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Abstract

In this work we consider the stochastic min-
imization of nonsmooth convex loss func-
tions, a central problem in machine learn-
ing. We propose a novel algorithm called
Accelerated Nonsmooth Stochastic Gradient
Descent (ANSGD), which exploits the struc-
ture of common nonsmooth loss functions to
achieve optimal convergence rates for a class
of problems including SVMs. It is the first
stochastic algorithm that can achieve the op-
timal O(1/t) rate for minimizing nonsmooth
loss functions (with strong convexity). The
fast rates are confirmed by empirical com-
parisons, in which ANSGD significantly out-
performs previous subgradient descent algo-
rithms including SGD.

1. Introduction

Nonsmoothness is a central issue in machine learn-
ing computation, as many important methods min-
imize nonsmooth convex functions. For example,
using the nonsmooth hinge loss yields sparse sup-
port vector machines; regressors can be made ro-
bust to outliers by using the nonsmooth absolute loss
other than the squared loss; the l1-norm is widely
used in sparse reconstructions. In spite of the at-
tractive properties, nonsmooth functions are theoreti-
cally more difficult to optimize than smooth functions
(Nemirovski & Yudin, 1983). In this paper we focus
on minimizing nonsmooth functions where the func-
tions are either stochastic (stochastic optimization),
or learning samples are provided incrementally (online
learning).

Smoothness and strong-convexity are typically certifi-
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cates of the existence of fast global solvers. Nesterov’s
deterministic smoothing method (Nesterov, 2005b)
deals with the difficulty of nonsmooth functions by
approximating them with smooth functions, for which
optimal methods (Nesterov, 2004) can be applied. It
converges as f(xt)−minx f(x) ≤ O(1/t) after t itera-
tions. If a nonsmooth function is strongly convex, this
rate can be improved to O(1/t2) using the excessive
gap technique (Nesterov, 2005a).

In this paper, we extend Nesterov’s smoothing method
to the stochastic setting by proposing a stochastic
smoothing method for nonsmooth functions. Combin-
ing this with a stochastic version of the optimal gradi-
ent descent method, we introduce and analyze a new
algorithm named Accelerated Nonsmooth Stochastic
Gradient Descent (ANSGD), for a class of functions
that include the popular ML methods of interest.

To our knowledge ANSGD is the first stochastic
first-order algorithm that can achieve the optimal
O(1/t) rate for minimizing nonsmooth loss func-
tions without Polyak’s averaging (Polyak & Juditsky,
1992). In comparison, the classic SGD converges
in O(ln t/t) for nonsmooth strongly convex functions
(Shalev-Shwartz et al., 2007), and is usually not ro-
bust (Nemirovski et al., 2009). Even with Polyak’s
averaging (Bach & Moulines, 2011; Xu, 2011), there
are cases where SGD’s convergence rate still can not
be faster than O(ln t/t) (Shamir, 2011). Numerical
experiments on real-world datasets also indicate that
ANSGD converges much faster in comparing with these
state-of-the-art algorithms.

A perturbation-based smoothing method is recently
proposed for stochastic nonsmooth minimization
(Duchi et al., 2011). This work achieves similar iter-
ation complexities as ours, in a parallel computation
scenario.

In machine learning, many problems can be cast as
minimizing a composition of a loss function and a reg-
ularization term. Before proceeding to the algorithm,
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we first describe a different setting of “composite min-
imizations” that we will pursue in this paper, along
with our notations and assumptions.

1.1. A Different “Composite Setting”

In the classic black-box setting of first-order stochastic
algorithms (Nemirovski et al., 2009), the structure of
the objective function minx{f(x) = Eξf(x, ξ) : ξ ∼
P} is unknown. In each iteration t, an algorithm can
only access the first-order stochastic oracle and obtain
a subgradient f ′(x, ξt). The basic assumption is that
f ′(x) = Eξf

′(x, ξ) for any x, where the random vector
ξ is from a fixed distribution P .

