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Abstract

We suggest using the max-norm as a convex
surrogate constraint for clustering. We show
how this yields a better exact cluster recovery
guarantee than previously suggested nuclear-
norm relaxation, and study the effectiveness
of our method, and other related convex re-
laxations, compared to other approaches.

1. Introduction
Clustering as the problem of partitioning data into
clusters with strong similarity inside the clusters and
strong dissimilarity across different clusters is one of
the main problems in machine learning. In this paper,
we consider the problem of cut-based, or correlation,
clustering (Bansal et al., 2002) that has received a lot
of attention recently (Ailon et al., 2011; Mathieu &
Schudy, 2010; Bagon & Galun, 2011): Given a graph
G(V, E) on n nodes with normalized symmetric affinity
matrix A (for all u, v ∈ V: 0 ≤ Auv ≤ 1 and Auu = 1),
we want to partition V into clusters C = {C1, . . . , Ck}
so as to minimize the total disagreement

D(C) =
k∑

i=1

∑

u,v∈Ci

(1−Auv) +

k∑

i 6=j=1

∑

u∈Ci,v∈Cj

Auv.

The first term, captures the internal disagreement
inside clusters, and the second term captures the ex-
ternal agreement between nodes in different clusters.
In an ideal cluster, the affinities between all members
of the same cluster are 1 and the affinities between
members of two different clusters are zero and hence
the objective is zero. This objective does not require
the number of clusters to be known ahead of time—
we may decide to use any number of clusters, and this
is accounted for in the objective. Unfortunately, find-
ing a clustering minimizing the disagreement D(C) is
NP-Hard (Bansal et al., 2002).
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We formulate this problem as an optimization of a
convex disagreement objective over a non-convex set of
valid clustering matrices (Section 2) and then consider
convex relaxations of this constraint. Recently, Jalali
et al. (2011) suggested a trace-norm (aka nuclear-
norm) relaxation, casting the problem as minimizing
an ℓ1 loss and a trace-norm penalty, and providing
conditions under which the true underlying clustering
is recovered. Instead of trace-norm, we propose us-
ing the max-norm (aka γ2 norm) (Srebro et al., 2005),
which is a tighter convex relaxation than the trace-
norm. Accordingly, we establish an exact recovery
guarantee for our max-norm based formulation that
is strictly better than the trace-norm based guaran-
tee. We show that if the affinity matrix is a corrup-
tion of an “ideal” clustering matrix, with a certain
bound on the corruption, then the optimal solution
of the max-norm bounded optimization problem is ex-
actly the ideal clustering (Section 3.1). We also discuss
even tighter convex relaxations related to the max-
norm, and suggest augmenting the convex relaxation
with a single-linkage post-processing step in case of
non-exact recovery, showing the empirical advantages
of these approaches (Section 5).

The approach we suggests relies on optimizing an ℓ1
objective subject to a max-norm constraint. A similar
optimization problem with a trace-norm constraint (or
trace-norm regularization) has recently been the sub-
ject of some interest in the context of “robust PCA”
(Candes et al., 2011; Xu et al., 2012) and recovering
the structure of graphical models with latent variables
(Chandrasekaran et al., 2010). As with the trace-norm
regularized variant, the ℓ1 + max-norm problem can
be formulated as an SDP and solved using standard
solvers, but this is only applicable to fairly small scale
problems. In Section 4, we discuss various optimiza-
tion approaches to this problems, including approaches
which preserve the sparsity of the solution.
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1.1. Relationship to the Goemans Willimason

SDP Relaxation

Our convex relaxation approach is related to the classic
SDP relaxations of max-cut (Goemans & Williamson,
1995) and more generally the cut-norm (Alon & Noar,
2006). In fact, if we are interested in a partition to ex-
actly two clusters, the correlation clustering problem is
essentially a max-cut problem, though with both pos-
itive and negative weights (i.e. a symmetric cut-norm
problem), and our relaxation is essentially the classic
SDP relaxation of these problems. Our approach and
results differ in several ways.

