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Abstract

Convex regression is a promising area for
bridging statistical estimation and determin-
istic convex optimization. New piecewise lin-
ear convex regression methods (Hannah and
Dunson, 2011; Magnani and Boyd, 2009) are
fast and scalable, but can have instability
when used to approximate constraints or ob-
jective functions for optimization. Ensem-
ble methods, like bagging, smearing and ran-
dom partitioning, can alleviate this problem
and maintain the theoretical properties of the
underlying estimator. We empirically exam-
ine the performance of ensemble methods for
prediction and optimization, and then ap-
ply them to device modeling and constraint
approximation for geometric programming
based circuit design.

1. Introduction

Convex regression, which is regression subject to a con-
vexity or concavity constraint on the mean function,
has received renewed attention. The regression prob-
lem is x ∈ X ⊂ Rp and y ∈ R,

y = f0(x) + ε,

where ε is a mean 0 random variable and f0 is convex,

λf0(x1) + (1− λ)f0(x2) ≥ f0(λx1 + (1− λ)x2),

for every x1,x2 ∈ X and λ ∈ (0, 1). Regression prob-
lems with known convexity or concavity constraints
occur in many areas, including economic production,
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consumption and preference functions (Allon et al.,
2007), options pricing (Aı̄t-Sahalia and Duarte, 2003;
Hannah and Dunson, 2011), value function approxi-
mation in operations research and reinforcement learn-
ing (Powell, 2007; Lim, 2010) and device modeling for
geometric programming based circuit design in electri-
cal engineering (Kim et al., 2004; Roy et al., 2007).

Convex regression is particularly promising for the ma-
chine learning community as a way to bridge statis-
tical estimation and deterministic convex optimiza-
tion. In particular, data can be used to estimate con-
straints or objective functions for convex optimization
problems. For instance, many reinforcement learn-
ing problems that involve resource allocation or stor-
age have concave value functions. If value function
estimates are concave, vector-valued continuous ac-
tion spaces can easily be searched. Similarly, geo-
metric programming and other deterministic convex
optimization problems require known constraint and
objective functions. However, in many situations only
noisy samples are available; convex regression can be
used to generate those functions from samples.

Although convex regression has been studied since
the 1950’s (Hildreth, 1954), computationally feasible
methods for the multivariate setting have only recently
been proposed by Magnani and Boyd (2009) and Han-
nah and Dunson (2011). Both methods fit a piecewise
linear model to the data, (x1, y1), . . . , (xn, yn), under
a least squares objective function by adaptively par-
titioning the dataset. While efficient, the method of
Magnani and Boyd (2009) does not always converge;
the Convex Adaptive Partitioning (CAP) method of
Hannah and Dunson (2011), however, converges, is
consistent and has a worst case computational com-
plexity of O(n log(n)2).

While piecewise linear methods are computationally
efficient, the number of components and hyperplane
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parameters can be sensitive to training data. More-
over, the resulting piecewise linear models may not
be appropriate for approximating functions for convex
optimization. When a piecewise linear function is used
in an optimization setting, it defines a polyhedral con-
straint region. When the objective function is linear,
a solution lies on a vertex of the polyhedral constraint
region. A vertex is created by the intersection of p+ 1
hyperplanes. Because all of the parameters have esti-
mation error, the location of the vertex can be highly
sensitive to training data.

These problems can be addressed by using ensem-
ble methods based on the CAP estimator. Ensem-
ble methods combine multiple models to produce a
new predictive model. We average over multiple
piecewise linear estimators to create a new estima-
tor that is less sensitive to individual hyperplane
parameters. Efficient estimators can be created by
using many traditional ensemble methods, like bag-
ging (Breiman, 1996), smearing (Breiman, 2000) and
random forests (Breiman, 2001), that maintain the
properties of the underlying estimator, like consistency
and computational complexity. We compare these
methods with CAP and the piecewise linear model of
Magnani and Boyd (2009); the ensemble methods have
better predictive error and produce functions that are
much more stable in an optimization setting.

We apply ensemble methods to device and constraint
modeling for circuit optimization via geometric pro-
gramming. Circuits are an interconnection of electrical
devices, including capacitors, resistors, inductors and
logic gates. Circuit optimization selects appropriate
sizes for devices, gates, wires and other design vari-
ables, such as threshold and power supply voltage to
minimize a given objective like circuit delay or physical
area, subject to a set of constraints, usually on area,
power, noise or delay. Many circuit design problems
can be well modeled by a geometric program (GP),
which minimizes a posynomial objective function sub-
ject to posynomial inequality and monomial equality
constraints. Geometric programming allows the ef-
ficient computation of optimal global solutions, even
for large problems; see Boyd, Kim, Patil and Horowitz
(2005) for a tutorial. However, constraint functions
are often not available in a posynomial form and must
be approximated from observational data or a known
but non-posynomial function for each device. We use
ensemble methods to compute device models that are
more accurate and more stable than other convex re-
gression methods in this setting.

