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Abstract

Stochastic gradient descent (SGD) is a sim-
ple and popular method to solve stochas-
tic optimization problems which arise in ma-
chine learning. For strongly convex prob-
lems, its convergence rate was known to be
O(log(T)/T), by running SGD for T itera-
tions and returning the average point. How-
ever, recent results showed that using a dif-
ferent algorithm, one can get an optimal
O(1/T) rate. This might lead one to be-
lieve that standard SGD is suboptimal, and
maybe should even be replaced as a method
of choice. In this paper, we investigate the
optimality of SGD in a stochastic setting.
We show that for smooth problems, the algo-
rithm attains the optimal O(1/T) rate. How-
ever, for non-smooth problems, the conver-
gence rate with averaging might really be
Q(log(T)/T), and this is not just an artifact
of the analysis. On the flip side, we show
that a simple modification of the averaging
step suffices to recover the O(1/T) rate, and
no other change of the algorithm is neces-
sary. We also present experimental results
which support our findings, and point out
open problems.

1. Introduction

Stochastic gradient descent (SGD) is one of the sim-
plest and most popular first-order methods to solve
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convex learning problems. Given a convex loss func-
tion and a training set of 1" examples, SGD can be
used to obtain a sequence of T' predictors, whose av-
erage has a generalization error which converges (with
T) to the optimal one in the class of predictors we con-
sider. The common framework to analyze such first-
order algorithms is via stochastic optimization, where
our goal is to optimize an unknown convex function
F, given only unbiased estimates of F’s subgradients
(see Sec. 2 for a more precise definition).

An important special case is when F' is strongly con-
vex (intuitively, can be lower bounded by a quadratic
function). Such functions arise, for instance, in Sup-
port Vector Machines and other regularized learning
algorithms. For such problems, there is a well-known
O(log(T)/T) convergence guarantee for SGD with av-
eraging. This rate is obtained using the analysis of
the algorithm in the harder setting of online learning
(Hazan et al., 2007), combined with an online-to-batch
conversion (see (Hazan & Kale, 2011) for more details).

Surprisingly, a recent paper by Hazan and Kale (Hazan
& Kale, 2011) showed that in fact, an O(log(T)/T) is
not the best that one can achieve for strongly convex
stochastic problems. In particular, an optimal O(1/T")
rate can be obtained using a different algorithm, which
is somewhat similar to SGD but is more complex (al-
though with comparable computational complexity)?.
A very similar algorithm was also presented recently

by Juditsky and Nesterov (Juditsky & Nesterov, 2010).

'Roughly speaking, the algorithm divides the T it-
erations into exponentially increasing epochs, and runs
stochastic gradient descent with averaging on each one.
The resulting point of each epoch is used as the starting
point of the next epoch. The algorithm returns the result-
ing point of the last epoch.
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These results left an important gap: Namely, whether
the true convergence rate of SGD, possibly with some
sort of averaging, might also be O(1/T), and the
known O(log(T)/T) result is just an artifact of the
analysis. Indeed, the whole motivation of (Hazan &
Kale, 2011) was that the standard online analysis is
too loose to analyze the stochastic setting properly.
Perhaps a similar looseness applies to the analysis of
SGD as well? This question has immediate practical
relevance: if the new algorithms enjoy a better rate
than SGD, it might indicate they will work better in
practice, and that practitioners should abandon SGD
in favor of them.

In this paper, we study the convergence rate of SGD
for stochastic strongly convex problems, with the fol-
lowing contributions:

e First, we extend known results to show that if F’
is not only strongly convex, but also smooth (with
respect to the optimum), then SGD with and
without averaging achieves the optimal O(1/T)
convergence rate.

e We then show that for non-smooth F', there are
cases where the convergence rate of SGD with
averaging is Q(log(T)/T). In other words, the
O(log(T)/T) bound for general strongly convex
problems is real, and not just an artifact of the
currently-known analysis.

e However, we show that one can recover the op-
timal O(1/T) convergence rate (in expectation
and in high probability) by a simple modification
of the averaging step: Instead of averaging of T’
points, we only average the last a1 points, where
« € (0,1) is arbitrary. Thus, to obtain an optimal
rate, one does not need to use an algorithm signifi-
cantly different than SGD, such as those discussed
earlier.

e We perform an empirical study on both artificial
and real-world data, which supports our findings.

