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Abstract
Bayesian models offer great flexibility for clus-
tering applications—Bayesian nonparametrics
can be used for modeling infinite mixtures, and
hierarchical Bayesian models can be utilized for
sharing clusters across multiple data sets. For the
most part, such flexibility is lacking in classical
clustering methods such as k-means. In this pa-
per, we revisit the k-means clustering algorithm
from a Bayesian nonparametric viewpoint. In-
spired by the asymptotic connection between k-
means and mixtures of Gaussians, we show that a
Gibbs sampling algorithm for the Dirichlet pro-
cess mixture approaches a hard clustering algo-
rithm in the limit, and further that the resulting
algorithm monotonically minimizes an elegant
underlying k-means-like clustering objective that
includes a penalty for the number of clusters. We
generalize this analysis to the case of clustering
multiple data sets through a similar asymptotic
argument with the hierarchical Dirichlet process.
We also discuss further extensions that highlight
the benefits of our analysis: i) a spectral relax-
ation involving thresholded eigenvectors, and ii)
a normalized cut graph clustering algorithm that
does not fix the number of clusters in the graph.

1. Introduction
There is now little debate that Bayesian statistics have
had tremendous impact on the field of machine learning.
For the problem of clustering, the topic of this paper, the
Bayesian approach allows for flexible models in a variety
of settings. For instance, Latent Dirichlet Allocation (Blei
et al., 2003), a hierarchical mixture of multinomials, re-
shaped the topic modeling community and has become a
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standard tool in document analysis. Bayesian nonparamet-
ric models, such as the Dirichlet process mixture (Hjort
et al., 2010), result in infinite mixture models which do not
fix the number of clusters in the data upfront; these meth-
ods continue to gain popularity in the learning community.

Yet despite the success and flexibility of the Bayesian
framework, simpler methods such as k-means remain the
preferred choice in many large-scale applications. For in-
stance, in visual bag-of-words models (Fei-Fei & Perona,
2005), large collections of image patches are quantized,
and k-means is universally employed for this task. A major
motivation for using k-means is its simplicity and scalabil-
ity: whereas Bayesian models require sampling algorithms
or variational inference techniques which can be difficult to
implement and are often not scalable, k-means is straight-
forward to implement and works well for a variety of ap-
plications.

In this paper, we attempt to achieve the best of both worlds
by designing scalable hard clustering algorithms from a
Bayesian nonparametric viewpoint. Our approach is in-
spired by the connection between k-means and mixtures
of Gaussians, namely that the k-means algorithm may be
viewed as a limit of the expectation-maximization (EM)
algorithm—if all of the covariance matrices correspond-
ing to the clusters in a Gaussian mixture model are equal
to σI and we let σ go to zero, the EM steps approach the
k-means steps in the limit. As we will show, in the case
of a Dirichlet process (DP) mixture model—the standard
Bayesian nonparametric mixture model—we can perform a
similar limiting argument in the context of a simple Gibbs
sampler. This leads to an algorithm with hard cluster as-
signments which is very similar to the classical k-means
algorithm except that a new cluster is formed whenever a
point is sufficiently far away from all existing cluster cen-
troids. Further, we show that this algorithm monotonically
converges to a local optimum of a k-means-like objective
which includes a penalty for the number of clusters.

We then take a step further into the realm of hierarchical
Bayesian models, and extend our analysis to the hierarchi-
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cal Dirichlet process (HDP) (Teh et al., 2006). The HDP is
a model for shared clusters across multiple data sets; when
we take an analogous asymptotic limit for the HDP mix-
ture, we obtain a novel k-means-like algorithm that clus-
ters multiple data sets with shared cluster structure. The
resulting algorithm clusters each data set into local clus-
ters, but local clusters are shared across data sets to form
global clusters. The underlying objective function in this
case turns out to be the k-means objective with additional
penalties for the number of local clusters and the number
of global clusters.

