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Abstract

The computational bottleneck in applying
online learning to massive data sets is usually
the projection step. We present efficient on-
line learning algorithms that eschew projec-
tions in favor of much more efficient linear op-
timization steps using the Frank-Wolfe tech-
nique. We obtain a range of regret bounds
for online convex optimization, with better
bounds for specific cases such as stochastic
online smooth convex optimization.

Besides the computational advantage, other
desirable features of our algorithms are that
they are parameter-free in the stochastic case
and produce sparse decisions. We apply our
algorithms to computationally intensive ap-
plications of collaborative filtering, and show
the theoretical improvements to be clearly
visible on standard datasets.

1. Introduction

In recent years the online convex optimization model
has become a prominent paradigm for online learning.
Within this paradigm, the Online Gradient Descent
algorithm of Zinkevich (2003), and its close cousin
Stochastic Gradient Descent, have been successfully
applied to many problems in theory and practice.

While these algorithms are usually very efficient, a
computational bottleneck that limits their applicabil-
ity in several applications is the projection step in
the algorithm. Specifically, whenever we take a step
that causes the current iterate to leave the convex do-
main of interest, thus leading to an infeasible point,
we project the point back into the domain in order to
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restore feasibility. This projection step implies finding
the nearest point in the domain in ¢5 distance, and
in the general amounts to solving a convex quadratic
program over the domain.

In many settings of practical interest, while solving
convex quadratic programs is out of the question, lin-
ear optimization can be carried out efficiently. In this
paper we give efficient online learning algorithms that
replace the projection step with a linear optimization
step for a variety of settings, as given in the following
theorem:

Theorem 1.1. There is an algorithm scheme for on-
line convex optimization that performs one linear op-
timization over the convexr domain per iteration, and
with appropriate modifications for each setting, obtains
the following regret bounds:

Stochastic | Adversarial
Smooth costs O(WT) o(T3/%)
Non-smooth costs | O(T?/3) O(T>/*)

Furthermore, in each iteration t, the algorithm main-
tains an explicit, efficiently sampleable distribution
over at most t boundary points with expectation equal
to the current iterate.

The above theorem entails several appealing advan-
tages over the existing methods for online learning, as
we detail below:

Computational efficiency. In several learning do-
mains of interest projection steps are computationally
very expensive. One prominent example is online col-
laborative filtering, where the domain of interest is
the set of all positive semidefinite matrices of bounded
trace. Projecting into this set amounts to computing
the singular value decomposition (SVD) of the matrix
to be projected, whereas linear optimization is finding
the top singular vectors, a much more efficient opera-
tion.

Parameter free. Since the basic primitive of our
algorithm is linear optimization rather than gradient
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steps and projections, our algorithms in the stochas-
tic case are naturally parameter-free. In particular
there is no parameter corresponding to the learning-
rate. This makes it particularly easy to implement,
since no parameter tuning is necessary.

Efficient representation and Sparsity. Another
computational issue with standard projected gradient
descent methods is more subtle: frequently the do-
main of interest is the convex hull of “integer” deci-
sion points in Euclidean space (for example, in the
online shortest paths problem (Awerbuch & Klein-
berg, 2008)). In such problems, points in the con-
vex hull represent distributions over integer decision
points, and to output a valid decision point we must
be able to sample from such distributions. Typically,
this requires being able to decompose points in the
interior of the convex hull as explicit convex combi-
nations of boundary points, and then sampling from
the induced distribution. Such a decomposition may
also require a lot of computational effort (for example,
in the online shortest paths problem, this decomposi-
tion amounts to computing a flow decomposition in a
network).

In contrast, our algorithm explicitly maintains a dis-
tribution over the vertices (or more generally bound-
ary points) of the decision set, thereby eliminating the
need for any further decomposition. In fact, in round
t the distribution is supported on at most ¢ boundary
points, thus giving a form of sparsity.

1.1. Some Appropriate Convex Domains

In several interesting online learning scenarios the un-
derlying decision sets do not admit “practically effi-
cient” projections. We list several interesting examples
of such decision sets below.