Moreover, our rate upper bounds are shown to hold
in expectation, as well as in high probability (up to a
log(log(T)) factor). While the focus here is on getting
the optimal rate in terms of T', we note that our up-
per bounds are also optimal in terms of other standard
problem parameters, such as the strong convexity pa-
rameter and the variance of the stochastic gradients.

Following the paradigm of (Hazan & Kale, 2011), we
analyze the algorithm directly in the stochastic setting,
and avoid an online analysis with an online-to-batch
conversion. This also allows us to prove results which

are more general. In particular, the standard online
analysis of SGD requires the step size of the algorithm
at round t to equal 1/At, where X is the strong con-
vexity parameter of F'. In contrast, our analysis copes
with any step size ¢/At, as long as ¢ is not too small.

In terms of related work, we note that the performance
of SGD in a stochastic setting has been extensively re-
searched in stochastic approximation theory (see for
instance (Kushner & Yin, 2003)). However, these re-
sults are usually obtained under smoothness assump-
tions, and are often asymptotic, so we do not get an ex-
plicit bound in terms of T" which applies to our setting.
We also note that a finite-sample analysis of SGD in
the stochastic setting was recently presented in (Bach
& Moulines, 2011). However, the focus there was dif-
ferent than ours, and also obtained bounds which hold
only in expectation rather than in high probability.
More importantly, the analysis was carried out un-
der stronger smoothness assumptions than our anal-
ysis, and to the best of our understanding, does not
apply to general, possibly non-smooth, strongly con-
vex stochastic optimization problems. For example,
smoothness assumptions may not cover the applica-
tion of SGD to support vector machines (as in (Shalev-
Shwartz et al., 2011)), since it uses a non-smooth loss
function, and thus the underlying function F we are
trying to stochastically optimize may not be smooth.

2. Preliminaries

We use bold-face letters to denote vectors. Given some
vector w, we use w; to denote its i-th coordinate. Simi-
larly, given some indexed vector wy, we let w; ; denote
its ¢-th coordinate. We let 14 denote the indicator
function for some event A.

We consider the standard setting of convex stochas-
tic optimization, using first-order methods. Our goal
is to minimize a convex function F over some convex
domain W (which is assumed to be a subset of some
Hilbert space). However, we do not know F', and the
only information available is through a stochastic gra-
dient oracle, which given some w € W, produces a
vector g, whose expectation E[g] = g is a subgradient
of F' at w. Using a bounded number T of calls to this
oracle, we wish to find a point wr such that F(w;) is as
small as possible. In particular, we will assume that F’
attains a minimum at some w* € W, and our analysis
provides bounds on F(w;) — F(w*) either in expecta-
tion or in high probability (the high probability results
are stronger, but require more effort and have slightly
worse dependence on some problem parameters). The
application of this framework to learning is straightfor-
ward (see for instance (Shalev-Shwartz et al., 2009)):
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given a hypothesis class W and a set of T i.i.d. exam-
ples, we wish to find a predictor w whose expected loss
F(w) is close to optimal over WW. Since the examples
are chosen i.i.d., the subgradient of the loss function
with respect to any individual example can be shown
to be an unbiased estimate of a subgradient of F'.

We will focus on an important special case of the prob-
lem, characterized by F' being a strongly convex func-
tion. Formally, we say that a function F' is A-strongly
conver, if for all w, w’ € W and any subgradient g of
Fatw,

F(W) > F(w) + (g, w —w) + S Iw —wl” (1)

Another possible property of F we will consider is
smoothness, at least with respect to the optimum w*.
Formally, a function F' is p-smooth with respect to w*
if for all w € W,

F(w) = F(w") < Zllw —w*|% (2)

Such functions arise, for instance, in logistic and least-
squares regression, and in general for learning linear
predictors where the loss function has a Lipschitz-
continuous gradient.