The contributions of this paper are 1) new ensem-
ble methods for convex regression that are resistant

to overfitting and produce a better estimator for op-
timization than non-ensemble methods, 2) conditions
for consistency when CAP is the underlying estima-
tor, 3) strong empirical results, and 4) an application
to device and constraint modeling for geometric pro-
gramming based circuit optimization.

2. Ensemble convex regression

2.1. Convex regression

Regression subject to a convexity constraint has been
the subject of renewed interest in the past few years.
One approach has been approximation by a function
with a positive definite Hessian (Roy et al., 2007;
Aguilera and Morin, 2009; Yongqiao and He, 2012).
These methods generally result in a problem that is
solved by a semidefinite program with n semidefinite
constraints; solution methods are prohibitively slow
for more than 1 or 2 thousand observations. Another
approach relies on an alternate definition of convexity:

f0(x1) ≥ f0(x2) + g0(x1)T (x1 − x2), (1)

for every x1,x2 ∈ X , where g0(x) ∈ ∂f0(x) is a sub-
gradient of f0 at x. Equation (1) means that a convex
function lies above all of its supporting hyperplanes;
with enough supporting hyperplanes, f0 can be ap-
proximately reconstructed arbitrarily well by taking
the maximum over those hyperplanes.

The least squares estimator (LSE) directly projects a
least squares objective function onto the cone of con-
vex functions (Hildreth, 1954),

min

n∑
i=1

(yi − ŷi)2 s.t. : ŷj ≥ ŷi + gTi (xj − xi), (2)

for i, j = 1, . . . , n. Here, ŷi and gi are the estimated
values of f0(xi) and the subgradient of f0 at xi, re-
spectively. Equation (2) is a quadratic program with
O(n2) constraints and cannot be solved efficiently for
more than 1 or 2 thousand observations.

To combat these computational difficulties, some re-
cent methods (Magnani and Boyd, 2009; Aguilera
et al., 2011; Hannah and Dunson, 2011) estimate a
small set of hyperplanes by approximately solving

(α∗, β∗,K∗) = arg min
α,β,K

n∑
i=1

[
yi − max

k=1,...,K
αk + βTk xi

]2
where (α, β) ∈ R × Rp defines a hyperplane. The re-

gression function f̂ is defined as the maximum over
the set of hyperplanes for a convex function,

f̂(x) = max
k=1,...,K∗

α∗k + β∗k
Tx.
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The most computationally efficient methods are given
by Magnani and Boyd (2009) and Hannah and Dunson
(2011).

2.2. Combining ensemble methods with
convex regression

Ensemble methods reduce overfitting by averaging
over a collection of estimates. Here we overview tradi-
tional ensemble methods and discuss how they can be
combined with convex regression.

Bagging. Bagging methods (Breiman, 1996) sub-
sample the training data with replacement, which acts
as a random re-weighting of the training set. We
study the situation where M new training sets are
created by subsampling n observations, denoted by
(x(m),y(m))Mm=1. An estimator is created by averaging
the function estimates for each subsample,

f̂avg(x) =
1

M

M∑
m=1

f̂
(
x |x(m),y(m)

)
, (3)

where f̂
(
x |x(m),y(m)

)
is a convex regression estima-

tor trained on (x(m),y(m)). Bagging can be used with
both CAP and the method proposed in Magnani and
Boyd (2009).

Smearing. Smearing (Breiman, 2000) works by
adding mean zero, i.i.d. noise to the training data
responses. These “smeared” datasets are then fit with
a regression method and the results are averaged to
produce an estimator. M new training response sets,

(y
(m)
1:n )Mm=1, are created by adding i.i.d. Gaussian noise,

ξ(m) ∼ Nn(0, σ2I), y
(m)
i = yi + ξ

(m)
i .

The ensemble estimator is then created by averaging
convex estimators for each of the M random training
sets as in Equation (3). In Breiman (2000), the noise
level was chosen to be 2.5 times the standard devia-
tion of the estimator residuals, y− f̂(x). However, we
also consider the situation where it is chosen by cross-
validation. Both CAP and the method of Magnani
and Boyd (2009) can be used with smearing.

Random Search Directions. Random
forests (Breiman, 2001) are used in tree regres-
sion settings; instead of fully exploring each of the
subset split directions, a split is generated in a
random direction. Since the subsets in both CAP
and Magnani and Boyd (2009) are defined by the
hyperplane parameters, there is no direct analogy
between random forests and these methods. However,
we propose a method in the same spirit.

