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Abstract

Four decades after their invention, quasi-
Newton methods are still state of the art in
unconstrained numerical optimization. Al-
though not usually interpreted thus, these are
learning algorithms that fit a local quadratic
approximation to the objective function. We
show that many, including the most popular,
quasi-Newton methods can be interpreted as
approximations of Bayesian linear regression
under varying prior assumptions. This new
notion elucidates some shortcomings of clas-
sical algorithms, and lights the way to a novel
nonparametric quasi-Newton method, which
is able to make more efficient use of available
information at computational cost similar to
its predecessors.

1. Introduction

Quasi-Newton algorithms are arguably the most pop-
ular class of nonlinear numerical optimization meth-
ods, used widely in numerical applications not just
in machine learning. Their defining property is that
they iteratively build estimators Bi for the Hessian
B(x) = ∇∇⊺f(x) of the objective function f(x), from
observations of f ’s gradient ∇f(x), at each iteration
searching for a local minimum along a line search di-
rection −B−1

i ∇f(x), an estimate of the eponymous
Newton-Raphson search direction. Some of the most
widely known members of this family include Broy-
den’s (1965) method, the SR1 formula (Davidon, 1959;
Broyden, 1967), the DFP method (Davidon, 1959;
Fletcher & Powell, 1963) and the BFGS method (Broy-
den, 1969; Fletcher, 1970; Goldfarb, 1970; Shanno,
1970). Decades of continued research effort in this area
make it impossible to give even a superficial overview
over the available literature. The textbooks by No-
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cedal & Wright (1999) and Boyd & Vandenberghe
(2004) are good modern starting points for readers
interested in background. An insightful and exten-
sive contemporary review was compiled by Dennis &
Morée (1977). The ubiquity of optimization problems
in machine learning has made these algorithms tools of
the trade. But, perhaps because they predate machine
learning itself, they have rarely been studied as learn-
ing algorithms in their own right. This paper offers a
probabilistic analysis.

Throughout, let f ∶ RN _ R be a sufficiently regular,
not necessarily convex, function; ∇f ∶ RN _ RN its
gradient; B ∶ RN _ RN×N its Hessian. We consider
iterative algorithms moving from location x`−1 ∈ RD
to location x`. The algorithm performs consecutive
line searches along one-dimensional subspaces xi(α) =
αei +x0

i , with α ∈ R+ and a unit length vector ei ∈ RN
spanning the line search space starting at x0

i . Evalu-
ations at xi evince the gradient ∇f(xi) (and usually
also f(xi), though this will not feature in this paper).
The goal is to find a candidate x∗ for a local minimum:
a root ∇f(x∗) = 0 of the gradient.

The derivations of classical quasi-Newton algorithms
proceed along the following line of argument: We
require an update rule incorporating an observation∇f(xi+1) into a current estimate B̂i to get a new esti-
mate B̂i+1, subject to the following desiderata:

Low Rank/Cost Updates Optimization problems
regularly have dimensionality above N ∼ 103, even
beyond N ∼ 106. So the update should be of low
rank M (usually M = 1 or 2), because, by Schur’s
lemma, it has (worst-case) costO(N2+NM+M3).

Consistency with Quadratic Model If f is lo-
cally described well to second order, then

yi ≡ ∇f(xi) − ∇f(xi−1) ≈ B(xi)si, (1)

with si ≡ xi − xi−1. Because this is the funda-
mental idea behind this family of algorithms, it is
also known as the quasi-Newton equation (Dennis
& Morée, 1977).
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Symmetry The Hessian of twice differentiable func-
tions is symmetric; so its estimator should be, too.

Positive Definiteness Convex functions have pos-
itive definite Hessians everywhere. Over time,
it has become common conviction that, even for
non-convex problems, positive definiteness of the
estimator is desirable.