The composite setting (also known as splitting
(Lions & Mercier, 1979)) is an extension of the black-
box model. It was proposed to exploit the structure of
objective functions. Driven by applications of sparse
signal reconstruction, it has gained significant interest
from different communities (Daubechies et al., 2004;
Beck & Teboulle, 2009; Nesterov, 2007a). Stochas-
tic variants have also been proposed recently (Lan,
2010; Lan & Ghadimi, 2011; Duchi & Singer, 2009;
Hu et al., 2009; Xiao, 2010). A stochastic compos-
ite function Φ(x) := f(x) + g(x) is the sum of a
smooth stochastic convex function f(x) = Eξf(x, ξ)
and a nonsmooth (but simple and deterministic) func-
tion g(). To minimize Φ, previous work construct the
model iteratively: ⟨∇f(xt, ξt),x− xt⟩+ 1

ηt
D(x,xt) +

g(x), where ∇f(xt, ξt) is a gradient, D(·, ·) is a proxi-
mal function (typically a Bregman divergence) and ηt
is a stepsize.

A successful application of the composite idea typi-
cally relies on the assumption that the above model is
easy to minimize. If g() is very simple, e.g. ∥x∥1 or the
nuclear norm, it is straightforward to obtain the mini-
mum in analytic forms. However, this assumption does
not hold for many other applications in machine learn-
ing, where many loss functions (not the regularization
term, here the nonsmooth g() becomes the nonsmooth
loss function) are nonsmooth, and do not enjoy sepa-
rability properties (Wright et al., 2009). This includes
important examples such as hinge loss, absolute loss,
and ϵ-insensitive loss.

In this paper, we tackle this problem by studying a new
stochastic composite setting: minx Φ(x) = f(x)+g(x),
where loss function f() is convex and nonsmooth,
while g() is convex and Lg-Lipschitz smooth: g(x) ≤
g(y) + ⟨∇g(y),x − y⟩ + Lg

2 ∥x − y∥2. For clarity,
in this paper we focus on unconstrained minimiza-
tions. Without loss of generality, we assume that
both f() and g() are stochastic: f(x) = Eξf(x, ξ)

and g(x) = Eξg(x, ξ), where ξ has distribution P .
If either one is deterministic, its ξ is then dropped.
To make our algorithm and analysis more general, we
assume that g() is µ-strongly convex: ∀x,y, g(x) ≥
g(y)+ ⟨∇g(y),x−y⟩+ µ

2 ∥x−y∥2. If it is not strongly
convex, one can simply take µ = 0.

The main idea of our algorithm again stems from ex-
ploiting the structures of f() and g(). In Section 2
we propose to form a smooth stochastic approxima-
tion of f(), such that the optimal methods (Nesterov,
2004) can be applied to attain optimal convergence
rates. The convergence of our proposed algorithm is
analyzed in Section 3, and a batch-to-online conver-
sion is also proposed. Two popular machine learning
problems are chosen as our examples in Section 4, and
numerical evaluations are presented in Section 5. All
proofs are provided in a longer version of this paper 1.

2. Approach

2.1. Stochastic Smoothing Method

An important breakthrough in nonsmooth minimiza-
tion was made by Nesterov in a series of works
(Nesterov, 2005b;a; 2007b). By exploiting function
structures, Nesterov shows that in many applications,
minimizing a well-structured nonsmooth function f(x)
can be formulated as an equivalent saddle-point form

min
x∈X

f(x) = min
x∈X

max
u∈U

[
⟨Ax,u⟩ −Q(u)

]
, (1)

where u ∈ Rm, U ⊆ Rm is a convex set, A is a linear
operator mapping RD → Rm and Q(u) is a continuous
convex function. Inserting a non-negative ζ-strongly
convex function ω(u) in (1) one obtains a smooth ap-
proximation of the original nonsmooth function

f̂(x, γ) := max
u∈U

[
⟨Ax,u⟩ −Q(u)− γω(u)

