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Abstract

This paper addresses the problem of infer-
ring a regular expression from a given set of
strings that resembles, as closely as possible,
the regular expression that a human expert
would have written to identify the language.
This is motivated by our goal of automating
the task of postmasters of an email service
who use regular expressions to describe and
blacklist email spam campaigns. Training
data contains batches of messages and corre-
sponding regular expressions that an expert
postmaster feels confident to blacklist. We
model this task as a learning problem with
structured output spaces and an appropriate
loss function, derive a decoder and the result-
ing optimization problem, and a report on a
case study conducted with an email service.

1. Introduction

Popular spam dissemination tools allow users to imple-
ment mailing campaigns by specifying simple gram-
mars that serve as message templates. A grammar
is disseminated to nodes of a bot net, the nodes cre-
ate messages by instantiating the grammar at random.
Email service providers can easily sample elements of
new mailing campaigns by collecting messages in spam
traps or by tapping into known bot nets. When mes-
sages from multiple campaigns are collected in a joint
spam trap, clustering tools can separate the campaigns
reliably (Haider & Scheffer, 2009). However, prob-
abilistic cluster descriptions that use a bag-of-words
representation incur the risk of false positives, and it
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I’m a cute rus-
sian lady. I’m 21
years old, weigh
55 kilograms
and am 172
centimeters tall.

I’m a lonely rus-
sian lady. I’m 23
years old, weigh
47 kilograms
and am 165
centimeters tall.

. . .

I’m a sweet rus-
sian girl. I’m 22
years old, weigh
58 kilograms
and am 171
centimeters tall.

y = I’m a [a-z]+ russian (girl|lady). I am 2[123] years old, weigh
\d+ kilograms and am 1\d{2} centimeters tall.

Figure 1. Elements of a message campaign and a regular
expression created by a postmaster.

is difficult for a human to decide whether they in fact
characterize the correct set of messages.

Regular expressions are a standard tool for specify-
ing simple grammars. Widely available tools match
strings against regular expressions efficiently and can
be used conveniently from scripting languages. A reg-
ular expression can be translated into a finite state
machine that accepts the language and has an execu-
tion time linear in the length of the input string. A
specific, comprehensible regular expression which cov-
ers the observed instances and has been written by an
expert postmaster can be used to blacklist the bulk of
emails of that campaign at virtually no risk of covering
any other messages.

Language identification has a rich history in the al-
gorithmic learning theory community (see Section 6).
Our problem setting differs from the problem of lan-
guage identification in the learner’s exact goal, and in
the available training data. Batches of strings and cor-
responding regular expressions are observable in the
training data. The learner’s goal is to produce a pre-
dictive model that maps batches of strings to regu-
lar expressions that resemble as closely as possible the
regular expressions which the postmaster would have
written and feels confident to blacklist (see Figure 1).
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Figure 2. Syntax tree 2(a) and a parse tree 2(b) for the regular expression y = [b0-9]{2}c(aa|b)∗ and the string x = 1bc.

The rest of this paper is structured as follows. Sec-
tion 2 reviews regular expressions before Section 3
states the problem setting. Section 4 introduces the
feature representation and derives the decoder and the
optimization problem. In Section 5, we discuss our
findings from a case study with an email service. Sec-
tion 6 discusses related work; Section 7 concludes.

2. Regular Expressions

Syntactically, a regular expression y ∈ YΣ is either
a character from an alphabet Σ, or it is an expres-
sion in which an operator is applied to one or several
argument expressions. Basic operators are the con-
catenation (e.g., “abc”), disjunction (e.g., “a|b”), and
the Kleene star (“∗”), written in postfix notation, that
accepts any number of repetitions of its preceding ar-
gument expression. Parentheses define the syntactic
structure of the expression. Several shorthands im-
prove the readability of regular expressions and can
be defined in terms of the basic operators. For in-
stance, the any character symbol (“.”) abbreviates the
disjunction of all characters in Σ, square brackets ac-
cept the disjunction of all characters (e.g., “[abc]”) or
ranges (e.g., “[a-z0-9]”) that are included. The postfix
operator “+” accepts an arbitrary, positive number of
reiterations of the preceding expression, while “{l, u}”
accepts between l and u reiterations, where l ≤ u. We
include a set of popular macros—for instance “\d” for
any digit. A formal definition of the set of regular
expressions can be found in the online appendix.