Bounded Trace Norm Matrices. The set of ma-
trices with bounded trace norm is a common decision
set for applications such as matrix completion and col-
laborative filtering. For example, consider the set K
of m X n matrices of trace norm bounded by some
parameter 7. Computing the projection of a matrix
X requires computing the SVD of X, which requires
O(nm?) time in general assuming m < n. Linear opti-
mization over K amounts to computing the top singu-
lar vectors of the matrix defining the objective, which
can be done much faster: typically, linear time in the
number of non-zero entries in the matrix.

Flow polytope. Given a directed acyclic graph G
with n nodes and m edges with a specified source node
s and a sink node t, consider the set of all paths from
s to t. Any such path can be represented as a vector
in R™ by its indicator vector over edges. Let K be

the convex hull of all such path vectors. This can be
equivalently described as the set K of all unit flows
from s to ¢, which can be represented as a polytope
in R™ with O(m + n) linear inequalities. This set K
arises in the online shortest paths problem (Awerbuch
& Kleinberg, 2008). Computing the projection of a
vector on K amounts to solving a quadratic program
on this polytope, for which the most efficient algorithm
known takes O(n3®) time. Linear optimization on K
is much easier: it amounts to finding the shortest path
from s to ¢ given weights on the edges, and can be
done in linear time using dynamic programming.

Matroid polytope. Given a matroid M = (E,I),
where |E| = n, any independent set A € I can be
represented as a vector in R™ by its indicator vector.
The matroid polytope K is defined to be the convex
hull of all such indicator vectors of independent sets.
This polytope can be defined using O(2") linear in-
equalities. Computing a projection on K is therefore
a difficult operation (although polynomial time, see
(Nagano, 2007)). Linear optimization over K is very
easy however: there is a simple greedy algorithm (see,
e.g. Schrijver (2003)), amounting to sorting the co-
ordinates of the objective vector, which solves it in
O(nlog(n)) time.

Rotations. Consider the set of all nxn rotation ma-
trices. These are orthogonal matrices of determinant
1. Let K be the convex hull of all rotation matrices.
This set K arises in the online learning of rotations
problem (Hazan et al., 2010). Computing the projec-
tion of a matrix on K is very difficult since there is no
succinct description! of K. However, linear optimiza-
tion on K is a classic problem known as Wahba’s prob-
lem (Wahba, 1965), and can be solved using one singu-
lar value decomposition. The only method of comput-
ing projections on K that we know of uses the ellipsoid
method with linear optimization.

1.2. Discussion of Main Result

Our main result is that assuming it is possible to do
linear optimization over the convex domain efficiently,
we can obtain good algorithms (in the sense of obtain-
ing sublinear regret) for online convex optimization
over the domain using an online version of the classic
Frank-Wolfe algorithm (Frank & Wolfe, 1956).

The above statement needs clarification: Zinkevich
(2003) shows (via his Online Gradient Descent algo-
rithm) that it is possible to do online convex opti-
mization solving one quadratic program over the do-

main per step. Since quadratic optimization can be

! At least, none that we are aware of, other than (Sanyal
et al., 2011) for the special case of 3 dimensions.
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reduced to a polynomial number of linear optimiza-
tions via the ellipsoid algorithm, we can therefore do
online convex optimization solving a polynomial num-
ber of linear programs over the domain per step. In
contrast, we show (via our Online Frank-Wolfe algo-
rithm) that it is possible to do online convex optimiza-
tion solving one linear program over the domain per
step. This yields immediate computational benefits.

Another computational benefit comes from the fact
that the algorithm automatically computes a distribu-
tion over boundary points for the iterates. In fact, if
we simply want to sample from the distribution, then
there is a very natural procedure for doing that: with
a certain explicitly specified probability (viz. t~%, see
Algorithm 1), we replace the current boundary point
with a new one that is computed in the current iter-
ation in the linear optimization. This also automati-
cally gives a lazy versions of the algorithm, in which
the chosen decision point is updated very infrequently.