]
, (2)

where γ > 0 is a fixed smoothness parameter which is
crucial in the convergence analysis. The key property
of this approximation is:

Lemma 1. (Nesterov, 2005b)(Theorem 1) Function

f̂(x, γ) is convex and continuously differentiable, and
its gradient is Lipschitz continuous with constant

Lf̂ := ∥A∥2

γζ , where

∥A∥ := max
x,u
{⟨Ax,u⟩ : ∥x∥ = 1, ∥u∥ = 1}. (3)

Nesterov’s smoothing method was originally proposed
for deterministic optimization. A major drawback of

1http://arxiv.org/abs/1205.4481
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this method is that the number of iterations N must
be known beforehand, such that the algorithm can set

a proper smoothness parameter γ = O
( 2∥A∥
N+1

)
to en-

sure convergence. This makes it unsuitable for algo-
rithms that runs forever, or whose number of itera-
tions is not known. Following his work we propose
to extend this smoothing method to stochastic opti-
mization. Our stochastic smoothing differs from the
deterministic one in the operator A and smoothness
parameter γ, where both will be time-varying.

We assume that the nonsmooth part f(x, ξ) of the
stochastic composite function Φ() is well structured,
i.e. for a specific realization ξt, it has an equivalent
form like the max function in (1):

f(x, ξt) = max
u∈U

[
⟨Aξtx,u⟩ −Q(u)

]
, (4)

where Aξt is a stochastic linear operator associated
with ξt. We construct a smooth approximation of this
function as:

f̂(x, ξt, γt) := max
u∈U

[
⟨Aξtx,u⟩ −Q(u)− γtω(u)

]
, (5)

where γt is a time-varying smoothness parameter only
associated with iteration index t, and is independent
of ξt. Function ω() is non-negative and ζ-strongly con-

vex. Due to Lemma 1, f̂(x, ξt, γt) is
∥Aξt∥

2

γtζ
-Lipschitz

smooth. It follows that

Lemma 2. ∀x,y, t, Eξf̂(x, ξ, γt) ≤ Eξf̂(y, ξ, γt) +

Eξ⟨∇f̂(y, ξ, γt),x− y⟩+ Eξ∥Aξ∥2

γtζ
∥x− y∥2.

We have the following observation about our compos-
ite objective Φ(), which relates the reduction of the
original and approximated function values.

Lemma 3. For any x,xt, t,

Φ(xt)− Φ(x) ≤ Eξ

[
f̂(xt, ξ, γt) + g(xt, ξ)

]
−

Eξ

[
f̂(x, ξ, γt) + g(x, ξ)

]
+ γtDU ,

(6)

where DU := maxu∈U ω(u).

2.2. Accelerated Nonsmooth SGD (ANSGD)

We are now ready to present our algorithm ANSGD
(Algorithm 1). This stochastic algorithm is obtained
by applying Nesterov’s optimal method to our smooth
surrogate function, and thus has a similar form to
that of his original deterministic method (Nesterov,
2004)(p.78). However, our convergence analysis is
more straightforward, and does not rely on the con-
cept of estimate sequences. Hence it is easier to iden-
tify proper series γt, ηt, αt and θt that are crucial in
achieving fast rates of convergence. These series will
be determined in our main results (Thm.1 and 2).

Algorithm 1 Accelerated Nonsmooth Stochastic Gra-
dient Descent (ANSGD)

INPUT: series γt, ηt, θt ≥ 0 and 0 ≤ αt ≤ 1;
OUTPUT: xt+1;

0. Initialize x0 and v0;
for t = 0, 1, 2, . . . do

1. yt ← (1−αt)(µ+θt)xt+αtθtvt

µ(1−αt)+θt

2. f̂t+1(x)← max
u∈U

[
⟨Aξt+1x,u⟩ −Q(u)− γt+1ω(u)

]
3. xt+1 ← yt − ηt

[
∇f̂t+1(yt) +∇gt+1(yt)

]
4. vt+1 ←

θtvt+µyt−[∇f̂t+1(yt)+∇gt+1(yt)]
µ+θt

end for

3. Convergence Analysis

To clarify our presentation, we use Table 1 to list some
notations that will be used throughout the paper.