The algorithm we focus on is stochastic gradient de-
scent (SGD). The SGD algorithm is parameterized by
step sizes 71, ..., nr, and is defined as follows:

1. Initialize wy € W arbitrarily (or randomly)
2. Fort=1,...,T:

e Query the stochastic gradient oracle at w; to
get a random g; such that E[g] = g, is a
subgradient of F' at wy.

o Let wiyy = Iy (wy —n:8:t), where Iy is the
projection operator on W.

This algorithm returns a sequence of points
wi,...,wp. To obtain a single point, one can
use several strategies. Perhaps the simplest one is to
return the last point, wpiq. Another procedure, for
which the standard online analysis of SGD applies
(Hazan et al., 2007), is to return the average point

1
WT:T(Wl-i-...—‘rWT).

For stochastic optimization of A-strongly functions,
the standard analysis (through online learning) focuses
on the step size 7; being exactly 1/At (Hazan et al.,
2007). Our analysis will consider more general step-
sizes ¢/\t, where c is a constant. We note that a step

size of ©(1/t) is necessary for the algorithm to obtain
an optimal convergence rate (see Appendix A in the
full version (Rakhlin et al., 2011)).

In general, we will assume that regardless of how w; is
initialized, it holds that E[||g:||*] < G? for some fixed
constant G. Note that this is a somewhat weaker as-
sumption than (Hazan & Kale, 2011), which required
that [|g:]|> < G? with probability 1, since we focus
only on bounds which hold in expectation. These types
of assumptions are common in the literature, and are
generally implied by taking W to be a bounded do-
main, or alternatively, assuming that w is initialized
not too far from w* and F satisfies certain technical
conditions (see for instance the proof of Theorem 1 in
(Shalev-Shwartz et al., 2011)).

Full proofs of our results are provided in Appendix B
of the full version of this paper (Rakhlin et al., 2011).

3. Smooth Functions

We begin by considering the case where the expected
function F(+) is both strongly convex and smooth with
respect to w*. Our starting point is to show a O(1/T)
for the last point obtained by SGD. This result is well
known in the literature (see for instance (Nemirovski
et al., 2009)) and we include a proof for completeness.
Later on, we will show how to extend it to a high-
probability bound.

Theorem 1. Suppose F is A-strongly convex and p-
smooth with respect to w* over a convex set W, and
that E[||g:]|?] < G%. Then if we pick n, = ¢/t for
some constant ¢ > 1/2, it holds for any T that

. 1 c pnG?
E[F(wr) — F(w )]§2max{4, 2—1/6})\2T'

The theorem is an immediate corollary of the following
key lemma, and the definition of p-smoothness with
respect to w*.

Lemma 1. Suppose F' is A-strongly convex over a con-
vex set W, and that E[||g:|%] < G%. Then if we pick
e = ¢/t for some constant ¢ > 1/2, it holds for any
T that

2
—_wtl?] < _c i
E[||wr —w ||]_max{4, 2—1/0})\2T'

We now turn to discuss the behavior of the average
point wpr = (wy + ... + wr)/T, and show that for
smooth F, it also enjoys an optimal O(1/T) conver-
gence rate (with even better dependence on c).

Theorem 2. Suppose F is A-strongly convex and p-
smooth with respect to w* over a convex set W, and
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that E[||g:]|?] < G%. Then if we pick n, = ¢/t for
some constant ¢ > 1/2, E[F(wp) — F(w*)] is at most

9 uwG?  4uG ﬁ 4c 1
S I CRE S WL W VS e (e

A rough proof intuition is the following: Lemma 1
implies that the Euclidean distance of w; from w* is
on the order of 1/v/%, so the squared distance of wr
from w* is on the order of ((1/7) Zthl 1/Vt)? =~ 1T,
and the rest follows from smoothness.

4. Non-Smooth Functions

We now turn to the discuss the more general case
where the function F' may not be smooth (i.e. there
is no constant p which satisfies Eq. (2) uniformly for
all w € W). In the context of learning, this may hap-
pen when we try to learn a predictor with respect to
a non-smooth loss function, such as the hinge loss.