The partitions of the CAP estimator are created in a
two step process. In the first step, subsets are split
along cardinal (CAP) or random directions. In the
second step, the subsets are redefined by the maximal
hyperplanes. Searching over a set of random directions
in the first step produces a random estimator. This is
done M times and an ensemble estimator is produced
by averaging the estimators.

Boosting. Boosting (Freund and Schapire, 1997;
Friedman, 2002) is a popular ensemble method that
constructs additive models in a greedy, forward step-
wise manner. This exact method is not appropriate for
convex regression since the residuals left after fitting a
convex function may not maintain convexity. However,
methods that iteratively weight a set of basis functions
may prove useful for convex regression.

3. Theoretical results

Bagging, smearing and random search directions main-
tain consistency if CAP is used as the convex esti-
mator and a few mild conditions are imposed. Each
CAP covariate subset Ak has diameter dnk, where
dnk = supx1,x2∈Ak

||x1 − x2||2. Define the empirical

mean for index subset Ck as x̄k = 1
|Ck|

∑
i∈Ck

xi. For

xi ∈ Ak, define

Γ
(m)
i =

[
[1, . . . , 1]

dnk
−1 (xi − x̄k)

]
, Gk =

∑
i∈Ck

ΓiΓi
T .

Let x1, . . . ,xn be i.i.d. random variables and let a
superscript of (m) denote that a quantity is asso-
ciated with random estimator m = 1, . . . ,M . Let
f̂(x |Z(m), Dn) be a random estimator based on data
Dn and random variable Z(m). We make the following
assumptions, which are the original CAP conditions
for consistency applied to each random dataset:

A1. X is compact and f0 is Lipschitz continuous and
continuously differentiable on X with Lipschitz
parameter ζ.

A2. There is an a > 0 such that E
[
ea|Y−f0(x)| |X = x

]
is bounded on X .

A3. For m = 1, . . . ,M , the diameter of the partition

maxk d
(m)
nk

−1
→ 0 in probability as n→∞.

A4. Let λ
(m)
k be the smallest eigenvalue of

|C(m)
k |−1G(m)

k and λ
(m)
n = mink λ

(m)
k . Then

for m = 1, . . . ,M , λ
(m)
n remains bounded away

from 0 in probability as n→∞.
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A5. For m = 1, . . . ,M , the number of
observations in each subset satisfies

min
k=1,...,K

(m)
n

d
(m)
nk

2
|C(m)
k |/ log(n) → 0 in

probability as n→∞.

Proposition 3.1. Suppose that

f̂avg(x |Dn) =
1

M

M∑
m=1

f̂(x |Z(m), Dn)

and supx∈X

∣∣∣f̂(x |Z(m), Dn)− f0(x)
∣∣∣ → 0

in probability. Then for every fixed M ,

supx∈X

∣∣∣f̂avg(x |Dn)− f0(x)
∣∣∣→ 0 in probability.

Proof. By the triangle inequality,

∣∣∣f̂avg(x |Dn)− f0(x)
∣∣∣ ≤ 1

M

M∑
m=1

∣∣∣f̂(x |Z(m), Dn)− f0(x)
∣∣∣ ,

The result follows from the assumption for each m.

Theorem 3.2. If f̂(x) is generated by the CAP es-
timator, (x(m),y(m))Mm=1 are generated by bagging,
E[Y 2 |X = x] < ∞ a.s. for all x ∈ X , and A1.
to A5. hold, then for every fixed M ,

sup
x∈X

∣∣∣∣∣ 1

M

M∑
m=1

f̂(x |x(m)
1:n ,y

(m)
1:n )− f0(x)

∣∣∣∣∣→ 0

in probability as n→∞.

Proof. Because of the bounded second moment and
A1., the plugin estimate f̂(x |x(m),y(m)) is consistent
and the result follows from Prop. 3.1.

Theorem 3.3. If f̂(x) is generated by the CAP es-

timator, Y
(m)
i = Yi + ξ

(m)
i with ξ

(m)
i ∼ N(0, B) iid

for some B < ∞, and assumptions A1. through A5.
hold, then for every fixed M ,

sup
x∈X

∣∣∣∣∣ 1

M

M∑
m=1

f̂(x |x1:n,y
(m)
1:n )− f0(x)

∣∣∣∣∣→ 0

in probability as n→∞.

Proof. Fix m and consider the estimator

f̂(x |x1:n,y
(m)
1:n ). Note that Y (m) = Y + ξ(m),

so

E
[
ea|Y

(m)−f0(x)| |x
]
≤ E

[
ea(|Y−f0(x)|+|ξ

(m)|) |x
]

≤ 2e
1
2a

2B2

E
[
ea|Y−f0(x)| |x

]
<∞.