Table 1. Some notations.
Symbol Meaning

f̂t(x), gt(x) f̂(x, ξt, γt), g(x, ξt)

∇f̂t(x), ∇gt(x) ∇f̂(x, ξt, γt), ∇g(x, ξt)
Lt Lg +

∥Aξt∥
2

γtζ

σt(x) [∇f̂t(x) +∇gt(x)]−
Eξt [∇f̂t(x) +∇gt(x)]

σ2 Emaxt ∥σt+1(yt)∥2
∆t Eξt

[
f̂t(xt) + gt(xt)

]
−

Eξt

[
f̂t(x) + g(x)

]
Γt+1 ⟨σt+1(yt), αtx+ (1− αt)xt − yt⟩
D2

t
1
2E∥x− vt∥2

Our convergence rates are based on the following main
lemma, which bounds the progressive reduction ∆t of
the smoothed function value. Actually Line 1, 3, and 4
of Alg.1 are also derived from the proof of this lemma.

Lemma 4. Let γt be monotonically decreasing. Apply-
ing algorithm ANSGD to nonsmooth composite func-
tion Φ(), we have ∀x and ∀t ≥ 0,

∆t+1 ≤ (1− αt)∆t + (1− αt)(γt − γt+1)DU+

Γt+1 +
αt

2

[
θt∥x− vt∥2 − (µ+ θt)∥x− vt+1∥2

]
+

ηtpq +

[
αt

2(µ+ θt)
+

Lt+1

2
η2t − ηt

]
q2

(7)

where p := ∥σt+1(yt)∥ and q := ∥∇f̂t+1(yt) +
∇gt+1(yt)∥.



Stochastic Smoothing for Nonsmooth Minimizations

3.1. How to Choose Stepsizes ηt

In the RHS of (7), nonnegative scalars p, q ≥ 0 are
data-dependent, and could be arbitrarily large. Hence
we need to set proper stepsizes ηt such that the last two
terms in (7) are non-positive. One might conjecture
that: there exist a series ct ≥ 0 such that

ηtpq +

[
αt

2(µ+ θt)
+

Lt+1

2
η2t − ηt

]
q2 ≤ ctp

2. (8)

It is easy to verify that if we take ηt =
αt

µ+θt
and any

series ct ≥ αt

2(µ+θt−αtLt+1)
≥ 0, then (8) is satisfied. To

retain a tight bound, we take

ct =
αt

2(µ+ θt − αtLt+1)
. (9)

Taking expectation on both sides of (7) and noticing
that Eξt+1|ξ[t]

Γt+1 = 0, Eξt+1ct ≤ αt

2(µ+θt−αtEξt+1
Lt+1)

due to Jensen’s inequality, we have

Lemma 5. ∀x and ∀t ≥ 0,

E∆t+1 ≤ (1− αt)E∆t + αtθtD
2
t − αt(µ+ θt)D

2
t+1

+
αt

2(µ+ θt − αtELt+1)
σ2 + (1− αt)(γt − γt+1)DU ,

(10)

The optimal convergence rates of our algorithm differs
according to the fact of µ (positive or not). They are
presented separately in the following two subsections,
where the choices of γt, θt, αt will also be determined.

3.2. Optimal Rates for Composite
Minimizations when µ = 0

When µ = 0, g() is only convex and Lg-Lipschitz
smooth, but not assumed to be strongly convex.

Theorem 1. Take αt =
2

t+2 , γt+1 = αt, θt = Lgαt +

Ω√
αt

+
E∥Aξ∥2

ζ and ηt =
αt

θt
in Alg.1, where Ω is a con-

stant. We have ∀x and ∀t ≥ 0, E [Φ(xt+1)− Φ(x)] ≤

4LgD
2
0

(t+ 2)2
+

2E∥Aξ∥2D2
0/ζ + 4DU

t+ 2
+

√
2(ΩD2

0 + σ2/Ω)√
t+ 2

.