As discussed earlier, SGD with averaging is known to
have a rate of at most O(log(7")/T'). In the previous
section, we saw that for smooth F', the rate is actu-
ally O(1/T). Moreover, (Hazan & Kale, 2011) showed
that for using a different algorithm than SGD, one can
obtain a rate of O(1/T) even in the non-smooth case.
This might lead us to believe that an O(1/T") rate for
SGD is possible in the non-smooth case, and that the
O(log(T)/T) analysis is simply not tight.

However, this intuition turns out to be wrong. Be-
low, we show that there are strongly convex stochastic
optimization problems in Euclidean space, in which
the convergence rate of SGD with averaging is lower
bounded by Q(log(T)/T). Thus, the logarithm in the
bound is not merely a shortcoming in the standard
online analysis of SGD, but is really a property of the
algorithm.

We begin with the following relatively simple example,
which shows the essence of the idea. Let F' be the 1-
strongly convex function

1
Fw) = 5|[wl* + s,

over the domain W = [0,1]%, which has a global
minimum at 0. Suppose the stochastic gradient or-
acle, given a point wy, returns the gradient estimate
g = wi + (Z,0,...,0), where Z; is uniformly dis-
tributed over [—1,3]. It is easily verified that E[g,]
is a subgradient of F(w;), and that E[||&]%] < d+ 5
which is a bounded quantity for fixed d.

The following theorem implies in this case, the conver-
gence rate of SGD with averaging has a Q(log(T)/T")

lower bound. The intuition for this is that the global
optimum lies at a corner of W, so SGD “approaches”
it only from one direction. As a result, averaging the
points returned by SGD actually hurts us.

Theorem 3. Consider the strongly convex stochastic

optimization problem presented above. If SGD is ini-

tialized at any point in W, and ran with n, = ¢/t, then

for any T > Ty + 1, where Ty = max{2,¢/2}, we have
c 21

16T t

t=To

E[F(wr) — F(w")]

When ¢ is considered a constant, this lower bound is
Q(log(T)/T).

While the lower bound scales with ¢, we remind the
reader that one must pick 1, = ¢/t with constant ¢ for
an optimal convergence rate in general (see discussion
in Sec. 2).

This example is relatively straightforward but not fully
satisfying, since it crucially relies on the fact that w*
is on the border of W. In strongly convex problems,
w* usually lies in the interior of W, so perhaps the
Q(log(T)/T) lower bound does not hold in such cases.
Our main result, presented below, shows that this is
not the case, and that even if w* is well inside the inte-
rior of W, an Q(log(T)/T) rate for SGD with averaging
can be unavoidable. The intuition is that we construct
a non-smooth F, which forces w; to approach the opti-
mum from just one direction, creating the same effect
as in the previous example.

In particular, let F' be the 1-strongly convex function

1 w1 w1 2 0
F(w) = S|lw|*+ :
2 —7w1 w, < 0
over the domain W = [-1,1]¢, which has a global

minimum at 0. Suppose the stochastic gradient oracle,
given a point w;, returns the gradient estimate

e [(200.00)
8 =W (Z7,0,...,0)

w120
’LU1<0,

where Z; is a random variable uniformly distributed
over [—1,3]. Tt is easily verified that E[g;] is a subgra-
dient of F(w;), and that E[||g]|?] < d + 63 which is a
bounded quantity for fixed d.

Theorem 4. Consider the strongly convex stochas-
tic optimization problem presented above. If SGD is
witialized at any point wi with w11 > 0, and ran
with ny = c¢/t, then for any T > Ty + 2, where
To = max{2,6¢ + 1}, we have

T
3c 1 TO
> - -=.
= 16T 2 (t) T

t=To+2

E[F(wr) — F(w")]
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When c is considered a constant, this lower bound is

Q(log(T)/T).

We note that the requirement of w;; > 0 is just
for convenience, and the analysis also carries through,
with some second-order factors, if we let w; ; < 0.