This paper’s contributions are twofold: Section 2 offers
a probabilistic viewpoint on classical quasi-Newton
methods, in the process showing that symmetry is only
achieved in a partial, definiteness in only a weak way
by the classical algorithms. In Section 3 we use these
insights to construct a novel nonparametric Bayesian
quasi-Newton algorithm; this addresses several short-
comings of classic algorithms, and increases perfor-
mance at only mildly higher cost.

We will write
Ð⇀
X to indicate an n×m matrix X stacked

row-wise into a vector of length nm. Its elements can
be enumerated by an index set (ij) ∈ [1, n] × [1,m].
The symbol ⊗ denotes the Kronecker product: (a ⊗
b)(ij)(k`) = aikbj`. It allows a compact notation for

vectorised matrices:
ÐÐÐ⇀
XY Z = (X ⊗ Z⊺)Ð⇀Y . If A and B

have size I ×J and K ×L, respectively, then A⊗B has

size IK × JL, and limγ_0(Y ⊗ γZ) = Ð⇀0 for any fixed,
finite Y and Z.

2. Quasi-Newton Methods as
approximate Bayesian Regressors

From a probabilistic perspective, Equation (1) is a like-
lihood for B. Using si = xi−xi−1, we can write it using
Dirac’s distribution

p(yi ∣B,si) = δ(yi −Bsi) = lim
β_0
N [yi;S⊺i Ð⇀B,Vi−1 ⊗ β]

(2)
with any arbitrary N ×N matrix Vi−1, a scalar β, and
the linear operator Si = (I ⊗ si). Of course, the N
real numbers in yi are not sufficient to identify the
N2 numbers in B. Classical derivations (Dennis &
Morée, 1977; Nocedal & Wright, 1999) thus introduce
a regularizer based on the weighted Frobenius norm
around the current best estimate Bi−1 from previous
iterations. The weight in the Frobenius norm is en-
coded using a positive definite matrix, which we will
suggestively call V −1

i−1 and, without loss of generality,
identify with the Vi−1 of Eq. (2)

∥B−Bi−1∥F,V −1i−1
≡ tr(V −1

i−1(B−Bi−1)⊺V −1
i−1(B−Bi−1))

= (Ð⇀B −Ð⇀B i−1)⊺(V −1
i−1 ⊗ V −1

i−1)(Ð⇀B −Ð⇀B i−1). (3)

The new estimate is the unique matrix Bi minimizing
the regularizer subject to Eq. (2). Inspecting Eq. (3)

we see that, up to isomorphisms, the Frobenius reg-
ularizer is the negative logarithm of a Gaussian prior

p(B) = N [Ð⇀B ;
Ð⇀
B i−1,Σi−1 ≡ (Vi−1 ⊗ Vi−1)] . (4)

Gaussian likelihoods are conjugate to Gaussian priors.
So the posterior is Gaussian, too, even for the limit
case of a Dirac likelihood. A few lines of algebra1

show that the posterior has mean and covariance

Bi = Bi−1 + (yi −Bi−1si)s⊺i Vi−1
s⊺i Vi−1si and (5)

Σi = Vi−1 ⊗ (Vi−1 − Vi−1sis⊺i Vi−1
s⊺i Vi−1si ) ≡ Vi−1 ⊗ Vi, (6)

respectively. The new mean is a rank-1 update of the
old mean, and the rank of the new covariance Σi is one
less than that of Σi−1. The posterior mean has maxi-
mum posterior probability (minimal regularized loss),
and is thus our new point estimate. Choosing a unit
variance prior Σi−1 = I ⊗ I recovers one of the oldest
quasi-Newton algorithms: Broyden’s method (1965):

Bi = Bi−1 + (yi −Bi−1si)s⊺i
s⊺i si (7)

Broyden’s method does not satisfy the third require-
ment of Section 1: the updated estimate is, in general,
not a symmetric matrix. A supposed remedy for this
problem, and in fact the only rank-1 update rule that
obeys Eq. (2) (Dennis & Morée, 1977) is the symmetric
rank 1 (SR1) method (Davidon, 1959; Broyden, 1967):