To further demonstrate the practical value of our approach,
we present two additional extensions. First, we show that
there is a spectral relaxation for the k-means-like objective
arising from the DP mixture. Unlike the standard relaxation
for k-means, which computes the top-k eigenvectors, our
relaxation involves computing eigenvectors corresponding
to eigenvalues above a threshold, and highlights an inter-
esting connection between spectral methods and Bayesian
nonparametrics. Second, given existing connections be-
tween k-means and graph clustering, we propose a penal-
ized normalized cut objective for graph clustering, and uti-
lize our earlier results to design an algorithm for monotonic
optimization. Unlike the standard normalized cut formula-
tion (Shi & Malik, 2000; Yu & Shi, 2003), our formula-
tion does not fix the number of clusters in the graph. We
conclude with some results highlighting that our approach
retains the flexibility of the Bayesian models while featur-
ing the scalability of the classical techniques. Ultimately,
we hope that this line of work will inspire additional re-
search on the integration of Bayesian nonparametrics and
hard clustering methods.

2. Background
We begin with a short discussion of the relevant models and
algorithms considered in this work: mixtures of Gaussians,
k-means, and DP mixtures.

2.1. Gaussian Mixture Models and k-means

In a (finite) Gaussian mixture model, we assume that data
arises from the following distribution:

p(x) =

k∑
c=1

πcN (x | µc,Σc),

where k is the fixed number of components, πc are the
mixing coefficients, and µc and Σc are the means and co-
variances, respectively, of the k Gaussian distributions. In
the non-Bayesian setting, we can use the EM algorithm to
perform maximum likelihood given a set of observations
x1, ...,xn.

A related model for clustering is provided by the k-means
objective function, an objective for discovering a hard clus-

tering of the data. Given a set of data points x1, ...,xn,
the k-means objective function attempts to find clusters
`1, ..., `k to minimize the following objective function:

min
{`c}kc=1

∑k
c=1

∑
x∈`c ‖x− µc‖

2
2

where µc = 1
|`c|
∑

x∈`c x.

The most popular method for minimizing this objective
function is simply called the k-means algorithm. One ini-
tializes the algorithm with a hard clustering of the data
along with the cluster means of these clusters. Then the
algorithm alternates between reassigning points to clusters
and recomputing the means. For the reassignment step one
computes the squared Euclidean distance from each point
to each cluster mean, and finds the minimum, by computing
`∗(i) = argminc‖xi −µc‖22. Each point is then reassigned
to the cluster indexed by `∗(i). The centroid update step
of the algorithm then recomputes the mean of each cluster,
updating µc for all c.

The EM algorithm for mixtures of Gaussians is quite simi-
lar to the k-means algorithm. Indeed, one can show a pre-
cise connection between the two algorithms. Suppose in
the mixture of Gaussians model that all Gaussians have the
same fixed covariance equal to σI . Because they are fixed,
the covariances need not be re-estimated during the M-step.
In this case, the E-step takes the following form:

γ(zic) =
πc · exp

(
− 1

2σ‖xi − µc‖
2
2

)∑k
j=1 πj · exp

(
− 1

2σ‖xi − µj‖
2
2

) ,
where γ(zic) is the probability of assigning point i to clus-
ter c. It is straightforward to show that, in the limit as
σ → 0, the value of γ(zic) approaches zero for all c ex-
cept for the one corresponding to the smallest distance
‖xi − µc‖22. In this case, the E-step is equivalent to the
reassignment step of k-means, and one can further easily
show that the M-step exactly recomputes the means of the
new clusters, establishing the equivalence of the updates.
We also note that further interesting connections between
k-means and probabilistic clustering models were explored
in Kurihara & Welling (2008). Though they approach the
problem differently (i.e., not from an asymptotic view), the
authors also ultimately obtain k-means-like algorithms that
can be applied in the nonparametric setting.

2.2. Dirichlet Process Mixture Models

We briefly review DP mixture models (Hjort et al., 2010).
We can equivalently write the standard Gaussian mixture as
a generative model where one chooses a cluster with prob-
ability πc and then generates an observation from the Gaus-
sian corresponding to the chosen cluster. The distribution
over the cluster indicators follows a discrete distribution,
so a Bayesian extension to the mixture model arises by first
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placing a Dirichlet prior of dimension k, Dir(k,π0), on the
mixing coefficients, for some π0. If we further assume that
the covariances of the Gaussians are fixed to σI and that
the means are drawn from some prior distribution G0, we
obtain the following Bayesian model:

µ1, ...,µk ∼ G0

π ∼ Dir(k,π0)

z1, ...,zn ∼ Discrete(π)

x1, ...,xn ∼ N (µzi
, σI),

letting π = (π1, ..., πk). One way to view the DP mixture
model is to take a limit of the above model as k →∞when
choosing π0 = (α/k)e, where e is the vector of all ones.
One of the simplest algorithms for inference in a DP mix-
ture is based on Gibbs sampling; this approach was utilized
by West et al. (1994) and further discussed by Neal (2000),
Algorithm 2. The state of the underlying Markov chain
consists of the set of all cluster indicators and the set of
all cluster means. The algorithm proceeds by first looping
repeatedly through each of the data points and performing
Gibbs moves on the cluster indicators for each point. For
i = 1, ..., n, we reassign xi to existing cluster c with prob-
ability n−i,c ·N (xi |µc, σI)/Z,where n−i,c is the number
of data points (excluding xi) that are assigned to cluster c.
With probability

α

Z

∫
N (xi | µ, σI)dG0(µ),

we start a new cluster. Z is an appropriate normalizing con-
stant. If we end up choosing to start a new cluster, we select
its mean from the posterior distribution obtained from the
prior G0 and the single sample xi. After resampling all
clusters, we perform Gibbs moves on the means: we sam-
ple µc given all points currently assigned to cluster c,∀c.

3. Hard Clustering via Dirichlet Processes
In the following sections, we derive hard clustering algo-
rithms based on DP mixture models. We will analyze prop-
erties of the resulting algorithms and show connections to
existing hard clustering algorithms, particularly k-means.

3.1. Asymptotics of the DP Gibbs Sampler

Using the DP mixture model introduced in the previous
section, let us first define G0. Since we are fixing the
covariances, G0 is the prior distribution over the means,
which we will take to be a zero-mean Gaussian with ρI co-
variance, i.e., µ ∼ N (0, ρI). Given this prior, the Gibbs
probabilities can be computed in closed form. A straight-
forward calculation reveals that the probability of starting
a new cluster is equal to:

α

Z
(2π(ρ+ σ))−d/2 · exp

(
− 1

2(ρ+ σ)
‖xi‖2

)
.

Similarly, the probability of being assigned to cluster c is
equal to

n−i,c
Z

(2πσ)−d/2exp
(
− 1

2σ
‖xi − µc‖22

)
.

Z normalizes these probabilities to sum to 1. We now
would like to see what happens to these probabilities as
σ → 0. However, in order to obtain non-trivial assign-
ments, we must additionally let α be a function of σ and ρ.
In particular, we will write α = (1+ρ/σ)d/2 ·exp(− λ

2σ ) for
some λ. Now, let γ̂(zic) correspond to the posterior proba-
bility of point i being assigned to cluster c and let γ̂(zi,new)
be the posterior probability of starting a new cluster. Af-
ter simplifying, we obtain the following probabilities to be
used during Gibbs sampling: γ̂(zic) =

n−i,c · exp(− 1
2σ‖xi − µc‖

2)

exp
(
− λ

2σ −
‖xi‖2
2(ρ+σ)

)
+
∑k
j=1 n−i,j · exp(− 1

2σ‖xi − µj‖2)

for existing clusters and γ̂(zi,new) =

exp
(
− λ

2σ −
‖xi‖2
2(ρ+σ)

)
exp
(
− λ

2σ −
‖xi‖2
2(ρ+σ)

)
+
∑k
j=1 n−i,j · exp(− 1

2σ‖xi − µj‖2)

for generating a new cluster. Now we consider the asymp-
totic behavior of the above probabilities. The numerator for
γ̂(zi,new) can be written as

exp
(
− 1

2σ

[
λ+

σ

ρ+ σ
‖xi‖2

])
.

It is straightforward to see that, as σ → 0 with a fixed
ρ, the λ term dominates this numerator. Furthermore, all
of the above probabilities will become binary; in particu-
lar, the values of γ̂(zi,c) and γ̂(zi,new) will be increasingly
dominated by the smallest value of {‖xi−µ1‖2, ..., ‖xi−
µk‖2, λ}. In the limit, only the smallest of these values will
receive a non-zero γ̂ value. The resulting update, therefore,
takes a simple form that is analogous to the k-means cluster
reassignment step. We reassign a point to the cluster corre-
sponding to the closest mean, unless the closest cluster has
squared Euclidean distance greater than λ. In this case, we
start a new cluster.