First, we deal with problems with multiple clusters,
and even when the number of clusters is not pre-
determined. If the number of clusters k is pre-
determined, the correlation clustering problem can be
written as an integer quadratic program, with a k vari-
ables per node, and can be relaxed to an SDP. But this
SDP will be very different from ours, and will involve
a matrix of size nk × nk, unlike our relaxation where
the matrix is of size n× n regardless of the number of
clusters. Consequently, the rounding techniques based
on (random) projections typically employed for classic
SDP relaxations do not seem relevant here. Instead,
we employ a single-linkage post-processing as a form
of “rounding” imperfect solutions.

Second, the type of guarantees we provide are very
different from those in the Theory of Computation lit-
erature. Most of the SDP relaxation work we are aware
of (including the classical work cited above) focuses on
worst case constant factor approximation guarantees.
On one hand, this means the guarantee needs to hold
even on “crazy” inputs where there is really no reason-
able clustering anyway, and second, and on the other
hand it is not clear how approximating the objective
to within a constant factor translates to recovering an
underlying clustering. Instead, we prove that when
the affinity matrix is close enough to following some
underlying “true” clustering, the true clustering will
be recovered exactly. This type of guarantee is more
in the spirit of compressed sensing, which where ex-
act recovery of a support set is guaranteed subject to
conditions on the input (Jalali et al., 2011).

1.2. Other Clustering Approaches

There are several classes of clustering algorithms with
different objectives. In hierarchical clustering algo-
rithms such as UPGMA (Sneath & Sokal, 1973),
SLINK (Sibson, 1973) and CLINK (Defays, 1977), the
goal is to generate a sequence of clusterings by merg-
ing/splitting two clusters at each step of the sequence
according to a local disagreement objective as opposed
to our global D(C). Because of this locality, these

methods are known to be very sensitive to outliers.

Cut-based clustering algorithms such as k-
means/medians (Steinhaus, 1957; Jain & Dubes,
1981), ratio association (Shi & Malik, 2000), ratio cut
(Chan et al., 1994) and normalized cut (Yu & Shi,
2003) try to optimize an objective function globally.
The main issue is that they are typically NP-Hard
and need to know the number of clusters in advance.

In contrast, spectral clustering algorithms(von
Luxburg, 2007) try to find the first k principal
component of the affinity matrix or a transformed
version of that (Meilǎ & Shi, 2001). These methods
require the number of clusters in advance and has
been shown to be tractable (convex) relaxations to
NP-Hard cut-based algorithms (Dhillon et al., 2005).
These methods are again very sensitive to outliers.

2. Problem Setup

Our approach is based on representing a clustering
C through its incidence matrix K(C) ∈ R

n×n where
Kuv = 1 iff u and v belong to the same cluster in C
(i.e. u, v ∈ Ci for some i), and Kuv = 0 otherwise
(i.e. if u and v belong to different clusters). The ma-
trix K(C) is thus a permuted block-diagonal matrix,
and can also be thought of as the edge incidence ma-
trix of a graph with cliques corresponding to clusters
in C. We will say that a matrix K is a valid clus-

tering matrix, or sometimes simply valid, if it can
be written as K = K(C) for some clustering C (i.e. if
it is a permuted block diagonal matrix, with 1s in the
diagonal blocks).

The disagreement can then be written as either:

D(C) = ‖A−K(C)‖1 =
∑

u,v

|Auv −K(C)uv| (1)
or as:

D(C) =
∑

u,v

K(C)uv(1− 2Auv) +
∑

uv

Auv , (2)

where the term
∑

uv Auv does not depend on the clus-
tering C and can thus be dropped.

We now phrase the correlation clustering problem as
matrix problem, where we would like to solve

min
K

D(K) s.t. K is a valid clustering matrix. (3)

The problem is that even though the objectives (1)
and (2) are convex, the constraint that K is valid is
certainly not convex. Our approach to correlation clus-
tering will thus be to relax this non-convex constraint
(the validity of K) to a convex constraint.