Bi = Bi−1 + (yi −Bi−1si)(yi −Bi−1si)⊺
s⊺i (yi −Bi−1si) . (8)

The SR1 update rule has acquired a controversial rep-
utation (e.g. Nocedal & Wright, 1999, §6.2): While
some authors report good successes with this method,
others note that it is unstable and overly limited. Our
Bayesian interpretation adds to the doubts about the
SR1 formula, since it identifies it as Gaussian regres-
sion with a prior variance involving Vi−1 with

Vi−1si = (yi −Bi−1si), (9)

a data-dependent prior covariance. Given the prior
(4), there is no rank 1 update rule that gives a sym-
metric posterior. This blemish of rank-1 updates is
also reflected in Eq. (6): Uncertainty drops only in
the “row”, or “primal” subspace of the belief (the right
hand side of the Kronecker product in the covariance).
While this still means uncertainty goes toward 0 over
time, it does so in an asymmetric way.

1Here and later, detailed derivations are left out due
to space constraints. They can be found in an upcoming
journal version of this paper, currently under review.
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2.1. Symmetric Estimates,
but no Symmetric Beliefs

The proper probabilistic way to encode Hessians’ sym-
metry is to include an additional likelihood term

δ(∆Ð⇀B −Ð⇀0 ) = lim
τ_0
N(Ð⇀0 ,∆Ð⇀B, τI) (10)

using ∆, the antisymmetry operator – the linear map
defined through

∆
Ð⇀
X = 1

2

ÐÐÐÐÐÐ⇀(X −X⊺). (11)

Since this is a linear map, the resulting posterior
is analytic, and Gaussian. But the rank of ∆ is
1/2 ⋅ N(N − 1) (e.g. Lütkepohl, 1996, §4.3.1, Eqs. 12
& 20), so the corresponding update rule does not
obey the first requirement of Section 1. However, the
structure of Eq. (6) hints at another idea, which in
fact turns out to give rise to the most popular quasi-
Newton methods. We introduce a second, dual ob-
servation (dual, as in “dual vector space”, not as in
“primal-dual optimization”).

p(y⊺i ∣B,s⊺i ) = δ(y⊺i − s⊺iB)
= lim
γ_0
N [y⊺i ;s⊺iÐ⇀B,γ ⊗ Vi] . (12)

The posterior after both primal and dual observation
is a Gaussian with mean and covariance

Bi = Bi−1 + (yi −Bi−1si)s⊺i V ⊺
i−1

s⊺i Vi−1si + Vi−1si(yi −Bi−1si)⊺
s⊺i Vi−1si

− Vi−1si(s⊺i (yi −Bi−1si))s⊺i Vi−1(s⊺i Vi−1si)2 (13)

Σi = (Vi−1 − Vi−1sis⊺i Vi−1
s⊺i Vi−1si ) ⊗ Vi = Vi ⊗ Vi. (14)

The posterior mean is clearly symmetric if Bi−1 is sym-
metric (as Vi−1 is symmetric by definition). Choosing
the unit prior Σi−1 = I ⊗ I once more, Eq. (13) gives
what is known as Powell’s (1970) symmetric Broyden
(PSB) update. Eq. (13) has previously been known to
be the most general form of a symmetric rank 2 up-
date obeying the quasi-Newton equation and minimiz-
ing a Frobenius regularizer (Dennis & Morée, 1977).
This old result is a corollary of our derivations. But
note that symmetry only extends to the mean, not
the entire belief: In contrast to the posterior gener-
ated by Eq. (10), samples from this posterior are, with
probability 1, not symmetric. Of course, they can be
projected into the space of symmetric matrices by ap-
plying the symmetrization operator Γ defined by

Γ
Ð⇀
X = 1

2

ÐÐÐÐÐÐ⇀(X +X⊺) (note that I = Γ +∆; Γ∆ = 0).
(15)

Since Γ is a symmetric linear operator, the projec-
tion of any Gaussian belief N(X;X0,Σ) onto the
space of symmetric matrices is itself a GaussianN(ΓX; ΓX0,ΓΣΓ). But symmetrized samples from
the posterior of Eqs. (13) & (14) do not necessarily
obey the quasi-Newton Equation (2). While Eq. (12)
does convey useful information, it is not equivalent to
encoding symmetry. It is cheaper, but also weaker,
than using the correct likelihood (10).