If we choose to start a new cluster, the final step is to sam-
ple a new mean from the posterior based on the prior G0

and the single observation xi. Similarly, once we have per-
formed Gibbs moves on the cluster assignments, we must
perform Gibbs moves on all the means, which amounts to
sampling from the posterior based on G0 and all observa-
tions in a cluster. Since the prior and likelihood are Gaus-
sian, the posterior will be Gaussian as well. If we let x̄c be
the mean of the points currently assigned to cluster c and
nc be the number of points assigned to cluster c, then the
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Algorithm 1 DP-means
Input: x1, ...,xn: input data, λ : cluster penalty parameter
Output: Clustering `1, ..., `k and number of clusters k

1. Init. k = 1, `1 = {x1, ...,xn} and µ1 the global mean.
2. Init. cluster indicators zi = 1 for all i = 1, ..., n.
3. Repeat until convergence

• For each point xi

– Compute dic = ‖xi − µc‖2 for c = 1, ..., k

– If minc dic > λ, set k = k + 1, zi = k, and
µk = xi.

– Otherwise, set zi = argmincdic.

• Generate clusters `1, ..., `k based on z1, ..., zk: `j =
{xi | zi = j}.

• For each cluster `j , compute µj = 1
|`j |

∑
x∈`j

x.

posterior is a Gaussian with mean µ̃c and covariance Σ̃c,
where

µ̃c =

(
1 +

σ

ρnc

)−1
x̄c, Σ̃c =

σρ

σ + ρnc
I.

As before, we consider the asymptotic behavior of the
above Gaussian distribution as σ → 0. The mean of the
Gaussian approaches x̄c and the covariance goes to zero,
meaning that the mass of the distribution becomes concen-
trated at x̄c. Thus, in the limit we choose x̄c as the mean.

Putting everything together, we obtain a hard clustering
algorithm that behaves similarly to k-means with the ex-
ception that a new cluster is formed whenever a point is
farther than λ away from every existing cluster centroid.
We choose to initialize the algorithm with a single cluster
whose mean is simply the global centroid; the resulting al-
gorithm is specified as Algorithm 1, which we denote as the
DP-means algorithm. Note that, unlike standard k-means,
which depends on the initial clustering of the data, the DP-
means algorithm depends on the order in which data points
are processed. One area of future work would consider
adaptive methods for choosing an ordering.

3.2. Underlying Objective and the AIC

With the procedure from the previous section in hand, we
can now analyze its properties. A natural question to ask is
whether there exists an underlying objective function cor-
responding to this k-means-like algorithm. In this section,
we show that the algorithm monotonically decreases the
following objective at each iteration, where an iteration is
defined as a complete loop through all data points to update

all cluster assignments and means:

min
{`c}kc=1

∑k
c=1

∑
x∈`c ‖x− µc‖

2 + λk

where µc = 1
|`c|
∑

x∈`c x. (1)

This objective is simply the k-means objective function
with an additional penalty based on the number of clus-
ters. The threshold λ controls the tradeoff between the tra-
ditional k-means term and the cluster penalty term. We can
prove the following:

Theorem 3.1. Algorithm 1 monotonically decreases the
objective given in (1) until local convergence.

Proof. The proof follows a similar argument as the proof
for standard k-means. The reassignment step results in a
non-increasing objective since the distance between a point
and its newly assigned cluster mean never increases; for
distances greater than λ, we can generate a new cluster and
pay a penalty of λwhile still decreasing the objective. Sim-
ilarly, the mean update step results in a non-increasing ob-
jective since the mean is the best representative of a cluster
in terms of the squared Euclidean distance. The fact that the
algorithm will converge locally follows from the fact that
the objective function cannot increase, and that there are
only a finite number of possible clusterings of the data.

Perhaps unsurprisingly, this objective has been studied in
the past in conjunction with the Akaike Information Cri-
terion (AIC). For instance, Manning et al. (2008) describe
the above penalized k-means objective function with a mo-
tivation arising from the AIC. Interestingly, it does not ap-
pear that algorithms have been derived from this particu-
lar objective function, so our analysis seemingly provides
the first constructive algorithm for monotonic local conver-
gence as well as highlighting the connections to the DP
mixture model. Finally, in the case of k-means, one can
show that the complete-data log likelihood approaches the
k-means objective in the limit as σ → 0. We conjecture
that a similar result holds for the DP mixture model, which
would indicate that our result is not specific to the particu-
lar choice of the Gibbs sampler.