We note that although both the absolute error ob-
jective (1) and the linear objective (2) agree on valid
clustering matrices (or more generally, on binary ma-
trices K), they can differ when K is fractional, and
especially when A is also fractional. The choice of
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objective can thus be important when relaxing the va-
lidity constraint to a convex constraint. More specif-
ically, as long as A is binary (i.e. Auv ∈ {0, 1}), and
0 ≤ Kuv ≤ 1, even if K is fractional, the two objec-
tives agree. Non-negativity of Kuv is ensured in some,
but not all, of the convex relaxations we study. When
non-negativity is not ensured, the absolute error ob-
jective (1) would tend to avoid negative values, but
the linear objective might certainly prefer them. More
importantly, once the affinities Auv are also fractional,
the two objectives differ even for 0 ≤ Kuv ≤ 1. While
the linear objective would tend to not care much about
entries with affinities close to 1/2, the absolute error
objective would tend to encourage fractional values in
thees cases.

The linear objective also has some optimization ad-
vantages over the absolute function as well. From a
numerical optimization point of view, dealing with the
linear objective function is easier since we do not need
to compute the sub-gradients of the ℓ1-norm.

3. Max-Norm Relaxation

As discussed in the previous Section, we are interested
in optimizing over the non-convex set of valid clus-
tering matrices. The approach we discuss here is to
relaxing this set to the set of matrices with bounded
max-norm (Srebro et al., 2005). The max-norm of a
matrix K is defined as

‖K‖max = min
K=RLT

‖R‖∞,2‖L‖∞,2

where, ‖ · ‖∞,2 is the maximum of the ℓ2 norm of the
rows, and the minimization is over factorization of any
internal dimensionality. It is not hard to see that if K
is a valid clustering matrix, with K = K(C), then
‖K‖max = 1. This is achieved, e.g., by a factorization
with R = L, and where each row Ru of R is a (unit
norm) indicator vector with Rui = 1 for u ∈ Ci and
zero elsewhere.

Relaxing the validity constraint to a max-norm con-
straint, and using the absolute error objective, we ob-
tain the following convex relaxation of the correlation
clustering problem:

K̂ = arg min
K

‖A−K‖1 s.t. ‖K‖max ≤ 1. (4)

Alternatively, we could have used the linear objective
(2) instead. In any case, after finding K̂, it is easy to
check whether it is valid, and if so recover the clus-
tering from its block structure. If K̂ is valid, we are
assured the corresponding clustering is a globally op-
timal solution of the correlation clustering problem.

3.1. Theoretical Guarantee

Assuming there exists an underlying true clustering,
we provide a worst-case (deterministic) guarantee for

exact recovery of that clustering in the presence of
noise when the affinity matrix A is a binary 0− 1 ma-
trix using absolute objective. The flavor of our result
is similar to (Jalali et al., 2011) for trace-norm, except
that we show the max-norm constraint problem recov-
ers the underlying clustering with larger noise com-
paring to trace-norm constraint. This matches our
intuition that max-norm is a tighter relaxation than
trace-norm for valid clustering matrices.

To present our theoretical result, we start by intro-
ducing an important quantity that our main result is
based upon. Suppose C∗ = {C∗

1 , . . . , C
∗
k} is the under-

lying true clustering. For a node u and a cluster C∗
i , let

du,C∗

i
=

∑
v∈C∗

i
Au,v

|C∗

i
|

if u /∈ C∗
i and du,C∗

i
= 1−

∑
v∈C∗

i
Au,v

|C∗

i
|

otherwise and
Dmax(A,K) ≡ Dmax(A,K(C∗)) = max

u,i
du,C∗

i

be the maximum of the disagreement ratios on the ad-
jacency matrix. This definition is inspired by (Jalali
et al., 2011) but is slightly different. Notice that the
larger Dmax(A,K) is, the more noisy (comparing to
ideal clusters) the graph is; and hence, the harder
the clustering becomes. In particular for ideal clusters
(fully connected inside and fully disconnected outside
clusters), we have Dmax(A,K) = 0.

We would like to ensure that whenDmax(A,K) is small
enough, our method can recover K. The following
lemma helps us understand the information theoretic
limit of Dmax(A,K), i.e. what value of Dmax is cer-
tainly not enough to ensure recovery, even information
theoretically:

Lemma 1. For any clustering C = {C1, . . . , Ck} and

for all γ > 2
5+r

with r = n2

∑
i |Ci|2

, there exists an

affinity matrix A such that Dmax(A,K(C)) = γ and
the combinatorial program (3) does not output C.
Note that the minimum of 2

5+r
is attained when all

clusters have equal sizes. If we have k∗ clusters of size
n
k∗ , then r = k∗ and the bound in Lemma 1 asserts
that if Dmax(A,K) > 2

k∗+5 , then there are examples
for which the original clustering cannot be recovered
by the combinatorial program (3). This implies that
Dmax(A,K) cannot be scaled better than Θ( 1

k∗ ) in
general even without convex relaxation.