2.2. Positive Definiteness:
Meaning or Decoration?

Consider choosing Vi−1 = B. The prior is then

p(B) ∝ ∣B∣−N2/2
⋅exp [−1

2
(N − 2 tr(Bi−1B−1) + tr(Bi−1B−1Bi−1B−1))] .

(16)

This is an intriguing prior. Although there is some
semblance to the Wishart distribution, the second
term in the exponential means this prior is broader
than the Wishart. It is not well-defined for degenerate
matrices, and it is not clear whether it is proper. It is
thus surprising to discover that it engenders the two
most popular quasi-Newton methods: If we use the
quasi-Newton equation (2) a second time to replace
Vi−1s = y, Eq. (16) gives the DFP method (Davidon,
1959; Fletcher & Powell, 1963)

Bi = Bi−1 + (yi −Bi−1si)y⊺i
s⊺i yi + yi(yi −Bi−1si)⊺

y⊺i si
− yi(s⊺i (yi −Bi−1si))y⊺i(y⊺i si)2 . (17)

And, if we exchange in the entire preceding deriva-
tion s ] y, B ] B−1, Bi−1 ] B−1

i−1, then we arrive
at the BFGS method (Broyden, 1969; Fletcher, 1970;
Goldfarb, 1970; Shanno, 1970), which ranks among the
most widely used algorithms in machine learning over-
all. DFP and BFGS owe much of their popularity
to the fact that the updated Bi,DFP and B−1

i,BFGS are
guaranteed to be positive definite whenever Bi−1,DFP

and B−1
i−1,BFGS are positive definite, respectively, and

additionally y⊺i si > 0. How helpful is this property?
It is relatively straightforward to extend a theorem by
Dennis & Morée (1977) to find that, assuming Bi−1
is positive definite, the posterior mean of Eq. (13) is
positive definite if, and only if,

0 < (y⊺iB−1
i−1Vi−1si)2+ (yi −Bi−1si)⊺B−1

i−1yi ⋅ s⊺i Vi−1B−1
i−1Vi−1si= s⊺i Vi−1[B−1

i−1yiy⊺iB−1
i−1 − y⊺B−1

i−1yi + s⊺i yi]Vi−1si.
(18)
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If the prior covariance is not to depend on the data,
it is thus impossible to guarantee positive definiteness
in this framework – BFGS and DFP circumvent this
conceptual issue by choosing Vi−1 = B, then apply-
ing Eq. (2) a second time. But, even casting aside
such philosophical reservations, our analysis also casts
doubt upon the efficacy of the way in which DFP
and BFGS achieve positive definiteness: Eq. (16) does
not exclude indefinite matrices; in fact it assigns pos-
itive measure to every invertible matrix. For exam-
ple, under a mean Bi−1 = I, the indefinite matrix
B = diag(1,−1) is assigned p(B) ∝ exp(−2). DFP
and BFGS achieve positive definiteness, not by includ-
ing additional information, but by manipulating the
prior such that, as if by accident, the MAP estimator
(not the belief) happens to be positive definite. These
observations do not rule out any utility of guarantee-
ing positive definiteness in this way. But there is less
value in the positive definiteness guarantee of DFP and
BFGS than previously thought. The algorithm should
aim to find the “best” positive definite explanation for
the data, not “any” such explanation.