The syntactic structure of a regular expres-
sion is represented by its syntax tree Ty

syn =
(V y
syn, E

y
syn,Γ

y
syn,≤y

syn). Definition 3 in the online
appendix assigns one such tree to each regular ex-
pression. A node v ∈ V y

syn of this tree is tagged by
labeling function Γy

syn : V y
syn → YΣ with a subex-

pression Γy
syn(v) = yj . Edges (v, v′) ∈ Ey

syn indicate
that node v′ represents an argument expression of v.

Relation ≤y
syn⊆ V y

syn × V y
syn defines an ordering on

the nodes and identifies the root node.

A regular expression y defines a regular language L(y).
Given the regular expression, a deterministic finite
state machine can decide whether a string x is in
L(y) in time linear in |x| (Dubé & Feeley, 2000). The
trace of verification is typically represented as a parse
tree Ty,x

par = (V y,x
par , E

y,x
par,Γ

y,x
par,≤y,x

par), describing how
the string x can be derived from the regular expres-
sion y. At least one parse tree exists if and only if the
string is an element of the language L(y); in this case,
y is said to generate x. Nodes v ∈ V y

syn of the syntax
tree generate the nodes of the parse tree v′ ∈ V y,x

par ; a
node of the syntax tree may spawn none (alternatives
which are not used to generate a string), one, or several
(“loopy” syntactic elements such as “∗” or “+”) nodes
in the parse tree. In analogy to the syntax trees, the la-
beling function Γy,x

par : V y,x
par → YΣ assigns a subexpres-

sion to each node, and the relation ≤y,x
par⊆ V y,x

par ×V y,x
par

defines the ordering of sibling nodes. The set of all
parse trees for a regular expression y and a string x is
denoted by T y,x

par . A formal definition can be found in
the online appendix.

Leaf nodes of a parse tree Ty,x
par are labeled with ele-

ments of Σ ∪ {ε}, where ε denotes the empty symbol;
reading them from left to right gives the generated
string x. Non-terminal nodes correspond to subex-
pressions yj of y which generate substrings of x. To
compare different regular expressions with respect to
a given string x, we define the set Ty,x

par |i of labels of

nodes which are visited on the path from the root to
the the i-th character of x in the parse tree Ty,x

par .

Figure 2 shows an example of a syntax tree Ty
syn

and a parse tree Ty,x
par for the regular expression

y = [b0-9]{2}c(aa|b)∗ and the string x = 1bc.

Finally, we introduce the concept of a matching list.
When a regular expression y generates a set x of
strings, and v ∈ V y

syn is an arbitrary node of the syn-
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tax tree of y, then the matching list My,x(v) charac-
terizes which substrings of the strings in x are gen-
erated by the node v of the syntax tree. A node v
of the syntax tree generates a substring x′ of x ∈ x,
if v generates a node v′ in the parse tree Ty,x

par of x,
and there is a path from v′ in that parse tree to every
character in the substring x′. In the above example,
for the set of strings x = {12c, b4ca}, the matching list
for node v1 that represents subexpression [b0-9]{2} is
My,x(v2) = {12, b4}. Definition 4 in the online ap-
pendix introduces matching lists formally.

3. Problem Setting

Having established the syntax and semantics of regular
expressions, we now turn towards the problem setting.
An unknown distribution p(x,y) generates regular ex-
pressions y ∈ YΣ and batches x of strings x ∈ x that
are elements of the language L(y). In our motivating
application, the strings x are emails sampled from a
bot net, and the y are regular expressions which an
expert postmaster believes to identify the campaign
template, and feels confident to blacklist.