(11)

In this result, the variance bound is optimal up to
a constant factor (Agarwal et al., 2012). The domi-
nating factor is still due to the stochasticity, but not
affected by the nonsmoothness of f(). Taking the pa-

rameter Ω = σ/D0, this last term becomes 2
√
2D0σ√
t+2

.

This bound is better than that of stochastic gradi-
ent descent or stochastic dual averaging (Dekel et al.,
2010) for minimizing L-Lipschitz smooth functions,

whose rate is O
(

LD2
0

t +
D2

0+σ2

√
t

)
; without the smooth

function g(), our bound is of the same order as it,
keeping in mind that our rate is for nonsmooth mini-
mizations. This fact underscores the potential of using
stochastic optimal methods for nonsmooth functions.

The diminishing smoothness parameter γt =
2

t+2 indi-
cates that initially a smoother approximation is pre-
ferred, such that the solution does not change wildly
due to the nonsmoothness and stochasticity. Eventu-
ally the approximated function should be closer and
closer to the original nonsmooth function, such that
the optimality can be reached. Some concrete exam-
ples are given in Fig.1.

The E∥Aξ∥2 in our bound is a theoretical constant. In
Sec.4 we demonstrate a sampling method, and it turns
out to work quite well in estimating E∥Aξ∥2.

3.3. Nearly Optimal Rates for Strongly
Convex Minimizations

When µ > 0, g() is strongly convex, and the conver-
gence rate of ANSGD can be improved to O(1/t).

Theorem 2. Take αt =
2

t+1 , γt+1 = αt, θt = Lgαt +
µ

2αt
+

E∥Aξ∥2

ζ − µ and ηt =
αt

µ+θt
in Alg.1. Denote

C := max

{
4E∥Aξ∥2

ζµ
, 2

(
Lg

µ

)1/3
}
. (12)

We have ∀x and ∀t ≥ 0, E [Φ(xt+1)− Φ(x)] ≤

6.58LgD̃
2

t(t+ 1)
+ B +

4DU

t+ 1
+

σ2

µ(t+ 1)
, (13)

where

B :=

{
2E∥Aξ∥2D̃2/ζ

t+1 if 0 ≤ t < C,
2(C−2)E∥Aξ∥2D̃2/ζ

t(t+1) if t ≥ C,
(14)

and D̃2 := max0≤i≤min{t,C} D
2
i .

Note that C is the smallest iteration index for which
one can retain 1/t2 rates for the E∥Aξ∥2 part (B).
Without any knowledge about Lg, µ and E∥Aξ∥2, one
can set a parameter Ω and take θt = Lgαt +

µ
2αt

+
E∥Aξ∥2

Ωζ −µ in the algorithm. In our experiments, we ob-

serve that one can take Ω fairly large (of O(E∥Aξ∥2)),
meaning that C can be very small (O(1)), and B is
O( 1

t2 ) for all t. In this sense, strongly convex ANSGD
is almost parameter-free. Without the O(1/t) rate of
DU , all terms in our bound are optimal. This is why
our rate is called “nearly” optimal. In practice, DU
is usually small, and it will be dominated by the last

term σ2

µ(t+1) .
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3.4. Batch-to-Online Conversion

The performance of an online learning (online convex
minimization) algorithm is typically measured by re-
gret, which can be expressed as

R(t) :=
t−1∑
i=0

[Φ(xi, ξi+1)− Φ(x∗
t , ξi+1)] , (15)

where x∗
t := argminx

∑t−1
i=0 [Φ(x, ξi+1)]. In the learn-

ing theory literature, many approaches are proposed
which use online learning algorithms for batch learn-
ing (stochastic optimization), called “online-to-batch”
(O-to-B) conversions. For convex functions, many of
these approaches employ an “averaged” solution as the
final solution.