4. Clustering with Multiple Data Sets
One of the most useful extensions to the standard DP mix-
ture model arises when we introduce another DP layer on
top of the base measure. Briefly, assume we have a set of
data sets, each of which is modeled as a DP mixture. How-
ever, instead of defining the base measure of each DP mix-
ture using G0, the prior over the means, we instead let G0

itself be a Dirichlet process whose base measure is a prior
over the means. The result is that, given a collection of
data sets, we can cluster each data set while ensuring that
the clusters across the data sets are shared appropriately.
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Figure 1. Overview of clustering with multiple data sets. Each
data set has some number of local clusters, and each local cluster
is associated with some global mean µp. Each global mean µp is
computed as the mean of all points (across all data sets) associated
with that global cluster. When reassigning points to clusters, the
objective function penalizes the formation of either a new local
cluster or a new global cluster. See text for details.

Due to space restrictions, we cannot describe the resulting
hierarchical Dirichlet process (HDP) nor its corresponding
sampling algorithms in detail, but we refer the reader to Teh
et al. (2006) for a detailed introduction to the HDP model
and a description of inference techniques. We will see that
the limiting process described earlier for the standard DP
can be straightforwardly extended to the HDP; we will out-
line the algorithm below, and Figure 1 gives an overview of
the approach.

To set the stage, let us assume that we have D data sets,
1, ..., j, ..., D. Denote xij to be data point i from data set
j, and let there be nj data points from each data set j. The
basic idea is that we will locally cluster the data points from
each data set, but that some cluster means will be shared
across data sets. Each data set j has a set of local cluster
indicators given by zij such that zij = c if data point i in
data set j is assigned to local cluster Sjc. Each local cluster
Sjc is associated to a global cluster mean µp.

4.1. The Hard Gaussian HDP

We can now extend the asymptotic argument that we em-
ployed for the hard DP algorithm to the HDP. We will sum-
marize the resulting algorithm; the derivation is analogous
to the derivation for the single DP mixture case. As with
the hard DP algorithm, we will have a threshold that deter-
mines when to introduce a new cluster. For the hard HDP,
we will require two parameters: let λ` be the “local” thresh-
old parameter, and λg be the “global” threshold parameter.
The algorithm works as follows: for each data point xij ,
we compute the distance to every global cluster µp. For
any global cluster p for which there is no current associa-
tion in data set j, we add a penalty of λ` to the distance
(intuitively, this penalty captures the fact that if we end up
assigning xij to a global cluster that is not currently in use
by data set j, we will incur a penalty of λ` to create a new
local cluster, which we only want to do if the cluster if suf-
ficiently close to xij). We reassign each data point xij to
its nearest cluster, unless the closest distance is greater than

λ`+λg , in which case we start a new global cluster (in this
case we are starting a new local cluster and a new global
cluster, hence the sum of the two penalties). Then, for each
local cluster, we consider whether to reassign it to a dif-
ferent global mean: for each local cluster Sjc, we compute
the sum of distances of the points to every µp. We reassign
the association of Sjc to the corresponding closest µp; if
the closest is farther than λg plus the sum of distances to
the local cluster mean, then we start a new global cluster
whose mean is the local mean. Finally, we recompute all
means µp by computing the mean of all points (over all
data sets) associated to each µp. See Algorithm 2 for the
full specification of the procedure; the algorithm is derived
directly as an asymptotic hard clustering algorithm based
on the Gibbs sampler for the HDP.

As with the DP-means algorithm, we can determine the un-
derlying objective function, and use it to determine conver-
gence. Let k =

∑D
j=1 kj be the total number of local clus-

ters, and g be the total number of global clusters. Then we
can show that the objective optimized is the following:

min
{`p}gp=1

∑g
p=1

∑
xij∈`p ‖xij − µp‖

2
2 + λ`k + λgg,

where µp = 1
|`p|
∑

xij∈`p xij (2)

This objective is pleasantly simple and intuitive: we mini-
mize the global k-means objective function, but we incor-
porate a penalty whenever either a new local cluster or a
new global cluster is created. With appropriately chosen λ`
and λg , the result is that we obtain sharing of cluster struc-
ture across data sets. We can prove that the hard Gaus-
sian HDP algorithm monotonically minimizes this objec-
tive (the proof is similar to Theorem 3.1).

Theorem 4.1. Algorithm 2 monotonically minimizes the
objective (2) until local convergence.

5. Further Extensions
We now discuss two additional extensions of the proposed
objective: a spectral relaxation for the proposed hard clus-
tering method and a normalized cut algorithm that does not
fix the number of clusters in the graph.