5. Recovering an O(1/T) Rate for SGD
with a-Suffix Averaging

In the previous section, we showed that SGD with
averaging may have a rate of Q(log(T)/T) for non-
smooth F. To get the optimal O(1/T) rate for any
F, we might turn to the algorithms of (Hazan &
Kale, 2011) and (Juditsky & Nesterov, 2010). How-
ever, these algorithms constitute a significant depar-
ture from standard SGD. In this section, we show that
it is actually possible to get an O(1/T) rate using a
much simpler modification of the algorithm: given the
sequence of points wy, ..., wp provided by SGD, in-
stead of returning the average wr = (w1+...+wr)/T,
we average and return just a suffix, namely

Wi—a)T+1 + ..+ W7
oT ’
for some constant o € (0,1) (assuming oI and

(1 — )T are integers). We call this procedure a-suffiz
averaging.

o
W =

Theorem 5. Consider SGD with a-suffiz averaging as
described above, and with step sizes ny = c¢/At where
¢ > 1/2 is a constant. Suppose F' is A-strongly convez,
and that E[||g:||?] < G for all t. Then for any T, it
holds that

(c’ + (£ + ) log (ﬁ)) o2

EF(w) ~ F(w")] < . =

where ¢ = max{% , 4_12/0}.

Note that for any constant o € (0, 1), the bound above
is O(G?/\T). This applies to any relevant step size
¢/At, and matches the optimal guarantees in (Hazan
& Kale, 2011) up to constant factors. However, this is
shown for standard SGD, as opposed to the more spe-
cialized algorithm of (Hazan & Kale, 2011). Finally,
we note that it might be tempting to use Thm. 5 as a
guide to choose the averaging window, by optimizing
the bound for « (for instance, for ¢ = 1, the optimum
is achieved around a = 0.65). However, we note that
the optimal value of « is dependent on the constants
in the bound, which may not be the tightest or most
“correct” ones.

Proof Sketch. The proof combines the analysis of
online gradient descent (Hazan et al., 2007) and

Lemma 1. In particular, starting as in the proof of
Lemma 1, and extracting the inner products, we get

T T

2
> Elgewe-wil < Y My

t=(1—a)T+1 t=(1—a)T+1

T % *
3 (EHWt W’ E[[wia —w ||2]> .
277t 27775

t=(1—a)T+1
3)

Rearranging the r.h.s., and using the convexity of F
to relate the Lh.s. to E[F(wg) — F(w*)], we get a
convergence upper bound of

1 E Wi —W* 2 T
- [|| (1—a)T+1 H ] + G2 Z 0
« N1-a)T+1 t=(1—a)T+1
T
1 1
b3 Elwow (- D)
t=(1—a)T+1 n =

Lemma 1 tells us that with any strongly convex F,
even non-smooth, we have E[|lw; — w*[|?] < O(1/t).
Plugging this in and performing a few more manipu-
lations, the result follows. O

One potential disadvantage of suffix averaging is that
if we cannot store all the iterates w; in memory, then
we need to know from which iterate T to start com-
puting the suffix average (in contrast, standard aver-
aging can be computed “on-the-fly” without knowing
the stopping time T in advance). However, even if T
is not known, this can be easily addressed in several
ways. For example, since our results are robust to the
value of a, it is really enough to guess when we passed
some “constant” portion of all iterates. Alternatively,
one can divide the rounds into exponentially increasing
epochs, and maintain the average just of the current
epoch. Such an average would always correspond to a
constant-portion suffix of all iterates.

6. High-Probability Bounds

All our previous bounds were on the expected subopti-
mality E[F(w)—F(w™*)] of an appropriate predictor w.
We now outline how these results can be strengthened
to bounds on F(w;)— F(w*) which hold with arbitrar-
ily high probability 1 — §, with the bound depending
logarithmically on §. They are slightly worse than our
in-expectation bounds by having worse dependence on
the step size parameter ¢ and an additional log(log(7T))
factor (interestingly, a similar factor also appears in
the analysis of (Hazan & Kale, 2011), and we do not
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know if it is necessary). The key result is the follow-
ing strengthening of Lemma 1, under slightly stronger
technical conditions.