Our regret bounds are always sublinear, but not al-
ways optimal (with the exception of the stochastic,
smooth case, where we obtain optimal regret bounds
via our methods). Thus, theoretically we have slower
convergence, in terms of number of iterations, to the
optimal decision point, but the computational savings
per iteration lead to a faster algorithm overall. This is
validated by our experiments in Section 5.

1.3. Related Work

The closest work related to ours is that of Kalai &
Vempala (2005). They give an algorithm (previously
considered by Hannan (1957)) for online linear opti-
mization which performs one linear optimization over
the decision set in each iteration. The striking feature
of their work is they are able to show optimal O(v/T)
regret bounds even for adversarial costs, although the
limitation of their work is that the algorithm specifi-
cally works only for linear cost functions. They also
give lazy versions of their algorithm via a careful cor-
relation of randomness from one iteration to the next.
In comparison, our algorithm has a very natural lazy
implementation (simply replace the previous decision
point with a new one with an explicitly specified prob-
ability) which, in our opinion, is significantly simpler.

Our results build upon the work of Clarkson (2010),
Hazan (2008) and Jaggi (2011), who worked out the
Frank-Wolfe technique for the problem of minimizing a
single, static smooth convex cost function over a convex
domain. We show how to extend their techniques to
handle online, changing cost functions in stochastic
and adversarial settings, and also show how to handle
non-smooth functions.

2. Preliminaries

Online convex optimization. The problem of in-
terest is online convex optimization (see the survey of
Hazan (2011) for more details). Iteratively in each
round ¢t = 1,2,...,T a learner is required to produce
a point x; from a convex, compact set K C R™. In re-
sponse, an adversary produces a convex cost function
ft + K = R, and the learner suffers the cost fi(x:).
The goal of the learner is to produce points x; so that
the regret,

Regret := Zthlft(xt) — f(nel’rcl Yo fi(x),

is sublinear in T'. If the cost functions are stochastic,
regret is measured using the expected cost function
f = E[fi] instead of the actual costs.

We assume that the set X diameter bounded by D and
it is possible to efficiently minimize a linear function,
viz. computing arg minycx v - X for some given vector
v € R"” is easy. The cost functions f; are assumed to
be L-Lipchitz, i.e. for any two points x,y € K, we
have [f(x) — f(y)| < L|x— ]|

Definition 2.1. Let f : R™ — R be an arbitrary con-
vex function which is also L-lipchitz.
f s called B-smooth if for all x,y € K we have

fx+y) < fx)+ V) -y + Byl

f is called o-strongly convex if for all X,y € K we
have

fx+y) > f(x)+Vfx)-y+ollyl

Note that if f is twice differentiable, then S is upper
bounded by the largest eigenvalue of the Hessian of
f. The above definition together with first order op-
timality conditions imply that for a o-strongly convex
function f, if x* = argmingex f(x), then

fx) = f(x) = allx—x*|* (1)

Smoothed functions. Let B and S denote the unit
ball and unit sphere in R™ respectively. Given § > 0,
let the d-smoothing of a function f (c.f. (Flaxman
et al., 2005)) be:

f5(x) = Eqes[f (x + u)],

where u is chosen uniformly at random from B. We
are implicitly assuming that f is defined on all points
within distance § of K. The following lemma (proof in
the full version of this paper) shows that ﬁs is a good
smooth approximation of f:
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Lemma 2.1. If f is convex and L-Lipschitz, then the
function fs has the following properties:

1. f5 is convexr and L-Lipschitz.

2. For any x € K, V f5(x) = 4Equcp[f(x + du)u].
3. For any x € K, |Vf5(x)|| < dL.

4. ﬁ; 18 %-smooth.

5. For any x € K, |f(x) — f5(x)| < L.

K-Sparsity. A feature of our algorithms is that they
predict with sparse solutions, where sparsity is defined
in the following manner.