A w-parameterized predictive model fw : x 7→ ŷ ac-
cepts a batch of strings and conjectures a regular ex-
pression ŷ. We now define the loss ∆(y, ŷ,x) that
captures the deviation of the conjecture ŷ from y for
batch x. In our application, postmasters will not use
an expression to blacklist the campaign unless they
consider it to be comprehensibly and neatly written,
and believe it to accurately identify the campaign.

Loss function ∆(y, ŷ,x) compares each of the accept-
ing parse trees in T y,x

par , for each string x ∈ x, with the

most similar tree in T ŷ,x
par ; if no such parse tree exists,

the summand is defined as 1
|x| (Equation 1). Similarly

to a loss function for hierarchical classification (Cesa-
Bianchi et al., 2006), the difference of two parse trees
for string x is quantified by a comparison of the paths
that lead to the characters of the string; paths are
compared by means of the intersection of their nodes
(Equation 2). By its definition, this loss function is
bounded between zero and one; it attains zero if and
only if the expressions y and ŷ are equal.

∆(y, ŷ,x) =
1

|x|
∑
x∈x

{
∆tree(y, ŷ, x) if x∈L(ŷ)
1 otherwise

(1)

with ∆tree(y, ŷ, x) (2)

= 1− 1

|T y,x
par |

∑
t∈T y,x

par

max
t′∈T ŷ,x

par

1

|x|

|x|∑
j=1

|t|j ∩ t′|j |
max{|t|j |, |t′|j |}

We will also explore the zero-one loss, ∆0/1(y, ŷ,x) =
Jy 6= ŷK, where J.K is the indicator function of its
boolean argument. The zero-one loss serves as an al-
ternative, conceptually simpler reference model.

Our goal is to find the model fw with minimal risk

R[fw] =

∫∫
∆(y, fw(x),x)p(x,y)dx dy. (3)

Training data D = {(xi,yi)}mi=1 consists of pairs
of batches xi and generating regular expressions yi,
drawn according to p(x,y).

Since the true distribution p(x,y) is unknown, the
risk R[fw] cannot be calculated. We state the learn-
ing problem as the problem of minimizing the regular-
ized empirical counterpart of the risk over the param-
eters w and the regularizer Ω(w):

R̂[fw] =
1

m

∑
(x,y)∈D

∆(y, fw(x),x) + Ω(w). (4)

4. Identifying Regular Expressions

We model fw as a linear discriminant function
wTΨ(x,y) for a joint feature representation of the in-
put x and output y (Tsochantaridis et al., 2005):

fw(x) = arg max
y∈YΣ

wTΨ(x,y). (5)

4.1. Joint Feature Representation

The joint feature representation Ψ(y,x) captures
structural properties of an expression y and joint prop-
erties of input batch x and regular expression y.

Structural properties of a regular expression y are cap-
tured by features that indicate a specific nesting of
regular expression operators—for instance, whether a
concatenation occurs within a disjunction. More for-
mally, we first define a binary vector

Λ(y) =



Jy = y1 . . .ykK
Jy = y1| . . . |ykK
Jy = [y1 . . .yk]K

Jy = y∗
1K

Jy = y1?K
Jy = y+

1 K
Jy = y1{l}K

Jy = y1{l, u}K
Jy = r1K

...
Jy = rlK
Jy ∈ ΣK
Jy = εK



(6)

encoding the top-level operator used in the regular ex-
pression y. In Equation 6, y1, . . . ,yk ∈ YΣ are regular
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expressions, l, u ∈ N, and {r1, . . . , rl} is a set of ranges
and popular macros; for our application, we use the
set {0-9, a-f, a-z,A-F,A-Z, \S, \e, \w, \d, “.”}. For any
two nodes v′ and v′′ in the syntax tree of y that are
connected by an edge—indicating that y′′ = Γy

syn(v′′)
is an argument subexpression of y′ = Γy

syn(v′)—the
tensor product Λ(y′) ⊗ Λ(y′′) defines a binary vector
that encodes the specific nesting of operators at node
v′. Feature vector Ψ(x,y) will aggregate these vectors
over all pairs of adjacent nodes in the syntax tree of y.