On the contrary, we show that stochastic optimization
algorithms can also be used directly for online learning.
This “batch-to-online” (B-to-O) conversion is almost
free of any additional effort: under i.i.d. assumptions
of data, one can use any stochastic optimization algo-
rithm for online learning.

Proposition 1. For any t ≥ 0, Eξ[t]
R(t) ≤

t−1∑
i=0

Eξ[i]
[Φ(xi)− Φ(x∗)]+Eξ[t]

t−1∑
i=0

[Φ(x∗
t )− Φ(x∗

t , ξi+1)]

(16)
where x∗ := argminx Φ(x) and x∗

t :=

argminx
∑t−1

i=0 [Φ(x, ξi+1)].

When Φ() is convex, the second term in (16) can
be bounded by applying standard results in uni-
form convergence (e.g. (Boucheron et al., 2005)):∑t−1

i=1 Φ(x
∗
t ) − Φ(x∗

t , ξi+1) = O(
√
t). Together with

summing up the RHS of (11), we can obtain an
O(
√
t) regret bound. When Φ() is strongly con-

vex, the second term in (16) can be bounded

using (Shalev-Shwartz et al., 2009):
∑t−1

i=1 Φ(x
∗
t ) −

Φ(x∗
t , ξi+1) = O(ln t). Together with summing up the

RHS of (13), an O(ln t) regret bound is achieved. The
O(
√
t) and O(ln t) regret bounds are known

Using our proposed ANSGD for online learning by B-
to-O achieves the same (optimal) regret bounds as
state-of-the-art algorithms designated for online learn-
ing. However, using O-to-B, one can only retain an
O(ln t/t) rate of convergence for stochastic strongly
convex optimization. From this perspective, O-to-B
is inferior to B-to-O. The sub-optimality of O-to-B is
also discussed in (Hazan & Kale, 2011).

4. Examples

In this section, two nonsmooth functions are given as
examples. We will show how these functions can be

stochastically approximated, and how to calculate pa-
rameters used in our algorithm.

4.1. Hinge Loss SVM Classification

Hinge loss is a convex surrogate of the 0− 1 loss. De-
note a sample-label pair as ξ := {s, l} ∼ P , where
s ∈ RD and l ∈ R. Hinge loss can be expressed as
fhinge(x) := max{0, 1− lsTx}. It has been widely used
for SVM classifiers where the objective is minΦ(x) =
minEξfhinge(x) +

λ
2 ∥x∥

2. Note that the regulariza-

tion term g(x) = λ
2 ∥x∥

2 is λ-strongly convex, hence
according to Thm.2, ANSGD enjoys O(1/(λt)) rates.
Taking ω(u) = 1

2∥u∥
2 in (5), it is easy to check that

the smooth stochastic approximation of hinge loss is

f̂hinge(x, ξt, γt) = max
0≤u≤1

{
u
(
1− lts

T
t x

)
− γt

u2

2

}
.

(17)
This maximization is simple enough such that we
can obtain an equivalent smooth representation:
f̂hinge(x, ξt, γt) =

0 if lts
T
t x ≥ 1,

(1−lts
T
t x)2

2γt
if 1− γt ≤ lts

T
t x < 1,

1− lts
T
t x−

γt

2 if lts
T
t x < 1− γt.

(18)

Several examples of f̂hinge with varying γt are plotted
in Fig.1(left) in comparing with the hinge loss.
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Figure 1. Left: Hinge loss and its smooth approximations.
Right: Absolute loss and its smooth approximations.

Here u is a scalar, hence it is straightforward to

calculate
E∥Aξ∥2

ζ , which will be used to generate se-
quences θt. In binary classification, suppose l ∈
{1,−1}. Using definition (3), one only needs to cal-
culate E(max∥x∥=1 s

T
t x)

2. Practically one can take a
small subset of k random samples si (e.g. k = 100),
and calculate the sample average of the squared norms
1
k

∑k
i=1 ∥si∥2. This yields

1
k

∑k
i=1(max∥x∥=1 s

T
i x)

2, an
estimate of E∥Aξ∥2.