Definition 2.2. Let K C R™ be a convex, compact set
and let x € K. We say that x is t-sparse w.r.t IC if it
can be written as a convexr combination of t boundary
points of IC.

All our algorithms produce t-sparse prediction at iter-
ation ¢t w.r.t. the underlying decision set /.
3. Algorithm and Analysis

3.1. Algorithm.

Algorithm 1 Online Frank-Wolfe (OFW)

: Input parameter: constant a > 0.
: Initialize x; arbitrarily.
:fort=1,2,...,T do
Play x; and observe f;.
Compute F; = %Zj—:lf""
Compute vy < arg mingexc{VFi(x;) - x}.
Set x¢11 = (1 =t )%+t~ %vy.
end for

SIS AN I S

3.2. Analysis.

Define A, = Fy(x;) — Fi(x}), where F; = %Zizlj}
as defined in step 1 of the algorithm, and xj =
arg minygecx Fy(x). The regret bounds all follow from
the following general theorem:

Theorem 3.1. Assume that for t = 1,2,...,T, the
function f; is L-Lipschitz, Bt~%-smooth for some con-
stants b € [—1,1/2] and B > 0, and St~ *-strongly
convex for some constants s € [0,1) and S > 0. Then
in Algorithm 1, for all t > 1, we have

Ay < Ot
for both the following values of C' and d:
(C,d) = (max{9D*B, 3LD}, 1)
and (C,d) = (max{9D?B, 36L2/S, 3LD}, &2=2)

In either case, this bound is obtained by setting a =
d — b in Algorithm 1.

Proof. First, we note that d < 1 and a > 0 in either
case since b € [—1,1/2] and s € [0,1), so that {7 €
[0,1] and hence all iterates lie in K. We prove the
lemma by induction on ¢ for either values of C and d.
The statement is true for ¢ = 1 since f; is L-Lipschitz,
so C Z LD Z LHXl —XTH Z fl(Xl) — fl(XT) = Al. So
assume that for some t > 1, we have A, < Ct~%. Now
by convexity of F; we have

Fy(x;) > Fiy(xe) + VE(xt) - (xp — X¢)
Since x} € K, we have that VF(x;)-x; > VEF(x¢)-vy.
From both observations:
(Vt - Xt) . VFt(Xt) S (Xz< — Xt) . VFt(Xt)
< F(xp) - Fi(x) = —As (2)

Since f; is Bt ’-smooth, the smoothness of F, is
bounded by %ZileT_b < 3Bt~ for b < 1/2. We
now have
Fy(xit1) = Fi(xe +17%(ve — %))
S Ft(Xt) + tia(Vt - Xt) . VFt(Xt) + 3D2Btib72a
(by 3Bt~’-smoothness)
< Fy(xs) —t Ay +3D?Bt 072,

using (2). Using the inequality F(x;) < Fy(x;,;) in
the bound above we get:
Fy(xi41) — Fy(xq) < (1—t"")A,+3D*Bt 722
< (1—t"0t 44 3D*Bt~ b2
(By induction hypothesis)
= Ct 41— Ctt=21 4 3D?*Btb—H
(Since a =d —b)

< oo §c b-2d, 3)

since C > 9D?B. In Lemma 3.1, we show the following
bound using the strong convexity of the f; functions
and the parameter choices:

2
*Ct1+b_2d.
3

Multiplying (3) by ¢, adding the above bound, and
dividing by t + 1, we get

fer1(Xe1) = fra1(xi4q) <

* t - -
Frr(xi41) = Frn(x741) < 701 t<ot+1)7

since d < 1, thus completing the induction. O

Lemma 3.1. In the setup of Theorem 3.1, assuming
A, < Ct=?, we have

2

Jir1(Xeq1) = firr1(x71) < 5

Citv—2d,
3
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Proof. Since f; is o4-strongly convex, the strong con-
vexity of F} is at least

1 1
PODURLE D DU L

since 77° > t7° for all 7 < t.
arg minyex F;(x), we have by (1):