Joint properties of an input batch x and a regular ex-
pression y are encoded as follows. Recall that for any
node v′ in the syntax tree, My,x(v′) denotes the set of
substrings in x that are generated by the subexpres-
sion y′ = Γy

syn(v′) that v′ is labeled with. We define
a vector Φ(My,x(v′)) of attributes of this set. Any
property may be accounted for; for our application,
we include the average string length, the inclusion of
the empty string, the proportion of capital letters, and
many other attributes. The full list of attributes used
in our experiments is included in the online appendix.
A joint encoding of properties of the subexpression y′

and the set of substrings generated by y′ is given by
the tensor product Φ(My,x(v′))⊗ Λ(y′).

The joint feature vector Ψ(x,y) is obtained by ag-
gregating operator-nesting information over all edges
in the syntax tree, and joint properties of subexpres-
sions y′ and the set of substrings they generate over
all nodes in the syntax tree:

Ψ(x,y) (7)

=

(∑
(v′,v′′)∈Ey

syn
Λ(Γy

syn(v′))⊗ Λ(Γy
syn(v′′))∑

v′∈V y
syn

Φ(My,x(v′))⊗ Λ(Γy
syn(v′))

)
.

4.2. Decoding

At application time, the highest-scoring regular ex-
pression fw(x) = arg maxy∈YΣ wTΨ(x,y) has to be
identified. This maximization is over the infinite space
of all regular expressions YΣ. To alleviate the in-
tractability of this problem, we approximate this maxi-
mum by the maximum over a constrained, finite search
space which can be found efficiently.

The constrained search space initially contains an
alignment of all strings in x. An alignment is a regular
expression that contains only constants—which have
to occur in all strings of the batch—and the wildcard
symbol “(.∗)”. The initial alignment ax of x can be
thought of as the most-general bound of this space.

Definition 1 (Alignment). The set of alignments Ax

of a batch of strings x contains all concatenations in
which strings from Σ+ and the wildcard symbol “(.∗)”
alternate, and that generate all elements of x.

An alignment is maximal if no other alignment in Ax

contains more constant symbols. A maximal align-
ment of two strings can be determined efficiently us-
ing Hirschberg’s algorithm (Hirschberg, 1975) which
is an instance of dynamic programming. By contrast,
finding the maximal alignment of a set of strings is
NP-hard (Wang & Jiang, 1994); known algorithms are
exponential in the number |x| of strings in x. Progres-
sive alignment heuristics find an alignment of a set of
strings by incrementally aligning pairs of strings.

Given an alignment ax = a0(.∗)a1 . . . (.
∗)an of all

strings in x, the constrained search space

Ŷx,D = {a0y1a1 . . .ynan|yj ∈ ŶMj

D } (8)

contains all specializations of ax in which the j-th
wildcard symbol is replaced by any element of a set

ŶMj

D . The sets ŶMj

D are constructed by Algorithm 1.
The algorithm starts with YD which we define to be
the set of all subexpressions that occur anywhere in
the training data D. From this set, it takes a subset
such that each regular expression in Ŷx,D generates all
strings in x, and adds a number of syntactic variants
and subexpressions in which constants have been re-
placed to match the elements of Mj , where Mj is the
matching list of the node which belongs to the j-th
wildcard symbol. Each of the lines 7, 9, 10, 11, and

12 of Algorithm 1 adds at most one element to ŶMj

D —
hence, the search space of possible substitutions for
each of the n wildcard symbols is linear in the number
of subexpressions that occur in the training sample.