4.2. Absolute Loss Robust Regression

Absolute loss is an alternative to the popular squared
loss for robust regressions (Hastie et al., 2009). Us-
ing same notations as Sec.4.1 it can be expressed as
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fabs(x) := |l − sTx|. Taking ω(u) = 1
2∥u∥

2 in (5), its
smooth stochastic approximation can be expressed as

f̂abs(x, ξt, γt) = max
−1≤u≤1

{
u(lt − sTt x)− γt

u2

2

}
. (19)

Solving this maximization wrt u we obtain an equiva-
lent form: f̂abs(x, ξt, γt) =

lt − sTt x−
γt

2 if lt − sTt x ≥ γt,
(lt−sTt x)2

2γt
if − γt ≤ lt − sTt x < γt,

−(lt − sTt x)−
γt

2 if lt − sTt x < −γt.
(20)

This approximation looks similar to the well-studied
Huber loss (Huber, 1964), though they are different.
Actually they share the same form only when γt = 0.5
(green curve in Fig.1 Right). The parameter E∥Aξ∥2
can be estimated in a similar way as in Sec.4.1.

5. Experimental Results

In this section, five publicly available datasets from
various application domains will be used to evaluate
the efficiency of ANSGD. Datasets “svmguide1”, “real-
sim”, “rcv1” and “alpha” are for binary classifications,
and “abalone” is for robust regressions.2

Following our examples in Sec.4, we will evaluate our
algorithm using approximated hinge loss for classifica-
tions, and approximated absolute loss for regressions.
Exact hinge and absolute losses will be used for sub-
gradient descent algorithms that we will compare with,
as described in the following section. All losses are
squared-l2-norm-regularized. The regularization pa-
rameter λ is shown on each figure. When assuming
strong-convexity, we take µ = λ.

5.1. Algorithms for Comparison and
Parameters

We compare ANSGD with three state-of-the-art algo-
rithms. Each algorithm has a data-dependent tun-
ing parameter, denoted by Ω (although they have dif-
ferent physical meanings). The best values of Ω are
found based on a tuning subset of samples. Note
that when assuming strong-convexity, our ANSGD is
almost parameter-free. As discussed after Thm.2, our

2Dataset “alpha” is obtained from
ftp://largescale.ml.tu-berlin.de/largescale/,
and the other four datasets can be accessed via
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools.
Dataset “rcv1” comes with 20, 242 training samples and
677, 399 testing samples. For “svmguide1” and “real-sim”,
we randomly take 60% of the samples for training and
40% for testing. For “alpha” and “abalone”, 80% are used
for training, and the rest 20% are used for testing.

experiments indicate that the optimal Ω is taken such

that
E∥Aξ∥2

Ωζ ≈ 1, meaning that one can simply take

θt = Lgαt +
µ

2αt
+ 1− µ.

SGD. The classic stochastic approximation
(Robbins & Monro, 1951) is adopted: xt+1 ←
xt − ηtf

′(xt), where f ′(xt) is the subgradient. When
only assuming convexity (µ = 0), we use stepsize
ηt =

Ω√
t
. When assuming strong-convexity, we follow

the stepsize used in SGD2 (Bottou): ηt =
1

µ(t+Ω) .

Averaged SGD. This is algorithmically the same as
SGD, except that the averaged result x̄ := 1

t

∑t
i=1 xi is

used for testing. We follow the stepsizes suggested by
the recent work on the non-asymptotic analysis of SGD
(Bach & Moulines, 2011; Xu, 2011), where it is argued
that Polyak’s averaging combining with proper step-
sizes yield optimal rates. When only assuming convex-
ity, we use stepsizes ηt =

Ω√
t
(Bach & Moulines, 2011).

When assuming strong convexity, the stepsize is taken
as ηt =

1
Ω(1+µt/Ω)3/4

(Xu, 2011).