Suppose there exist a true underlying clustering C∗

with k∗ clusters. Let Cmin be the smallest size under-
lying true cluster and we are given an affinity matrix A
with Dmax = Dmax(A,K(C∗)). Introducing lagrange
multiplier µ, we consider the optimization problem

K̂µ = arg min
K

1− µ

n2
‖A−K‖1 + µ ‖K‖max. (5)

The following theorem characterizes the noise regime
under which the simple max-norm relaxation (5) re-
covers C∗.



Clustering using Max-norm Constrained Optimization

Figure 1. Theorem 1 guarantee region of the noise level

Dmax vs the unbalanceness parameter 1
k∗

∑
i

(
|C∗

i |

|Cmin|

)2

.

Theorem 1. For 0 − 1 matrix A, if Dmax < 1
k∗+1

is

small enough to satisfy 1
k∗

∑
i

(
|C∗

i |

|Cmin|

)2

≤ (1−3Dmax)
2

(1+Dmax)Dmax

then, for any µ0 satisfying (1+Dmax)

(1−3Dmax)|Cmin|
2 <

(1−µ0)k
∗

µ0n
2 <

(1−3Dmax)k
∗

Dmax

∑
i |C∗

i
|2
, the matrix K̂µ0

(the solution

to (5)) is unique and equal to the matrix K∗ = K(C∗)
(the solution to (3)).

Remark 1: Consider the parameter 1
k∗

∑
i

(
|C∗

i |

|Cmin|

)2

in the theorem. Notice that for a balanced underlying
clustering (k∗ clusters of size n/k∗), this parameter is
1 and as the underlying clustering gets more and more
unbalanced, this parameter increases. That motivates
to call it unbalanceness of the clustering. It is clear
that as unbalanceness parameter increases, the region
of Dmax for which our theorem guarantees the cluster-
ing recovery shrinks. We plot the admissible region of
Dmax due to unabalanceness in Fig 1.

Remark 2: According to the Lemma 1, the bound on
Dmax is order-wise tight and can be only improved by
a constant in general.

3.2. Comparison to Trace-Norm Clustering

Since the max-norm constraint is strictly a tighter re-
laxation to the trace-norm constraint, we expect the
max-norm algorithm to perform better. Our theo-
rem shows improvement over the guarantees provided
for trace-norm clustering. Comparing to the result of

(Jalali et al., 2011) on trace-norm (Dmax ≤ |Cmin|
4n ),

the max-norm tolerates more noise. To see this,
consider a balanced clustering, then trace-norm re-
quires Dmax ≤ 1

4k∗ and max-norm requires Dmax ≤
min( 1

k∗+1 , 0.1789) which is larger than 1
4k∗ for all k∗.

The difference gets more clear for unbalanced cluster-
ing. Suppose we have one small cluster of constant size
|Cmin| and other clusters are approximately of size n

k∗ .
As (n, k∗) scales, trace-norm guarantee requires that
Dmax = o( 1

n
) which is inverse proportional to the size

of the smallest cluster, whereas, max-norm guarantee
requires Dmax = o(k

∗

n
) which is inverse proportional

to the size of the largest cluster. This is a huge theo-

retical advantage in our theorem.

Further, we compare our algorithm with trace-norm
algorithm (Jalali et al., 2011) and SLINK on a proba-
bilistic setup. Start from two different ideal clusters on
100 nodes: a) Balanced clusters: four ideal clusters of
size 25, b) Unbalanced clusters: three ideal clusters of
size 30 and one ideal cluster of size 10. Then, gradually
increase Dmax on both graphs and run all algorithms
and report the probability of success in exact recov-
ery of the underlying clusters. Although our theoret-
ical guarantee is for binary affinity matrices, here, we
run the same experiment for fractional affinity matrix.
We run all experiments for both absolute and linear
objectives. Fig. 3.1 shows that in all cases max-norm
outperforms the trace-norm and the improvement is
more significant for unbalanced clustering with frac-
tional affinity matrix. Moreover, this experiments re-
veal that the absolute objective has slight advantage if
the affinity matrix is binary and clusters are balanced;
otherwise, the linear objective is better.