Thus, since x} =

Ct_d 2 At = Ft(Xt)—Ft(X:) Z St_SHXt—X?||2,

which implies that ||x; — x}| < /C/St*/>=4/2. By a
similar argument, since by a simple calculation (details
in the full version of this paper) we have Fiii(x}) —
Fia(xi1) < £5, we conclude that

Ixi = x|l < V(LD/S)(t + 1)1 < O/ St/

since C > 3LD, s < 1 and d < 1. Thus, using the
triangle inequality and the trivial bound [|x; —xj, || <
D, we get

. C
l[x¢ — x;11 ]| < min{2 (C/S)té/Q—d/z,D} < 37Lt1+b—2d7

since C > 36L2%/S if d = %Bb_s, and C > 3LD if
d= ITH’. Furthermore, we have
[xe+1 —xef| = 7 |lve — x|

- — 3L ’

since C' > 3LD and d < 1. So by triangle inequality,
we have

2C
x — x* < 24 +b—2d.
|| t+1 t H — 3L
Since f;y1 is L-Lipschitz, we get the required bound.

O

4. Regret Bounds
4.1. Stochastic Costs

Assume now that the cost functions f; are sampled
i.i.d. from some unknown distribution, and let f* =
E[f:], and let x* = arg mingei f*(x).

4.1.1. SMOOTH STOCHASTIC COSTS

Theorem 4.1. For (-smooth stochastic convex loss
functions fi, there is an algorithm such that with prob-
ability at least 1 — ¢, its regret is bounded as follows :

S (k) = [H(xT) =
O((D*B + LD)+/nT log(nT/5)log(T)).

Proof. For -smooth stochastic convex loss functions
ft, the algorithm is OFW applied to the functions f;
with parameter settings that we specify now. First, f;
is B-smooth, so we can set B =  and b = 0. Since we
make no assumptions about the strong convexity of fi,
so we can set S = 0, and s = 0. For these settings, the
optimal values of the parameters are d = 17“’ =1/2,
a=d—-b=1/2, and C = max{9D?B,3LD}. Thus,
for all ¢, we have:

Fi(x) = Fy(x;) < C/Vt.
This implies that for the optimal point x* we have
Fi(x) — Fy(x*) < C/Vt. 4)

In (Shalev-Shwartz et al., 2009), Theorem 5, the fol-
lowing is proved:

Theorem 4.2. With probability at least 1 —9, for any
x € K and for allt =1,2,...,T we have

|Fi(x) = f*(x)| < LDy/nlog(n/)log(t)/t.

Using this theorem and (4), we conclude that with
proability at least 1 — d, we have

(%) — f*(x*) < C/Vt+2LD+/nlog(nt/s)log(t)/t.

Summing up from ¢ =1 to T', we get that the regret is
O(C+/nTlog(nT/5)log(T)) with probability at least
1-46. O

4.1.2. NON-SMOOTH STOCHASTIC COSTS

Theorem 4.3. For non-smooth stochastic convex loss
functions fi, there is an algorithm such with probability
at least 1 — 0§, its regret is bounded as follows:

S f k) = £ (x7) =
O(/nLDT?® 4 LD+/nT log(nT/5)log(T)).

Proof. For non-smooth stochastic convex loss func-
tions f;, the algorithm is OFW applied to the d;-
smoothing of f;, i.e. the functions f;s5 for 6, =

VaDt=1/3. The function f; 5, is 2L — (/nL/D)t'/3

smooth, so B = \/nL/D and b = —1/3. Since we make
no assumptions about the strong convexity of ft76t , SO
we can set S = 0, and s = 0. For these settings, the
optimal values of the parameters are d = 17“’ =1/3,
a =d—-—>b=2/3 and C = max{9y/nLD,3LD} =
9y/nLD. Thus for all ¢, we have:

Ft(Xt)—Ft(X:) S 9\/7;LDt_1/37
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where F}(x) = %23:1137,67 (x). Thus, for the optimal
point x*, we have