AC-SA. This approach (Lan, 2010; Lan & Ghadimi,
2011) is interesting to compare because like ANSGD,
it is another way of obtaining a stochastic algorithm
based on Nesterov’s optimal method, begging the
question of whether it has similar behavior. Theoret-
ically, according to Prop.8 and 9 in (Lan & Ghadimi,
2011), the bound for the nonsmooth part is of O(1/

√
t)

for µ = 0 and O(1/t) for µ > 0. In comparison, our
nonsmooth part converges in O(1/t) for µ = 0 and
O(1/t2) for µ > 0. Numerically we observe that di-
rectly applying AC-SA to nonsmooth functions results
in inferior performances.

5.2. Results

Due to the stochasticity of all the algorithms, for each
setting of the experiments, we run the program for 10
times, and plot the mean and standard deviation of
the results using error bars.

In the first set of experiments, we compare ANSGD
with two subgradient-based algorithms SGD and Aver-
aged SGD. Classification results are shown in Fig.2, 3,
4 and 5, and regression results are shown in Fig.6. In
each figure, the left column is for algorithms without
strongly convex assumptions, while in the right col-
umn the algorithms assume strong-convexity and take
µ = λ. For classification results, we plot function val-
ues over the testing set in the first row, and plot testing
accuracies in the second row.

It is clear that in all these experiments, ANSGD’s func-
tion values converges consistently faster than the other
two SGD algorithms. In non-strongly convex experi-
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Figure 2. Classification with “svmguide1”.
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Figure 3. Classification with “real-sim”.
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Figure 4. Classification with “rcv1”.
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Figure 5. Classification with “alpha”.

ments, it converges significantly faster than SGD and
its averaged version. In strongly convex experiments,
it still out performs, and is more robust than strongly
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Figure 6. Regression with “abalone”.

convex SGD. Averaged SGD performs well in strongly
convex settings, in terms of prediction accuracies, al-
though its errors are still higher than ANSGD in the
first three datasets. The only exception is in “alpha”
(Fig.5), where Averaged SGD retains higher function
values than ANSGD, but its accuracies are contradic-
torily higher in early stages. The reason might be that
the inexact solution serves as an additional regulariza-
tion factor, which cannot be predicted by the analysis
of convergence rates.

In the second set of experiments, we compare ANSGD
with AC-SA and its strongly convex version. Results
are in Fig.7, 8 and 9. In all experiments our ANSGD
significantly outperforms AC-SA, and is much more
stable. These experiments confirm the theoretically
better rates discussed in Sec.5.1.

1 2 3
0.05

0.1

0.15

# of epochs

1
N

t
e
s
t

∑
i
h
in
g
e
+

λ 2
‖
x
‖
2

real-sim, λ = 10−5 , µ = 0

 

 
AC−SA
ANSGD

1 2 3
0.05

0.1

0.15

# of epochs

real-sim, λ = 10−5 , µ = 10−5

1 2 3

95

96

97

98

# of epochs

T
es
ti
n
g
a
cc
u
ra
cy

%

real-sim, λ = 10−5 , µ = 0

1 2 3

95

96

97

98

# of epochs

real-sim, λ = 10−5 , µ = 10−5

Figure 7. Classification with “real-sim”.
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Figure 8. Classification with “rcv1”.

6. Conclusions and Future Work

We introduce a different composite setting for non-
smooth functions. Under this setting we propose a
stochastic smoothing method and a novel stochastic
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algorithm ANSGD. Convergence analysis show that
it achieves (nearly) optimal rates under both convex
and strongly convex assumptions. We also propose a
“Batch-to-Online” conversion for online learning, and
show that optimal regrets can be obtained.

We will extend our method to constrained minimiza-
tions, as well as cases when the approximated function
f̂() is not easily obtained by maximizing u. Nesterov’s
excessive gap technique has the “true” optimal 1/t2

bound, and we will investigate the possibility of in-
tegrating it in our algorithm. Exploiting links with
statistical learning theories may also be promising.
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