4. Max-norm + ℓ1-norm Optimization

In this Section we consider optimization problems of
the form (4). This problem recovers a sparse and low-
rank matrix from their sum, considering max-norm as
a proxy to rank. In Section 4.1, we discuss how (4)
can be formulated as an SDP, allowing us to easily
solve it using standard SDP solvers, as long as the
problem size is relatively small. We then propose three
other methods to numerically solve the optimization
problem (4).

4.1. Semi-Definite Programming Method

Following Srebro et al. (2005), we introduce dummy
variables L,R ∈ R

n×n and reformulate (4) as the fol-
lowing SDP problem

K̂ = arg min
K,L,R

‖A−K‖1

s.t.

[
L K

KT R

]
� 0 and Lii, Rii ≤ 1

These constraints are equivalent to the condition
‖K‖max ≤ 1. This SDP can be solved using generic
SDP solvers, though is very slow and is not scalable to
large problems.

4.2. Factorization Method

Motivated by Lee et al. (2010), we introduce dummy
variables L,R ∈ R

n×n and let K = LRT . With this
change of variable, we can reformulate (4) as

K̂ = L̂R̂
T = arg min

L,R
‖A− LR

T ‖1

s.t. ‖L‖∞,2, ‖R‖∞,2 ≤ 1.

This problem is not convex, but it is guaranteed to
have no local minima for large enough size of the prob-
lem (Burer & Choi, 2006). Furthermore, if we now the
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(a) Balanced; Binary (b) UnBalanced; Binary

(c) Balanced; Fractional (d) UnBalanced; Fractional

Figure 2. Probability of exact clustering recovery for max-norm and trace-norm constrained algorithms under absolute
‖A−K‖1 and linear

∑
i,j Kij(1−2Aij) objectives. There are 4 clusters of size 25 for the balanced case and three clusters

of size 30 + one cluster of size 10 for the unbalanced case. We consider two cases for each graph; where the affinity
matrix is binary and when it is not. We both show the results for simple max-norm relaxation (basic algorithm) and
tighter relaxations presented in Section 5 (enhanced algorithm). The result shows that max-norm constrained optimization
recovers the exact clustering matrix under higher noise regimes better than trace-norm and single-linkage algorithm. Also,
the linear objective seems to be performing better than the absolute objective for the clustering problem in most cases.

optimal solution K̂ has rank at most r, we can take
L,R to be R

n×(r+1). In practice, we truncate to some
reasonably high rank r even without a known guar-
antee on the rank of the optimal solution. To solve
this problem iteratively, Lee et al. (2010) suggest the
following update
[

L
R

]

k+1

= Pmax

([
L
R

]

k

+
τ√
k

[
Sign(A− LRT ) R

Sign(A− LRT )T L

]

k

)
.

The projection Pmax(·) operates on rows of L and R;
if ℓ2-norm of a row is less than one, it remains un-
changed, otherwise it will be rescaled so that the ℓ2-
norm becomes one.

A possible problem with the above formulation is the
lack of “sparsity” in the following sense: The ℓ1 ob-
jective is likely to yield and optimal solution K∗ with
many non-zeros in A − K∗, i.e. where K∗ is exactly
equal to A on some of the entries. However, gradient
steps on the factorization are not likely to end up in
exactly sparse solutions, and we are not likely to see
any such sparsity in solutions of this method.

4.3. Loss Function Method

There are gradient methods such as truncated gradi-
ent (Langford et al., 2009) that produce sparse solu-
tion, however, these methods cannot be applied to this
problem. We introduce a surrogate optimization prob-
lem to (4) by adding a loss function. For some large

λ ∈ R, solve

K̂ = A− Ẑ = arg min
Z,L,R

‖Z‖1 + λ‖A− Z − LR
T ‖22

s.t. ‖L‖∞,2, ‖R‖∞,2 ≤ 1.