2.3. Rank M Updates

The classical quasi-Newton algorithms update the
mean of the belief at every step in a rank 2 operation,
then, implicitly, reset their uncertainty in the next
step, thereby discarding information acquired earlier.
Albeit inelegant from a Bayesian point of view, this
scheme is still a good idea given other aspects of the
framework: Since the quasi-Newton likelihood models
the objective function as a quadratic, model mismatch
would lead to strong overfitting under exact Bayesian
inference. But it is instructive to consider the effect of
encoding more than just the most recent observation.
It is straightforward to extend Eq. (2) to observations(Y,S) from several line searches:

Ynm = ∇nf(xim) − ∇nf(xim−1)
Snm = xim,n − xim−1,n (19)

Given a prior p(B) = N(B;B0, V0), the Gaussian pos-
terior then has mean and covariance

Bi = B0 + (Y −B0S)(S⊺V0S)−1S⊺V0 (20)

+ V0S(S⊺V0S)−1(Y −B0S)⊺− V S(S⊺V0S)−1(S⊺(Y −B0S))(S⊺V S)−1S⊺V0
Σi = (V0 − V0S(S⊺V0S)−1S⊺V0) (21)

⊗ (V0 − V0S(S⊺V0S)−1S⊺V0) .
Here, the absence of information about the symmetry
of the Hessian becomes even more obvious: No matter
the prior covariance V0, because of the term S⊺Y in

the third line of Eq. (20), the posterior mean is not in
general symmetric, unless Y = BS, (e.g. if the objec-
tive function is in fact a quadratic).

2.4. Summary

The preceding section showed that quasi-Newton al-
gorithms, including the state-of-the-art BFGS and
DFP algorithms, can be interpreted as approximate
Bayesian regression from the primal and dual likeli-
hood of Eqs. (2) and (12) under varying priors, in
the following sense: At each quasi-Newton step, fix a
Gaussian prior ad hoc, update the mean, then “forget”
the covariance update. Two particularly interesting
observations concern the way in which the desiderata
of symmetry and positive definiteness of the MAP es-
timator are achieved in these algorithms. Symmetry
is encoded via dual observations, which is a useful but
imperfect shortcut. Positive definiteness is achieved
not by encoding relevant information, but by shifting
the prior post hoc. It is thus doubtable whether the
proven good performance of BFGS and DFP is actu-
ally down to positive definiteness, instead of a simpler
effect of moving from the clearly pathological formu-
lation of Broyden’s method to dual observations and
a less restrictive (though nontrivial) prior.

3. A Nonparametric Bayesian
Quasi-Newton Method

Section 2 used the probabilistic perspective to gain
novel insight into classical methods. In this second
part of the paper we depart from the traditional frame-
work to construct a nonparametric, Bayesian quasi-
Newton method, de novo. To motivate this effort, no-
tice some further deficiencies of DFP/BFGS regarding
use of available information: Eq. (2) assumes that the
function is (locally) a quadratic. Old observations col-
lected “far” from the current location (in the sense
that a second order expansion is a poor approxima-
tion) may thus be useless or even harmful. The fact
that the function is not quadratic should be part of
the model. On an only slightly related point, indi-
vidual line searches typically involve several evalua-
tions of the objective function f and its gradient; but
the algorithms only make use of one of those (the
last one). This is clearly wasteful, but even the ex-
act Bayesian parametric algorithm of Section 2.3 has
this problem: Because a matrix S of several observa-
tions along one line search has rank 1, the inverse of
S⊺V0S is not defined. The following section will ad-
dress all these issues. Several aspects of the resulting
algorithm are involved. Derivations can be found in
the journal version. A matlab implementation can be



Quasi-Newton Methods: A New Direction

found at www.probabilistic-optimization.org.