5.1. Spectral Meets Nonparametric

Recall that spectral clustering algorithms for k-means are
based on the observation that the k-means objective can
be relaxed to a problem where the globally optimal solu-
tion may be computed via eigenvectors. In particular, for
the k-means objective, one computes the eigenvectors cor-
responding to the k largest eigenvalues of the kernel ma-
trix K over the data; these eigenvectors form the glob-
ally optimal “relaxed” cluster indicator matrix (Zha et al.,
2001). A clustering of the data is obtained by suitably post-
processing the eigenvectors, e.g., clustering via k-means.
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Algorithm 2 Hard Gaussian HDP
Input: {xij}: input data, λ` : local cluster penalty parameter,
λg: global cluster penalty parameter

Output: Global clustering `1, ..., `g and number of clusters kj
for all data sets j

1. Initialize g = 1, kj = 1 for all j and µ1 to be the global
mean across all data sets.
2. Initialize local cluster indicators zij = 1 for all i and j,
and global cluster associations vj1 = 1 for all j.
3. Repeat steps 4-6 until convergence:
4. For each point xij :

• Compute dijp = ‖xij − µp‖2 for p = 1, ..., g.

• For all p such that vjc 6= p for all c = 1, ..., kj , set
dijp = dijp + λ`.

• If minp dijp > λ` + λg ,

– Set kj = kj + 1, zij = kj , g = g+ 1, µg = xij ,
and vjkj = g.

• Else let p̂ = argminpdijp.

– If vjc = p̂ for some c, set zij = c and vjc = p̂.

– Else, set kj = kj + 1, zij = kj , and vjkj = p̂.

5. For all local clusters:

• Let Sjc = {xij |zij = c} and µ̄jc = 1
|Sjc|

∑
x∈Sjc

x.

• Compute d̄jcp =
∑

x∈Sjc
‖x− µp‖2 for p = 1, ..., g.

• If minp d̄jcp > λg+
∑

x∈Sjc
‖x−µ̄jc‖2, set g = g+1,

vjc = g, and µg = µ̄jc.

• Else set vjc = argminpd̄icp.

6. For each global cluster p = 1, ..., g, re-compute means:

• Let `p = {xij |zij = c and vjc = p}.

• Compute µp = 1
|`p|

∑
x∈`p

x.

In a similar manner, in this section we will show that the
globally optimal solution to a relaxed DP-means objective
function is obtained by computing the eigenvectors of the
kernel matrix corresponding to all eigenvalues greater than
λ, and stacking these into a matrix. To prove the correct-
ness of this relaxation, let us denote Z as the n× k cluster
indicator matrix whose rows correspond to the cluster indi-
cator variables zic. Let Y = Z(ZTZ)−1/2 be a normalized
indicator matrix, and notice that Y TY = I . We can prove
the following lemma.

Lemma 5.1. The DP-means objective function can equiv-
alently be written as maxY tr(Y T (K − λI)Y ), where the
optimization is performed over the space of all normalized
indicator matrices Y .

Proof. It was shown in Zha et al. (2001) that the standard
k-means function can be expressed as a trace maximiza-
tion of tr(Y TKY ), over the space of normalized indicator
matrices Y . Noting that tr(Y T (λI)Y ) = λk as Y is an
orthogonal n× k matrix, the lemma follows.

Now we perform a standard spectral relaxation by relaxing
the optimization to be over all orthonormal matrices Y :

max
{Y | Y TY=I}

tr(Y T (K − λI)Y ). (3)

Using standard arguments, one can show the following re-
sult (proof omitted due to lack of space):

Theorem 5.2. By relaxing the cluster indicator matrix Y
to be any orthonormal matrix, the optimal Y in the relaxed
clustering objective (3) is obtained by forming a matrix of
all eigenvectors ofK whose corresponding eigenvalues are
greater than λ.

Using this result, one can design a simple spectral algo-
rithm that computes the relaxed cluster indicator matrix Y ,
and then clusters the rows of Y , as is common for spectral
clustering methods. Thus, the main difference between a
standard spectral relaxation for k-means and the DP-means
is that, for the former, we take the top-k eigenvectors, while
for the latter, we take all eigenvectors corresponding to
eigenvalues greater than λ.

5.2. Graph Clustering

It is also possible to develop extensions to the DP-means
algorithm for graph cut problems such as normalized and
ratio cut. We state a result proven in Dhillon et al. (2007)
for standard k-way normalized cut.