We now turn towards the problem of determining the
highest-scoring regular expression fw(x). Maximiza-
tion over all regular expressions is approximated by
maximization over the space defined by Equation 8:

arg max
y∈YΣ

wTΨ(x,y) ≈ arg max
y∈Ŷx,D

wTΨ(x,y). (9)

We will now argue that this maximization problem can
be decomposed into independent maximization prob-
lems for each of the yj that replaces the j-th wildcard
in the alignment ax due to the simple syntactic struc-
ture of the alignment and the definition of Ψ.

Feature vector Ψ(x,y) decomposes linearly into a sum
over the nodes and a sum over pairs of adjacent nodes
(see Equation 7). The syntax tree of an instantia-
tion y = a0y1a1 . . .ynan of the alignment ax consists
of a root node labeled as an alternating concatenation
of constant strings aj and subexpressions yj (see Fig-
ure 3). This root node is connected to a layer on which
constant strings aj = aj,1 . . . aj,|aj | and subtrees T

yj
syn

alternate (blue area in Figure 3). However, the terms
in Equation 10 that correspond to the root node y and
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Algorithm 1 Constructing the decoding space

Input: Subexpressions YD and alignment ax =
a0(.∗)a1 . . . (.

∗)an of the strings in x.
1: let T ax

syn be the syntax tree of the alignment and
v1, . . . , vn be the nodes labeled Γax

syn(vj) = “(.∗)”.
2: for j = 1 . . . n do
3: let Mj = Max,x(vj).

4: Initialize ŶMj

D to {y ∈ YD|Mj ⊆ L(y)}
5: let x1, . . . , xm be the elements of Mj ; add

(x1| . . . |xm) to ŶMj

D .
6: let u be the length of the longest string and l

be the length of the shortest string in Mj .

7: if [βy1 . . .yk] ∈ ŶMj

D , where β ∈ Σ∗ and
y1 . . .yk are ranges or special macros (e.g.,

a-z, \e), then add [αy1 . . .yk] to ŶMj

D , where
α ∈ Σ∗ is the longest string that satisfies
Mj ⊆ L([αy1 . . .yk]), if such an α exists.

8: for all [y] ∈ ŶMj

D do

9: add [y]∗ and [y]{l, u} to ŶMj

D .

10: if l = u, then add [y]{l} to ŶMj

D .

11: if u ≤ 1, then add [y]? to ŶMj

D .

12: if l > 0, then add [y]+ to ŶMj

D .
13: end for
14: end for
Return: ŶM1

D , . . . , ŶMn

D .

the aj are constant for all values of the yj (red area
in Figure 3). Since no edges connect multiple wild-
cards, the feature representation of these subtrees can
be decomposed into n independent summands as in
Equation 11.

Ψ(x, a0y1a1 . . .ynan) (10)

=


n∑
j=1

Λ(y)⊗ Λ(yj) +
n∑
j=0

|aj |∑
q=1

Λ(y)⊗ Λ(aj,q)

Φ({x})⊗ Λ(y) +
n∑
j=0

|aj |∑
q=1

Φ({aj,q})⊗ Λ(aj,q)



+


n∑
j=1

∑
(v′,v′′)∈Eyj

syn

Λ(Γ
yj
syn(v′))⊗ Λ(Γ

yj
syn(v′′))

n∑
j=1

∑
v′∈V yj

syn

Φ(Myj ,Mj (v′))⊗ Λ(Γ
yj
syn(v′))


=

(
0

Φ({x})⊗ Λ(y)

)
+

n∑
j=0

|ai|∑
q=1

(
Λ(y)⊗ Λ(aj,q)

Φ({aj,q})⊗ Λ(aj,q)

)

+

n∑
j=1

(
Ψ(yj ,Mj) +

(
Λ(y)⊗ Λ(yj)

0

))
(11)

Since the top-level operator of an alignment is a con-
catenation for any y ∈ Ŷx,D, we can write Λ(y) as

. . . . . .

. . . . . .