3.1. A Nonparametric Prior

Defining a prior for the function B ∶ RN _ RN×N ,
we choose a set of N2 correlated Gaussian processes.
The mean function is assumed to be an arbitrary inte-
grable function B0(x) (in our implementation we use
a constant function, but the analytic derivations do
not need to be so restrictive). The core idea is to as-
sume that the covariance between the element Bij at
location x¾ and the entry Bk` at location x¼ is

cov (Bij(x¾),Bk`(x¼)) = kik(x⊺¾, x⊺¼)kj`(x¾, x¼)= (k ⊗ k)(ij)(k`)(x¾, x¼) (22)

with an N ×N matrix of kernels, k. To give a more
concrete intuition: In our implementation we use one
joint squared exponential kernel for all elements. I.e.

kij(x¾, x¼) = Vij exp(−1

2
(x¾ − x¼)⊺Λ−1(x¾, x¼))

(23)
with a positive definite matrix V and length scales Λ.
Other kernels can of course be chosen; but it will be-
come clear that an important practical requirement is
the ability to efficiently integrate the kernel. This is
feasible, though nontrivial, with the squared exponen-
tial kernel. Another option, not yet explored by us,
may be offered by spline kernels (Minka, 2000).

3.2. Line Integral Observations

For the Hessian B(x) of a general function f , the
quasi-Newton equation (2) is only a zeroth order ap-
proximation (a second-order approximation to f it-
self), assuming a constant Hessian everywhere. In our
treatment, we will replace it with the exact statement:
We observe the value of the line integral along the path
ri ∶ [0,1] _ RN , ri(t) = xi−1 + t(xi − xi−1).
Yni = ∑

m
∫
rim

Bnm(x) dxm = ∑
m

Smi ∫ 1

0
Bnm(ri(t)) dt.

(24)
This uses the classic result that line integrals over
scalar fields, such as B(x), are fully defined by the
path’s start and end point, irrespective of the path
itself. Hence, the nonparametric version of the quasi-
Newton equation is the likelihood

p(Y ∣B(x),S) = lim
β_0
N [Y ;S⊺Ð⇀B,k ⊗ βIM] (25)

with a linear operator (⊙ denotes the Hadamard, or
element-wise product (a⊙ b)k` = ak`bk`)

S = I ⊗ (∫ 1

0
dt⊙ S) . (26)

−4 −2 0 2 4
−4
−2
0

2

x

Figure 1. One-dimensional Gaussian process inference
from integral observations (squared exponential kernel).
Four observations, average values (integral value divided
by length of integration region) and integration regions de-
noted by black bars. Posterior mean in thick red, two stan-
dard deviations as shaded region, three samples as dashed
lines. The left-most integral is over a very small region, so
that it essentially reduces to the classical case of a local
observation. Corresponding integrals over the mean, and
each sample, are consistent with the integral observations.

3.3. Gaussian Process Inference from Integral
Observations

Because the Gaussian exponential family is closed un-
der linear transformations, Gaussian process inference
is analytic under any linear operator. Since integra-
tion is a linear operation, Gaussian process inference
is possible, in closed form, from integral observations.
Nevertheless, this idea has only rarely been used in the
literature (e.g. by Minka, 2000). Figure 1 gives a 1D
toy example for intuition.

The posterior distribution under our nonparametric
prior, the likelihood of Eq. (25) and its dual equiva-
lent is a Gaussian process with mean and covariance
functions

B◇(x¾) = B0(x¾) + (Y −B0)K−1k⊺(x¾)+ k(x¾)K−1(Y −B0)⊺ (27)

− k(x¾)K−1S⊺(Y −B0)K−1k⊺(x¾)
Σ◇(x¾, x¼) = [k(x⊺¾, x⊺¼) − k(x⊺¾)K−1k⊺(x¼)] (28)

⊗ [k(x¾, x¼) − k(x¾)K−1k⊺(x¼)] .

This uses B0 ∈ RN×M , the function k ∶ R _ RN×M and
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the Gram matrix K ∈ RM×M , defined by

B0,nm = ∑̀S`m ∫ 1

0
B0,n`(r`(t)) dt

knm(x¾) = ∑̀S`m ∫ 1

0
k(x¾, r`(t)) dt

Kpq = ∑̀
,j

S`pSjq∬ 1

0
k(r`(t), rj(t′)) dt dt′.