Theorem 5.3. Let J(K,W ) be the weighted kernel k-
means objective with kernel matrix K and (diagonal)
weight matrix W , and let Cut(A) be the k-way normalized
cut objective with adjacency matrix A. Let D be the diag-
onal degree matrix corresponding to A (D = diag(Ae)).
Then the following relationship holds:

J(K,W ) = σn+tr(D−1/2AD−1/2)−(σ+1)k+Cut(A),

when we define K = σD−1 +D−1AD−1, W = D, and σ
is large enough that K is positive semi-definite.

Let the DP-means objective—easily extended to kernel
space and to use weights—be given by J(K,W ) + λk,
and let the analogous penalized normalized cut objective be
given byCut(A)+λ′k. Letting σn+tr(D−1/2AD−1/2) =
C, a constant, we have that J(K,W ) + λk =

C + Cut(A)− (σ + 1)k + λk = C + Cut(A) + λ′k,

where λ′ = λ − σ − 1. Thus, optimizing the hard DP
weighted kernel k-means objective with model parameter
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Data set DP-means k-means Gibbs
Wine .41 .43 .42
Iris .75 .76 .73

Pima .02 .03 .02
Soybean .72 .66 .73

Car .07 .05 .15
Balance Scale .17 .11 .14
Breast Cancer .04 .03 .04

Vehicle .18 .18 .17

Table 1. Average NMI scores on a set of UCI data sets. Note that
Gibbs sampling is handicapped since we utilize a validation set
for parameter tuning.

λ is equivalent to optimizing the penalized normalized cut
objective with model parameter λ′ = λ − σ − 1, and with
the construction of K and W as in the above theorem. Uti-
lizing the results of Dhillon et al. (2007), one can show
that the distance between a node and a cluster mean can be
performed in O(|E|) time. A straightforward extension of
Algorithm 1 can then be adapted for the above penalized
normalized cut objective.

6. Experiments
We conclude with a brief set of experiments to demonstrate
the utility of our approach. The goal is to demonstrate that
hard clustering via Bayesian nonparametrics enjoys many
properties of Bayesian techniques (unlike k-means) but fea-
tures the speed and scalability of k-means.

Setup. Throughout the experiments, we utilize normalized
mutual information (NMI) between ground truth clusters
and algorithm outputs for evaluation, as is common for
clustering applications (it also allows us to compare results
when the number of outputted clusters does not match the
number of clusters in the ground truth). Regarding param-
eter selection, there are various potential ways of choosing
λ; for clarity in making comparisons to k-means we fix k
(and g) and then find a suitable λ. In particular, we found
that a simple farthest-first heuristic is effective, and we uti-
lize this approach in all experiments. Given an (approxi-
mate) number of desired clusters k, we first initialize a set
T with the global mean. We iteratively add to T by finding
the point in the data set which has the maximum distance to
T (the distance to T is the smallest distance among points
in T ). We repeat this k times and return the value of the
maximum distance to T in round k as λ. We utilize a simi-
lar procedure for the hard HDP, except that for λ` we aver-
age the values of the above procedure over all data sets, and
for λg we replace distances of points to elements of T with
sums of distances of points in a data set to elements of T .
For Gibbs sampling, we consider the model where the co-
variances are fixed to σI , there is a zero-mean ρI Gaussian

prior on the means, and an inverse-Gamma prior on σ. (For
the benchmark data, we considered selection of σ based on
cross-validation, as it yielded better results, though this is
against the Bayesian spirit.) We set ρ = 100 throughout
our experiments. We also consider two strategies for de-
termining α: one where we place a gamma prior on α, as
is standard for DP mixtures (Escobar & West, 1995), and
another where we choose α via a validation set.

DP-means Results. We begin with a simple illustration of
some of the key properties of our approach on a synthetic
data set of three Gaussians, shown in Figure 2a. When we
run DP-means on this data, the algorithm terminates within
8 iterations with an average NMI score of .89 (based on
100 runs). In contrast, Figure 2b shows the NMI scores
of the clusterings produced by two Gibbs runs (no burn-
in) over the first 5000 iterations, one that learns α via a
gamma prior, and another that uses a validation set to tune
α. The learning approach does well around 1500 iterations,
but eventually more than three clusters are produced, lead-
ing to poor results on this data set. The validation approach
yields three clusters, but it takes approximately 3000 iter-
ations before Gibbs sampling is able to converge to three
clusters (in contrast, it typically requires only three itera-
tions before DP-means has reached an NMI score above
.8). Additionally, we plot the number of clusters produced
by DP-means as a function of λ in Figure 2c; here we see
that there is a large interval of λ values where the algorithm
returns three clusters. Note that all methods are initialized
with all points in a single cluster; we fully expect that better
initialization would benefit these algorithms.