Fy(x) — Fi(x*) < 9y/nLDt™'/3,

Since |f;(x) — fi(x)| < 8:L = \/nLDt"1/3 we have

(%)~ Fi(x)| <

1
t
Using the above two bounds we get that

Fi(x) — Fy(x*) < 15y/nLDt™Y/3,

From this point, arguing as in the proof of Theo-
rem 4.1, we conclude that the regret is O(y/nLDT?/3+
LD\/nTlog(nT/5)log(T)) with probability at least
1-4. O

4.2. Adversarial Cost Functions

Theorem 4.4. For adversarial cost functions f;
(smooth or non-smooth), there is an algorithm that
has the following regret bound. For any x* € K we
have:

ST fi(xe) — fi(x*) < B5TLDTS/A,

Proof. We apply the OFW algorithm to the functions
ft defined as follows. Suppose the algorithm plays
point x; in round ¢, and the adversary provides the
cost function f;. Define

Je(x) = Vfi(xe) - x + o¢lJx — x1 %,

where oy = (L/D)t~*/* and V f;(x;) is a subgradient
of f; at x; such that ||V fi(x:)]| < L.

We now estimate the Lipschitz, smoothness, and
strong convexity parameters for f,. First, V ft(x) =
V fi(x¢)+(2L/D)t~/4(x—x;). Since f; is L-Lipschitz,
IVfi(xe)]] < L, and ||x — x1]] < D, impying that
|V fi(x)|| < 3L, which implies that f, is 3L-Lipschitz.
Next, note that

filx+y) = fi(x)
= Vfi(xt) y+20i(x —x1) -y + ouly”
= Vfi(x) -y +ailyl*
Thus f; is (L/D)t~1/*-smooth, so we set B = L/D and
b=1/4. Also it is (L/D)t~'/*-strongly convex, so we
set S = L/D and s = 1/4. For these settings, the op-
timal values of the parameters are d = % = 3/4,

a=d-b=1/4and C = max{9D?B,36L*/S,3LD} =
36LD. Thus by Theorem 3.1, for all ¢, we have:

Ay = Fy(x;)— Fy(x}) < 36LDt™%/4,  (5)

S vnLDr Y3 < 3/nLDt7'/3,

where F}(x) = %ZizlfT(X), X} = arg mingex F}(x).

Kalai & Vempala (2005) prove that the “Be-The-
Leader” algorithm has no regret. In particular, since
the x; = argmingex %ZizlfT(x), we have, for any
x* e,

Sr i) < Srfux). (6)

By strong convexity and since x} = arg mingex Fr (%),
we have

Fi(x) — Fi(x}) > oullxe — x|
This implies that

% —x7|| < VAiJoy < 6Dt™H4

using (5). Next, since ft is 3L-Lipschitz we get
Vt: fi(xe) < fu(x})+ 18LDE V4,

Summing up from ¢ = 1 to 7, using the bound
Z?th_1/4 < 3T3/* and (6), we get that

S fe(xe) = fu(x*) < 5ALDT?/A,
which implies that

S ima Vi) - (e = x7)
< BALDTY* + T oy|x* — x4 ||? < 5TLDT?/4,
(7)

since °7_ oy = L [+ 14 < 3T3/4 and [|x* —x ||? <
D2, By convexity of f;, we have

fe(xe) = fi(x7) < Vfelxe) - (¢ = x7).
Plugging this into (7), we get the stated bound. O

5. Experiments

To evaluate the performance benefits of OFW over
OGD, we experimented with a simple test applica-
tion, viz. online collaborative filtering. This problem
is the following. In each round, the learner is required
to produce an m x n matrix X with trace norm (i.e.
sum of singular values) bounded by 7, a parameter.
This matrix is to be interpreted as supplying by users
i € [m] rating for each item j € [n]. The adversary
then chooses an entry (4,j) and reveals the true rat-
ing for it, viz. y € R. The learner suffers the squared
loss (X (i,7) —y)?. The goal is to compete with the
set of all m X m matrices of trace norm bounded by
7. The offline version of this problem has been exten-
sively studied in recent times, see e.g. Candes & Recht
(2009), Jaggi & Sulovsky (2010), Srebro et al. (2010),
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Figure 1. Comparison of OGD and OFW on the MOVIELENS100K (top row) and JESTER1 (bottom row). The left plot
shows average squared loss vs. running time for 100000 OFW iterations, and 10000 and 20000 OGD iterations for the
two datasets respectively. The middle and right graphs show average squared loss and ratio of the running times of OGD
and OFW respectively for as many iterations as OGD was run.