. . .

a0,1 . . . a0,|a0|y1 . . .ynan,1 . . . an,|an|

a0,1 a0,|a0| y1 yn an,1 an,|an|

Figure 3. Structure of a syntax tree for an element of Ŷx,D.

a constant Λ•, defined as the output feature vector
(Equation 6) of a concatenation.

Thus, the maximization over all y = a0y1a1 . . .ynan
can be decomposed into n maximization problems over

y∗j = arg max
yj∈Ŷ

Mj
D

wT

(
Ψ(yj ,Mj) +

(
Λ• ⊗ Λ(yj)

0

))

which can be solved in O(n× |YD|).

4.3. Optimization Problem

We will now address the process of minimizing the reg-
ularized empirical risk R̂, defined in Equation 4, for
the `2 regularizer Ω(w) = 1

2C ||w||2. Loss function ∆,
defined in Equation 1, is not convex. To obtain a con-
vex optimization problem, we upper-bound the loss by
its hinged version, following the margin-rescaling ap-
proach (Tsochantaridis et al., 2005):

ξi=max
y 6=yi

{wT(Ψ(xi,yi)−Ψ(xi,y)) + ∆(yi,y,x)}. (12)

The maximum in Equation 12 is over all y ∈ YΣ\{yi}.
When the risk is rephrased as a constrained optimiza-
tion problem, the maximum produces one constraint
per element of y ∈ YΣ \ {yi}. However, since the de-
coder searches only the set Ŷxi,D, it is sufficient to
enforce the constraints on this subset.

When the loss is replaced by its upper bound—the
slack variable ξ—and for Ω(w) = 1

2C ||w||2, the min-
imization of the regularized empirical risk (Equation
4) is reduced to Optimization Problem 1.

Optimization Problem 1. Over parameters w, find

w∗ = arg min
w,ξ

1

2
||w||2 +

C

m

m∑
i=1

ξi, such that (13)

∀i,∀ȳ ∈ Ŷxi,D\{yi} : wT(Ψ(xi,yi)−Ψ(xi, ȳ)) (14)

≥ ∆(yi, ȳ,x)− ξi,
∀i : ξi ≥ 0. (15)

This optimization problem is convex, since the ob-
jective (Equation 13) is convex and the constraints
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(Equation 14 and 15) are affine in w. Hence, the so-
lution is unique and can be found efficiently by cut-
ting plane methods as Pegasos (Shalev-Shwartz et al.,
2011) or SVMstruct (Tsochantaridis et al., 2005).

Algorithm 2 Most strongly violated constraint

Input: batch x, model fw, correct output y.
1: Infer alignment ax = a0(.∗)a1 . . . (.

∗)an for x.
2: Let T ax

syn be the syntax tree of ax and let v1, . . . , vn
be the nodes labeled Γax

syn(vj) = “(.∗)”.
3: for all j = 1 . . . n do

4: Let Mj = Max,x(vj) and calculate the ŶMj

D us-
ing Algorithm 1.

5:
ȳj = arg max

y′
j∈Ŷ

Mj
D

wT

(
Ψ(y′j ,Mj)+

(
Λ•⊗Λ(y′j)

0

))
+

∆(y,a0(.∗)a1. . .(.
∗)aj−1y

′
jaj(.

∗)aj+1. . .(.
∗)an,x)

6: end for
7: Let ȳ abbreviate a0ȳ1a1 . . . ȳnan
8: if ȳ = y then

9: Assign a value of ȳ′j ∈ Ŷ
Mj

D to one of the
variables ȳj such that the smallest decrease of
fw(x, ȳ) + ∆tree(y, ȳ) is obtained but the con-
straint ȳ 6= y is enforced.