Lemma 2. Let § € (0,1/e) and T > 4. Suppose F
is A-strongly convexr over a convex set W, and that
ll&:|I?> < G? with probability 1. Then if we pick n; =
¢/ At for some constant ¢ > 1/2, such that 2¢ is a whole
number, it holds with probability at least 1 —§ that for
any t € {4c¢* +4c,..., T —1,T} that

12¢2G?
A2t

clog(log(t)/d)
+8(121G + 1)G

[[wi —w*|* <

We note that the assumptions on 2¢ and t are only
for simplifying the result. To obtain high probabil-
ity versions of Thm. 1, Thm. 2, and Thm. 5, we sim-
ply need to plug in this lemma in lieu of Lemma 1 in
their proofs. This leads overall to rates of the form
O(log(log(T")/6)/T) which hold with probability 1 —4.

7. Experiments

We now turn to empirically study how the algorithms
behave, and compare it to our theoretical findings.

We studied the following four algorithms:

1. SGD-A: Performing SGD and then returning the
average point over all 7' rounds.

2. SaDp-a: Performing SGD with a-suffix averaging.
We chose v = 1/2 - namely, we return the average
point over the last T'/2 rounds.

3. SaD-L: Performing SGD and returning the point
obtained in the last round.

4. EPoCH-GD: The optimal algorithm of (Hazan &
Kale, 2011) for strongly convex stochastic opti-
mization.

First, as a simple sanity check, we measured the perfor-
mance of these algorithms on a simple, strongly convex
stochastic optimization problem, which is also smooth.
We define W = [-1,1]°, and F(w) = |[w|[?>. The
stochastic gradient oracle, given a point w, returns
the stochastic gradient w4z where z is uniformly dis-
tributed in [—1,1]°. Clearly, this is an unbiased esti-
mate of the gradient of F' at w. The initial point wy of
all 4 algorithms was chosen uniformly at random from
W. The results are presented in Fig. 1, and it is clear
that all 4 algorithms indeed achieve a ©(1/T) rate,
matching our theoretical analysis (Thm. 1, Thm. 2
and Thm. 5). The results also seem to indicate that
SGD-A has a somewhat worse performance in terms of
leading constants.

—SGD-A
51 = SGD-a
SGD-L
= . ——EPOCH-GD
Z
T
’;l—
£ I
1 1,
0 ‘ . ‘ ‘ ‘
4 6 8 10 12 14 16

log,(T)

Figure 1. Results for smooth strongly convex stochastic
optimization problem. The experiment was repeated 10
times, and we report the mean and standard deviation for
each choice of T'. The X-axis is the log-number of rounds
log(T), and the Y-axis is (F'(wr)—F(w"))*T. The scaling
by T means that a roughly constant graph corresponds to
a ©(1/T) rate, whereas a linearly increasing graph corre-
sponds to a O(log(T")/T) rate.

Second, as another simple experiment, we measured
the performance of the algorithms on the non-smooth,
strongly convex problem described in the proof of
Thm. 4. In particular, we simulated this problem with
d = 5, and picked w; uniformly at random from W.
The results are presented in Fig. 2. As our theory
indicates, SGD-A seems to have an ©(log(T")/T") con-
vergence rate, whereas the other 3 algorithms all seem
to have the optimal ©(1/T') convergence rate. Among
these algorithms, the SGD variants SGD-L and SGD-«
seem to perform somewhat better than EPOCH-GD.
Also, while the average performance of SaD-L and
SGD-« are similar, SGD-« has less variance. This is
reasonable, considering the fact that SGD-a returns
an average of many points, whereas SGD-L return only
the very last point.

Finally, we performed a set of experiments on real-
world data. We used the same 3 binary classification
datasets (CCAT,cOv1 and ASTRO-PH) used by (Shalev-
Shwartz et al., 2011) and (Joachims, 2006), to test the
performance of optimization algorithms for Support
Vector Machines using linear kernels. Each of these
datasets is composed of a training set and a test set.
Given a training set of instance-label pairs, {x;, y; }1"4,
we defined F' to be the standard (non-smooth) objec-
tive function of Support Vector Machines, namely

A

F(w) = §||w||2 + % ZmaX{O, 1—yi(xi, W)}t (4)