Next we consider a benchmarking comparison among k-
means, DP-means, and Gibbs sampling to demonstrate
comparable accuracies among the methods. We selected 8
common UCI data sets, and used class labels as the ground-
truth for clusters. Each data set was randomly split 30/70
for validation/clustering (we stress that validation is used
only for Gibbs sampling). On the validation set, we val-
idated both α and σ, which yielded the best results. We
ran the Gibbs sampler for 1000 burn-in iterations, and then
ran for 5000 iterations, selecting every 10 samples. The
NMI is computed between the ground-truth and the com-
puted clusters, and results are averaged over 10 runs. The
results are shown in Table 1. We see that, as expected, the
results are comparable among the three algorithms: DP-
means achieves higher NMI on 5 of 8 data sets in compar-
ison to k-means, and 4 of 8 in comparison to Gibbs sam-
pling. To demonstrate scalability, we additionally ran our
algorithms over the 312,320 image patches of the Photo
Tourism data set (Snavely et al., 2006), a common vision
data set. Each patch is 128-dimensional. Per iteration, the
DP-means algorithm and the Gibbs sampler require simi-
lar computational time (37.9 seconds versus 29.4 seconds
per iteration). However, DP-means converges fully in 63
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Figure 2. Synthetic results demonstrating advantages of our method. a) A simple data set of 3 Gaussians. b) NMI scores over the
first 5000 Gibbs iterations—in contrast, across 100 runs, DP-means always converges within 8 iterations on this data, always returns 3
clusters, and yields an average NMI of .89. c) Number of clusters in DP-means as a function of lambda. d) One of the 50 data sets for
the hard Gaussian HDP experiment. See text for details.

iterations, whereas obtaining full convergence of the Gibbs
sampler is infeasible on this data set.

Hard Gaussian HDP Results. As with DP-means, we
demonstrate results on synthetic data to highlight the ad-
vantages of our approach as compared to the baselines. We
generate parameters for 15 ground-truth Gaussian distribu-
tions (means are chosen uniformly in [0, 1]2 and covari-
ances are .01 ·I). Then we generate 50 data sets as follows:
for each data set, we choose 5 of the 15 Gaussians at ran-
dom, and then generate 25 total points from these chosen
Gaussians (5 points per Gaussian). An example of one of
the 50 data sets is shown in Figure 2d; in many cases, it
is difficult to cluster the data sets individually, as shown in
the figure.

Our goal is to find shared clusters in this data. To eval-
uate the quality of results, we compute the NMI between
the ground-truth and the outputted clusters, for each data
set, and average the NMI scores across the data sets. As
a baseline, we run k-means and DP-means on the whole
data set all at once (i.e., we treat all twenty data sets as one
large data set) as well as k-means and DP-means on the in-
dividual data sets. k-means on the whole data set obtains
an average NMI score of .77 while DP-means yields .73.
When we run the hard Gaussian HDP, we obtain 17 global
clusters, and each data set forms on average 4.4 local clus-
ters per data set. The average NMI for this method is .81,
significantly higher than the non-hierarchical approaches.
When we run k-means or DP-means individually on each
data set and compute the average NMI, we obtain scores of
.79 for both; note that there is no automatic cluster sharing
via this approach. The hard Gaussian HDP takes 28.8s on
this data set, versus 2.7s for k-means on the full data.

Conclusions and Open Problems. This paper outlines
connections arising between DP mixture models and hard
clustering algorithms, and develops scalable algorithms for
hard clustering that retain some of the benefits of Bayesian
nonparametric and hierarchical modeling. Our analysis is
only a first step, and we note that there are several av-
enues of future work, including i) improvements to the

basic algorithms using ideas from k-means, such as local
search (Dhillon et al., 2002), ii) spectral or semidefinite re-
laxations for the hard Gaussian HDP, iii) generalizations to
exponential family mixture models (Banerjee et al., 2005),
and iv) additional comparisons to sampling-based and vari-
ational inference methods.
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