as follows: first each
element of the original kernel matrix is raised to the
power of p where 0 < p < 1. This procedure reduces
the dynamic range of the original kernel as elements
that are less than one will be increased, whereas el-
ements that are greater than one will be decreased.
Then, the rows of the modified kernel is normalized
to a unit length (let K̂ denote this transformed kernel
matrix), and lastly, our sub-polynomial kernel matrix
is K̂K̂>. The last step is needed to make the modified
kernel matrix to be a positive definite matrix.

Results Our `1 method run for about an hour and
produce a soft-clique of friend of the size 1754. We
observe that our identified clique explains 23% of the
friendship network that was collected based on the on-
line public API. The graph shift algorithm did not
finish in a week time. We thus randomly select 1754
nodes to form a clique and find that the random clique
explains only 14% of the online friendship network.

5. Discussion and Conclusion

We have introduced the concept of persistent soft-
cliques, i.e., subgraphs that are almost fully or at least
densely connected, and that persists through all or
most instances of the graph. This concept is partic-
ularly useful to characterize key patterns more confi-
dently when multiple instances of a graph are available
for analysis. We presented a soft clique-ness measure,
that counts and penalizes the number of edges miss-
ing to make the selected subgraphs into a clique, to
handle inconsistent patterns inherent in noisy graph
instances. When this measure is used in an optimiza-
tion framework to find a maximum weighted clique, we
end up at a two-person game or a slack formulation.
We showed using a Lagrangian method that the two
formulations lead to the same solution.

Our experiments on randomly generated inconsistent
patterns in several shots of the initial graph confirmed
that a collection of, though noisy, snapshots of the
same graph can give us more confidence of the clique
pattern, and our clique-ness measure is important for
such situation. We also provided experiments on a

http://snap.stanford.edu/data/loc-brightkite.html
http://snap.stanford.edu/data/loc-brightkite.html
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prototypical application of our method: identifying
groups of friends or families from a location-based so-
cial network graph where the sampling of graphs cor-
respond to an after -hour temporal dimension. Our
clique-ness measure helped to recover more than 20%
of the online friendship network.

Despite encouraging results in our experiments, we
have clearly only touched the surface of possibilities
to be explored. Particularly, we are interested to ex-
plore the case where vertex correspondences between
time slices are a priori unknown. In such situation, we
need to jointly infer the key patterns and the corre-
spondences, specifically a mutual information like de-
pendency measure can be used for the latter. Further-
more, we intend to introduce a pairwise coupling over
time slices via a Markov model. This model will allow
us to distinguish the case where edges disappear for
a while and then come back to the case where edges
randomly flip on and off.
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