Lee et al. (2010), Salakhutdinov & Srebro (2010) and
Shamir & Shalev-Shwartz (2011).

As mentioned previously, OGD requires computing the
SVD of the matrix in each iteration, an O(nm?) time
operation (assuming m < n), whereas OFW requires
computing the top singular vector pair, an operation
that in practice runs in near-linear time in the number
of non-zero entries of the matrix.
Datasets. We used two publicly available datasets:
1. MovIELENS100K (GroupLens): 100000 ratings
in {1,2,3,4,5} by 943 users on 1682 movies.
2. JESTERI (Goldberg et al., 2001): first 100000 rat-
ings in [—10, 10] by 24983 users on 100 jokes.

For simplicity, the sequence of entries (7, j) chosen by
the adversary is the same as the original sequence in
these datasets. We also experimented with a 1000 x
1000 randomly generated matrix.

Implementation. We implemented the smooth,
stochastic version of the OFW algorithm, even though
the cost functions are not necessarily stochastic,
mainly because of its faster convergence rate (in case
of stochastic costs) and ease of implementation be-
ing parameter-free. We implemented the OGD and
OFW algorithms in the most straightforward fashion
in MATLAB, using the sparse matrices whenever pos-
sible, and the svd function for OGD and the svds func-
tion for OFW with a tolerance of 10~°. The running

times were obtained on an 2.33GHz Intel® Xeon®
CPU. All experiments were run in MATLAB in single-
threaded mode using the -singleCompThread option.
To ensure that the OFW and OGD runs completed
in a reasonable amount of time (a few hours), we ran
100000 OFW iterations for both datasets, and only
the first 10000 and 20000 OGD iterations for MOVIE-
LENS100K and JESTERI respectively. The trace norm
bounds used were 5000 and 200 respectively with no

tuning.
Results. Figure 1 shows the results of our exper-
iments. It can be clearly seen from the left plots

that OFW is significantly faster than OGD, complet-
ing all its 100000 iterations much before the far fewer
OGD iterations. Not only is it faster per iteration,
surprisingly given that the costs are not stochastic,
OFW also reduces the average squared loss faster than
OGD, as can be seen from the middle plots. The right
plots show that OFW is consistently around 35 times
faster than OGD for the MOVIELENS100K dataset
and around 6 times faster for the JESTER1 dataset,
and in fact this ratio keeps increasing as the number
of iterations increases and the matrix parameter be-
comes more and more dense. This is reasonable since
computing the SVD of a dense matrix requires much
more effort than for a sparser matrix. The reason OGD
is only about 6 times faster than OFW for JESTER1
is because the matrix involved is tall-and-skinny, hav-
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ing only 100 columns, thus making the svd function
almost as fast as the svds function. In our experi-
ments with 1000 x 1000 randomly generated matrices
we found that OFW was as much as 150 times faster
than OGD.

6. Conclusions and Open Problems

In this paper, we gave an efficient algorithmic scheme
for online convex optimization that performs one
linear optimization per iteration rather than one
quadratic optimization. The advantages over tradi-
tional gradient-descent techniques are speed of im-
plementation, parameter-independence, explicit sam-
pling scheme for iterates, sparsity, and natural lazy
implementation. The disadvantage is that the prov-
able regret bounds are not always optimal. The major
open problem left is to improve the regret bounds, or
show lower bounds on the number of linear optimiza-
tions necessary to obtain optimal regret with only one
linear-optimization operation per iteration.
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