10: end if
Return: ȳ

During the optimization procedure, the regular expres-
sion that incurs the highest slack ξi for a given xi,

ȳ = arg max
y∈Ŷxi,D

\{yi}
wTΨ(xi,y) + ∆(yi,y,x),

has to be identified repeatedly. Algorithm 1 con-
structs the constrained search space Ŷxi,D such that

x ∈ L(y) for each x ∈ xi and y ∈ Ŷxi,D. Hence, the
“otherwise”-case in Equation 1 never applies within
our search space. Without this case, Equations 1 and
2 decompose linearly over the nodes of the parse tree,
and therefore the wildcards. Hence, ȳ can be identified
by maximizing over the variables ȳj independently in
Step 5 of Algorithm 2. Algorithm 2 finds the constraint
that is violated most strongly within the constrained
search space in O(n × |YD|). This ensures a polyno-
mial execution time of the optimization algorithm. We
refer to this learning procedure as REx-SVM .

5. Case Study

We investigate whether postmasters accept the output
of REx-SVM to blacklist mailing campaigns during
regular operations of a commercial email service. We
also evaluate how accurately REx-SVM and reference
methods identify the extensions of mailing campaigns.

First name: [ \S]+
Surname: \S+
Height: 1\d+ cm.
Weights: \d{2} kg.

First name: [ \S]+
Surname: \S+
Height: 1\d+ cm.
Weights: \d{2} kg.

First name: [ \S]+
Surname: [a-zA-Z]+

Height: 1\d+ cm.
Weights: [1467]+ kg.

The trans(fer|action)
ID: \d+. . .
ID:( )∗\d+( )∗ . . .
report \d+.doc

The trans(fer|action)
ID: \d+. . .
ID:[ 0-9]+ . . .
report \d+.doc

The trans[a-z]+

ID: \d+. . .
ID:[ a-z0-9]{2,6} . . .
report (2| . . . |73).doc

http://(LOVEGAME
[S0-9]∗|lovegame
[s0-9]∗).(com|net)
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Figure 4. Regular expressions created by a postmaster and
corresponding output of REx-SVM and REx0/1-SVM .

5.1. Evaluation by Postmasters

REx-SVM is trained on the ESP data set that contains
158 batches with a total of 12,763 emails and corre-
sponding regular expressions, collected from the email
service provider. The model is deployed; the user in-
terface presents newly detected batches of spam emails
together with the regular expression conjectured by
REx-SVM to a postmaster during regular operations
of the service. The postmaster is charged with black-
listing the campaigns by suitable regular expressions.
Over the study, the postmasters created 188 regular
expressions. Of these, they created 169 expressions
(89%) by copying a substring of the automatically gen-
erated expression. We observe that postmasters prefer
to describe only a part of the message which they feel
is characteristic for the campaign whereas REx-SVM
describes the entirety of the messages. In 12 cases,
the postmasters edited the string, and in 7 cases they
wrote an expression from scratch.

To illustrate different cases, Figure 4 compares ex-
cerpts of expressions created by REx- and REx0/1-
SVM (a variant of REx-SVM that uses the zero-one
loss instead of ∆ defined in Equation 1) to expressions
of a postmaster. The first example shows a perfect
agreement between REx-SVM and postmaster. In the
second example, the expressions are close but distinct.
In the third example, the SVMs produce expressions
that generate an overly general set of URLs and lead
to false positives (“\e” stands for characters that can
occur in a URL). In all three cases, REx-SVM is more
similar to the postmaster than REx0/1.

The top right diagram of Figure 5 shows the average
loss ∆ of REx- and REx0/1-SVM , measured by cross
validation with one batch held out. While postmas-
ters show the tendency to write expressions that only
characterize about 10% of the message, the REx-SVM
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Figure 5. Empirical results on public and ESP data sets. Error bars indicate standard errors.

variants describe the entirety of the message. This
leads to relatively high values of the loss function.

5.2. Spam Filtering Performance

We evaluate the ability of REx-SVM and baselines to
identify the exact extension of email campaigns. We
use the alignment of the strings in x as a baseline. In
addition, ReLIE (Li et al., 2008) searches for a regular
expression that matches the emails in the input batch
and does not match any of the additional negative ex-
amples by applying a set of transformation rules; we
use the alignment of the input batch as starting point.
ReLIE receives an additional 10,000 emails that are
not part of any batch as negative data. An additional
content-based filter employed by the provider has been
trained on several million spam and non-spam emails.