Here, the matrix Z is sparse and includes the disagree-
ments. For sufficiently large values of λ, the loss func-
tion ensures that the matrix A − Z is close to the
matrix LRT that is a bounded max-norm matrix. To
solve this problem iteratively, we use the update

Zk+1 = Pℓ1

(
Zk +

τλ√
k
(A− Z − LR

T )k

)

[
L
R

]

k+1

= Pmax

([
L
R

]

k

+
τλ√
k

[
(A− Z − LRT ) R

(A− Z − LRT )T L

]

k

)
.

Here, Pℓ1(·) operates on entries; if an entry has the
same sign before and after the update, it remains un-
changed; otherwise, it will be set to zero. Solving di-
rectly for large values of λ might cause some problems
due to the finite numerical precision. In practice, we
start with some small value say λ = 1 and double the
value of λ after some iterations. This way, we gradu-
ally put more and more emphasis on the loss function.

4.4. Dual Decomposition Method

Inspired by Rockafellar (1970), we first reformulate (4)
by introducing a dummy variable Z ∈ R

n×n as follows
K̂ = arg min

Z,K
‖A−K‖1

s.t. ‖Z‖max ≤ 1 and Z = K.
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(a) |Supp(A − K̂)|

(b) ‖K∗ − K̂‖1

Figure 3. Comparison of the proposed numerical optimiza-
tion methods in terms of the sparsity of the solution they
provide and the ℓ1 error of the estimation.

Then, introducing a Lagrange multiplier Λ ∈ R
n×n,

we propose the following equivalent problem:

K̂ = arg max
Λ

min
Z,K

‖A−K‖1 + 〈〈Λ, K − Z〉〉

s.t. ‖Z‖max ≤ 1.

Here, 〈〈·, ·〉〉 is the trace of the product. This problem
is a saddle-point convex problem in (Z,K,Λ). To solve
this, we iteratively fix Λ and optimize over (K,Z) and
then, using those optimal values of (K,Z), update Λ.

For a fixed Λ, the problem can be separated into two
optimization problems over K and Z as

K̂(Λ) = arg min
K

‖A−K‖1 + 〈〈Λ, K〉〉

which can be solved using factorization method dis-
cussed above, and

Ẑ(λ) = arg min
Z

−〈〈Λ, Z〉〉 s.t. ‖Z‖max ≤ 1.

which is a soft thresholding; if |Λij | > 1 then,

K̂(Λ)ij = −Sign(Λij); otherwise K̂(Λ)ij = Aij .

Using K̂(Λk) and Ẑ(Λk), we update Λ as follows

Λk+1 = Λk − τ√
k
(K̂(Λk)− Ẑ(Λk))

until it converges. One criterion for the convergence of
this method is to round both matrices K̂, Ẑ and check
if they are equal. To use this criterion, we need to
initialize the two matrices very differently to avoid the
stopping due to the initialization.

4.5. Numerical Comparison

We compare the performance of these methods. For
three ideal clusters of size 20 with noise level Dmax,

Figure 4. Summary of possible convex relaxations of the set
of valid clustering matrices and their relations. Here, ‖ · ‖∗
represents the trace (nuclear) norm, ‖ · ‖∞,2 represents the
maximum ℓ2 norm of the rows, “≥” is used for element-wise
positiveness and “�” is used for positive semi-definiteness.
Each double-ended arrow represents the equivalence of two
sets. Each single-ended arrow in this figure represents a
strict sub-set relation between two sets.

we run all three algorithms for 2000 iterations. We
consider an initial step size τ = 1 for all methods,
and, for the loss function method, we doubel λ every
100 iterations. For the dual method, we update Λ
for 20 times and run 100 iterations of the factorization
method for the max-norm sub-problem at each update.
We report the sparsity of the solution A−K̂ as well as
the ℓ1-norm of the error ‖K̂−K∗‖1 for each algorithm
in Fig 3. This result shows that there is a trade-off
between sparsity and the error – the dual optimization
method provides consistently a sparse solution, where,
factorization and loss function methods provide small
error. The sparsity of loss function method gets worse
as the noise increases.