(29)

These objects are homologous to concepts in canonical
Gaussian process inference: B0,nm is the n-th mean
prediction along the m-th line integral observation.
knm(x¾) is the covariance between the n-th column of
the Hessian at location x¾ and the m-th line-integral
observation. Kpq is the covariance between the p-th
and q-th line integral observations. An important as-
pect is that, because k is a positive definite kernel, un-
less two observations are exactly identical, K has full
rank M (the number of function evaluations), even
if several observations take place within one shared 1-
dimensional subspace. So it is possible to make full use
of all function evaluations made during line searches,
not just the first and last one, as in the classical set-
ting. A downside is that evaluating the mean function
involves finding the inverse of K, at cost O(M3). Two
aspects of numerical optimization make this issue less
problematic than one might think. First, solving an
optimization problem takes finite time, often just a
few hundred evaluations; so the cubic cost in M is of-
ten manageable. Where it is not, note that, because
optimization proceeds along a trajectory through the
parameter space, old observations tend to have low co-
variance with the Hessian at the current location, and
thus a small effect on the local mean estimate (the ef-
fect of this influence is measured by kK−1). So they
can often simply be ignored.

3.4. Numerical Implementation

As mentioned above, for a concrete implementation,
we chose to use the squared exponential kernel (23),
and a constant mean function assigning B0(x¾) = I
everywhere. It is another advantage of the Bayesian
formulation that prior assumptions are easy to ana-
lyze and understand: The squared exponential prior
amounts to the assumption that the elements of the
Hessian vary independently over the parameter space,
on one unique set of length-scales Λ. Multiple length
scales could be modeled using sums of kernels, but our
implementation does not currently offer this option.

Changing the length scales Λ amounts to automatic
pre-conditioning, another benefit of a Bayesian for-
mulation that we cannot dwell on for space reasons.
Hyperparameters could be fitted by type-II maximum

0 20 40 60 80 100

10−7
10−5
10−3
10−1

# line searches

[f(x
)−f

(x∗ )
]/f(

x
0
) DFP

BFGS
nonp. Bayes

Figure 2. Minimizing the logarithm of a 200-dimensional
product of Gamma distributions. Averages over 20 sam-
pled problems; plotted is the relative distance from initial
function value (shared by all algorithms) to the minimum,
as a function of the number of line searches (all algorithms
use the same line search method).

likelihood, as in canonical Gaussian process regression.
Unfortunately, this is an optimization problem itself.
Another option is to instead fix the hyperparameters
ad hoc by tracking the signal variance to fix V in
Eq. (23) and the relative change along line searches
to fix Λ.

Implementing the integrals of Eq. (29) for the squared-
exponential kernel, particularly those in K, is nontriv-
ial, because definite integrals over Gaussians are not
analytic. k involves the error function, for which good
double-precision approximations are widely available.
The integrals in K are of two distinct types: The co-
variance between observations made as part of the
same line search involve 1D integrals of the error func-
tion, which can be analytically reduced to the error
and exponential functions2. The covariance between
observations made during different line searches are
bivariate Gaussian integrals. Fortunately, good, light-
weight numerical approximations are available for this
problem (Genz, 2004).

From Sec. 1, recall that updating the search direc-
tion requires the inverse of B. Explicit inversion costsO(N3), but the inverse can be constructed analyti-
cally, from the matrix inversion lemma, in O(N2 +
NM + M3). Using a diagonal prior mean B0 and
an argument largely analogous to the derivation of
the L-BFGS algorithm (Nocedal, 1980) lowers cost
to O(NM +M3), linear in N . The nonparametric
method is thus applicable to problems of even very
high dimensionality.

2Jaakko Peltonen, 2011, personal communication
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Figure 3. Minimizing Rosenbrock’s polynomial, a non-convex function which has its only minimum at (1,1). All algorithms
start from (-1,2.5). Top left: Function values, line search trajectory of the Bayesian algorithm in white. Top right:
function value as function of the number of line searches. The black cross marks the point where the Bayesian method
switches to a local parametric model for numerical stability. Bottom Left: True value of the (1,1) element of the Hessian
(other elements have less interesting structure). Bottom Right: Mean estimate of the Bayesian regressor, showing good
agreement in the regions visited by the algorithm (corresponding uncertainty measure not shown).