In order to be able to measure false-positive rates (the
rate at which emails that are not part of a campaign
are erroneously included), we combine the ESP data
set with an additional 135,000 non-spam emails, also
from the provider. Additionally, we use a public data
set that consists of 100 batches of emails extracted
from the Bruce Guenther archive1, containing a total
of 63,512 emails. To measure false-positive rates, we
combine this collection of spam batches with 17,419

1http://untroubled.org/spam/

emails from the Enron corpus2 of non-spam emails and
76,466 non-spam emails of the TREC corpus3. The
public data set is available to researchers.

In an outer loop of leave-one-out cross validation, one
batch is held back to evaluate the true-positive rate
(the proportion of the campaign that is correctly rec-
ognized). In an inner loop of 10-fold cross validation,
regularization parameter C is tuned.

Figure 5 shows the true and false positive rates for
all methods and both data sets. The horizontal axis
displays the number of emails in the input batch x.
Error bars indicate the standard error. The alignment
exhibits the highest true-positive rate and a high false-
positive rate because it is the most-general bound of
the decoder’s search space. ReLIE needs only very
few or zero replacement steps until no negative exam-
ples are covered. Consequently, it has similarly high
true- and false-positive rates. REx-SVM attains a
slightly lower true positive rate, and a substantially
lower false-positive rate. The false-positive rates of
REx and REx0/1 lie more than an order of magni-
tude below the rate of the commercial content-based
spam filter employed by the email service provider.
The zero-one loss leads to comparable false-positive
but lower true-positive rates, rendering the loss func-

2http://www.cs.cmu.edu/~enron/
3http://trec.nist.gov/data/spam.html

http://untroubled.org/spam/
http://www.cs.cmu.edu/~enron/
http://trec.nist.gov/data/spam.html
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tion of Equation 1 preferable to the zero-one loss.

The execution time to learn a model (bottom right)
is consistent with prior findings of between linear and
quadratic for the SVM optimization process.

6. Related Work

Gold (1967) shows that it is impossible to exactly
identify any regular language from finitely many pos-
itive examples. Our notion of minimizing an ex-
pected difference between conjecture and target lan-
guage over a distribution of input strings reflects a
more statistically-inspired notion of learning. Also, in
our problem setting the learner has access to pairs of
sets of strings and corresponding regular expressions.

Most work of identification of regular languages fo-
cuses on learning automata (Denis, 2001; Clark &
Thollard, 2004). While these problems are identical
in theory, transforming generated automata into reg-
ular expressions can lead to lengthy terms that do
not lend themselves to human comprehension (Fernau,
2009). Some work focuses on restricted classes, such
as expressions in which each symbol occurs at most
k times (Bex et al., 2008), disjunction-free expres-
sions (Brāzma, 1993), and disjunctions of left-aligned
disjunction-free expressions (Fernau, 2009).

Xie et al. (2008) use regular expressions to detect
URLs in spam batches and develop a spam filter with
low false positive rate. The ReLIE-algorithm (Li et al.,
2008) (used as a reference method in our experiments)
learns regular expressions from positive and negative
examples given an initial expression by applying a set
of transformation rules as long as this improves the
separation of positive and negative examples.

7. Conclusions

Complementing the language-identification paradigm,
we pose the problem of learning to map a set of strings
to a target regular expression. Training data consists
of batches of strings and corresponding expressions.
We phrase this problem as a learning problem with
structured output spaces and engineer an appropri-
ately loss function. We derive the resulting optimiza-
tion problem, and devise a decoder that searches a
space of specializations of a maximal alignment.

From our case study we conclude that REx-SVM gives
a high true positive rate at a false positive rate that is
more than an order of magnitude lower than that of a
commercial content-based filter. The system is being
used by a commercial email service provider and com-
plements content-based and IP-address based filtering.
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