5. Tighter Relaxations

In this section, we improve our basic algorithm in two
ways: first, we use a tighter relaxation for valid cluster-
ing constraint and second, we add a single-linkage step
after we recovered the clustering matrix. Although
max-norm is a tighter relaxation comparing to trace-
norm, we would like to go further and introduce tighter
relaxations. Figure 4 summarizes different possible re-
laxations based on max-norm. The tightest relaxation
we suggest is {K = RRT : ‖R‖∞,2 ≤ 1, R ≥ 0} based
on the intuition that a clustering matrix is symmetric
and has a trivial factorization R ∈ R

n×k, where, Rij

is non-zero if node i belongs to cluster j. Next lemma
formalizes this result.

Lemma 2. All relaxation sets shown in Fig. 4 are
convex and the strict subset relations hold.
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(a) Balanced; Fractional

(b) UnBalanced; Fractional

Figure 5. Comparison of our best proposed method which
is the linear objective over tight relaxation (followed by
a single-linkage algorithm) with trace-norm counterpart,
single-linkage algorithm and spectral clustering. Here, we
plot the entropy-based distance of the recovered clustering
with the underlying true clustering.

This suggests using the tightest convex relaxation,
that is constraining to K such that there exists R >=
0, ‖R‖∞,2 <= 1 with K = RRT (the set of matrices
K with a factorization K = RRT , R >= 0 is called
the set of completely positive matrices and is convex
(Berman & Shaked-Monderer, 2003)). We optimize
over this relaxation by solving the following optimiza-
tion problem over R:

R̂ = arg min
R

‖A−RR
T ‖1

s.t. ‖R‖∞,2 ≤ 1 & R ≥ 0.
(6)

and setting K̂ = R̂R̂T . Although the constraint on K̂
is convex, the problem (6) is not convex in R.

5.1. Single-linkage Post Processing

The matrix K̃ extracted from (6) might diverge from
a valid clustering matrix in two ways: firstly, it might
not have the structure of a valid clustering and sec-
ondly, even if it has the structure, the values might
not be integer. We run SLINK on K̃ as a “rounding
scheme” to fix both of the above problems. SLINK
gives a sequence of clusterings C1, . . . , Cn. To pick the
best clustering, we choose

K̂ = arg min
i

‖A−K(Ci)‖1. (7)

The matrix K̃ can be viewed as a refined version of
the affinity matrix A and hence the second step of
the algorithm can be replaced by other hierarchical
clustering algorithms.
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Figure 6. Comparison of our best proposed method which
is the linear objective over tight relaxation (followed by k-
means) with trace-norm and spectral clustering in terms of
time complexity and clustering error on MNIST dataset.

5.2. Comparison with Other Algorithms

We compare our enhanced algorithm with the trace-
norm algorithm (Jalali et al., 2011) followed by SLINK
and SLINK itself. In all cases we pick a clustering
from SLINK hierarchy using (7). The setup is identical
to the experiment explained in Section 3.2. Fig 3.1
summarizes the results and shows that our algorithm
outperforms all competitive methods significantly.

Besides the exact recovery, we would like to investi-
gate that as noise level Dmax increases, how bad the
output of our algorithm gets. Using “variation of in-
formation” (Meilǎ, 2007) as a distance measure, we
compare our algorithm with trace-norm, SLINK and
spectral clustering (von Luxburg, 2007) for both bal-
anced and unbalanced clusterings. For the spectral
clustering method, we first find the largest k = 4 prin-
cipal components of A and then, run SLINK on princi-
pal components. Fig 5 shows the result indicating that
max-norm, even when the noise level is high, outputs
a clustering that is not far from the true clustering.

5.3. MNIST Dataset

To demonstrate our method in a realistic and larger
scale data set, we run our enhanced algorithm, trace-
norm and spectral clustering on MNIST Dataset (Le-
Cun et al., 1998). For each experiment, we pick a total
of n data points from 10 different classes (n/10 from
each class) and construct the affinities using Gaussian
kernel as explained in (Bühler & Hein, 2009). We re-
port the time complexities and clustering errors as pre-
vious experiment in Fig 5.1. For the spectral cluster-
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ing, we take SVD using Matlab and pick the top 10
principal components followed by k-means.
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