4. Experiments

Figure 2 shows averages of experiments on a 200-
dimensional domain. The objective functions were the
logarithms of products of Gamma distributions with
different parameters for each dimension (a simplified
version of hyperparameter learning for Gaussian pro-
cess regression). In this experiment, the nonparamet-
ric algorithm outperforms its predecessors strongly.
The performance advantage is not always so drastic
(the journal version contains additional empirical re-
sults, including less pronounced cases). Despite the
relatively precise numerical treatment of the integrals
involved, the nonparametric Bayesian quasi-Newton
algorithm poses more numerical challenges than its
predecessors. This issue becomes clear when mini-
mizing quadratic functions, whose constant Hessian
voids the modelling advantage of the nonparametric
method: The Bayesian algorithm behaves more regu-
larly initially, but towards the end of the optimization
process the numerical conditioning of the Bayesian al-
gorithms begins to play a role, offering an advantage
to the better conditioned older methods. At this small
scale, however, the Hessian is essentially constant, and

the function is well described by a local model. In our
practical implementation, we check for convergence,
then pass the learned inverse Hessian to the better
conditioned BFGS for the final few steps.

An additional benefit of the nonparametric formula-
tion is the availability of a global estimate of the Hes-
sian function. Figure 3 illustrates this point with re-
sults from a popular two-dimensional test problem –
Rosenbrock’s polynomial (details in caption). This
figure is mostly for intuition: Rosenbrock’s valley is
challenging even for the exact Newton method since it
breaks the line search paradigm, so the similarity be-
tween the methods on this problem is not particularly
indicative of general performance.

Cost As pointed out above, the computational com-
plexity of this algorithm, given a diagonal prior mean,
is O(NM +M3) per update of the search direction,
where M is the number of function evaluations used
to build the model (which can be controlled ad hoc
within the algorithm by excluding redundant or irrel-
evant evaluations). This compares to O(NM) for the
corresponding cases of DFP and BFGS. Although the
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overhead created by the squared-exponential integrals
is nontrivial, we found the computational demands of
our implementation manageable: In our experiments,
the cost of constructing and inverting the matrix K was
negligible, and could, in very time-sensitive settings,
be further reduced by a more efficient implementation.

5. Outlook

Owing to the limitations of a conference publication,
we have only outlined many of our core results. To give
an intuition for the potential of probabilistic formula-
tions of numerical optimization, consider some of the
most immediate future work: Perhaps the most obvi-
ous insight is that Gaussian process integration is triv-
ial to extend to noisy evaluations. In combination with
a robust replacement for the traditional line searches,
our work may thus lead to robust numerical optimiz-
ers. Repeated integration, and non-Gaussian likeli-
hoods in combination with approximate inference, may
allow optimization without gradients, and from only
gradient sign observations, respectively. Structured
and hierarchical priors are a third direction, offering
new avenues for optimization of very high-dimensional
functions.

6. Conclusion

We have shown that the most popular quasi-Newton
algorithms can be interpreted as approximations to
Bayesian regression under Gaussian and other priors.
This deepens our understanding of these algorithms.
In particular, it emerged that symmetry in the esti-
mators of SR1, PSB, DFP and BFGS, and positive
definiteness in those of DFP and BFGS, are encoded
in only approximate, incomplete ways.

As a parallel result, our analysis also gives rise to a
new class of Bayesian nonparametric quasi-Newton al-
gorithms. These use a kernel model to utilize all ob-
servations in each line-search, explicitly track uncer-
tainty, and thus achieve faster convergence towards
the true Hessian. While the new methods are not triv-
ial to understand and implement, their computational
cost lies within a constant of that of their predeces-
sors. A demonstrative implementation can be found
at www.probabilistic-optimization.org.
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