Following (Shalev-Shwartz et al., 2011) and (Joachims,
2006), we took A = 10~* for ccaT, A = 1076 for cov1,
and A = 5 x 107° for ASTRO-PH. The stochastic gra-
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‘
4 6 8 10 12 14 16
log,(T)

Figure 2. Results for the non-smooth strongly convex
stochastic optimization problem. The experiment was re-
peated 10 times, and we report the mean and standard de-
viation for each choice of T'. The X-axis is the log-number
of rounds log(7T'), and the Y-axis is (F(wr) — F(w™*)) xT.
The scaling by T' means that a roughly constant graph cor-
responds to a ©(1/T) rate, whereas a linearly increasing
graph corresponds to a ©(log(T)/T) rate.

dient given w; was computed by taking a single ran-
domly drawn training example (x;,y;), and computing
the gradient with respect to that example, namely

8t = AWy — 1y (x; wy)<1YiXi-

Each dataset comes with a separate test set, and we
also report the objective function value with respect
to that set (as in Eq. (4), this time with {x;,y;} rep-
resenting the test set examples). All algorithms were
initialized at w; = 0, with W = R (i.e. no projections
were performed - see the discussion in Sec. 2).

The results of the experiments are presented in
Fig. 3,Fig. 4 and Fig. 5. In all experiments, SGD-
A performed the worst. The other 3 algorithms per-
formed rather similarly, with SGD-« being slightly bet-
ter on the Covl dataset, and SGD-L being slightly
better on the other 2 datasets.

In summary, our experiments indicate the following:

e SGD-A, which averages over all T predictors, is
worse than the other approaches. This accords
with our theory, as well as the results reported in
(Shalev-Shwartz et al., 2011).

e The EPOCH-GD algorithm does have better per-
formance than SGD-A, but a similar or better
performance was obtained using the simpler ap-
proaches of a-suffix averaging (SGD-«) or even
just returning the last predictor (SGp-L). The
good performance of SGD-« is supported by our
theoretical results, and so does the performance of
SGD-L in the strongly convex and smooth case.

ASTRO - Training Loss
10 . . .

= EPOCH-GD

log, (F(,))
S

6 8 10 12
log,(T)
ASTRO - Test Loss

=—SGD-A

= SGD-a
SGD-L

= EPOCH-GD

log, (F(,))

6
log,(T)

Figure 3. Results for the ASTRO-PH dataset. The left row
refers to the average loss on the training data, and the
right row refers to the average loss on the test data. Each
experiment was repeated 10 times, and we report the mean
and standard deviation for each choice of T'. The X-axis is
the log-number of rounds log(7"), and the Y-axis is the log
of the objective function log(F(wr)).
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Figure 4. Results for the CCAT dataset. See Fig. 3 caption
for details.
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Figure 5. Results for the ccAT dataset. See Fig. 3 caption
for details.

e SGD-L also performed rather well (with what
seems like a ©(1/T) rate) on the non-smooth
problem reported in Fig. 2, although with a larger
variance than SGD-a. Our current theory does
not cover the convergence of the last predictor in
non-smooth problems - see the discussion below.

8. Discussion

In this paper, we analyzed the behavior of SGD for
strongly convex stochastic optimization problems. We
demonstrated that this simple and well-known algo-
rithm performs optimally whenever the underlying
function is smooth, but the standard averaging step
can make it suboptimal for non-smooth problems.
However, a simple modification of the averaging step
suffices to recover the optimal rate, and a more sophis-
ticated algorithm is not necessary. Our experiments
seem to support this conclusion.

There are several open issues remaining. In particular,
the O(1/T) rate in the non-smooth case still requires
some sort of averaging. However, in our experiments
and other studies (e.g. (Shalev-Shwartz et al., 2011)),
returning the last iterate wp also seems to perform
quite well. Our current theory does not cover this -
at best, one can use Lemma 1 and Jensen’s inequality
to argue that the last iterate has a O(1/v/T) rate, but
the behavior in practice is clearly much better. Does

SGD, without averaging, obtain an O(1/T) rate for
general strongly convex problems? Also, a fuller em-
pirical study is warranted of whether and which aver-
aging scheme is best in practice.
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