Since A1. through A5. hold for that estimator, it is
consistent and the result follows from Prop. 3.1.

Theorem 3.4. If f̂(x) is generated by the CAP esti-
mator with random search directions Z(m) and A1. to
A5. hold, then for every fixed M ,

sup
x∈X

∣∣∣∣∣ 1

M

M∑
m=1

f̂(x |x1:n,y1:n, Z
(m))− f0(x)

∣∣∣∣∣→ 0

in probability as n→∞.

Proof. Each estimator is consistent and the result fol-
lows from Prop. 3.1.

4. Experiments on synthetic data

4.1. Prediction

Here x ∈ R5 with X ∼ N5(0, I). Set

y = (x1 + .5x2 + x3)
2 − x4 + .25x25 + ε, ε ∼ N(0, 1).

We compared CAP, linear fitting (Magnani and Boyd,
2009) (MB), cross-validated smearing (Sm CAP, Sm
MB), smearing with 2.5 times residual noise (Sm 2.5
CAP, Sm 2.5 MB), bagging (Bag CAP, Bag MB) and
random search directions (RD). All ensemble methods
except RD were implemented with CAP and MB.
10 training sets and one testing set were generated;
the number of training samples was varied between
100 and 5,000. For Sm CAP and Sm MB, the noise
level was chosen by 5-fold cross validation from σ =
{0, 10−2s, 10−1s, 5−1s, 2.5−1s, s, 2.5s, 5s, 10s, 102s},
where s is the standard deviation of the residuals; each
level was approximated with M = 25. Appropriate
noise levels were then probabilistically chosen for each
m for M = 200. The number of hyperplanes in linear
fitting was chosen through 5-fold cross validation.
Results are given in Table 2.

Ensemble methods substantially reduced CAP predic-
tion error for all sample sizes except for n = 5, 000.
Smearing with cross-validated noise, random search di-
rections and bagging produced similar results. Ensem-
ble methods produced smaller reduction in prediction
error for linear fitting, with bagging producing the best
results. Smearing with 2.5x standard deviation noise
produced worse results than the other ensemble meth-
ods, likely because the noise levels for cross-validated
smearing were lower.

4.2. Optimization

Approximating objective functions or constraints for
use in convex optimization is one of the most promis-
ing applications for convex regression. In this sub-
section, we use convex regression for response surface
methods in stochastic optimization; see Lim (2010) for
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Method n RMSE Solution Val

CAP 100 0.205± 0.043 0.089± 0.012
MB 100 0.649± 0.518 0.207± 0.034
LSE 100 11.333± 9.504 0.077± 0.010

Sm CAP 100 0.196± 0.039 0.075± 0.009
Sm MB 100 0.213± 0.118 0.094± 0.021

Sm 2.5 CAP 100 0.168± 0.034 0.022± 0.003
Sm 2.5 MB 100 0.178± 0.039 0.028± 0.004
Bag CAP 100 0.159± 0.033 0.035± 0.004
Bag MB 100 0.131± 0.027 0.041± 0.004

RD 100 0.175± 0.034 0.052± 0.006

CAP 500 0.106± 0.014 0.057± 0.007
MB 500 0.235± 0.174 0.086± 0.015
LSE 500 1.656± 1.213 0.037± 0.005

Sm CAP 500 0.100± 0.014 0.046± 0.006
Sm MB 500 0.106± 0.048 0.044± 0.005

Sm 2.5 CAP 500 0.071± 0.013 0.007± 0.001
Sm 2.5 MB 500 0.135± 0.071 0.009± 0.002
Bag CAP 500 0.076± 0.013 0.019± 0.003
Bag MB 500 0.079± 0.017 0.020± 0.003

RD 500 0.087± 0.013 0.034± 0.004

Table 1. Root mean squared error (RMSE) and values of
approximated solutions plus/minus one standard error for
Equation (4).

an overview. We would like to minimize an unknown
function f(x) with respect to x given n noisy observa-
tions, (xi, yi)

n
i=1, where yi = f(xi, εi),

min
x∈X

E {f(x, ε) | (xi, yi)ni=1} . (4)

We tested the regression methods with

Yi = xiQxTi +εi, Q =

[
1 0.2

0.2 1

]
, εi ∼ N(0, 0.1).

The constraint set is −1 ≤ xj ≤ 1 for j = 1, 2, and
xi ∼ Unif [−1, 1]2. We used the above methods as well
as the Least Squares Estimator (LSE). We generated
50 training sets, solved Equation (4) using each re-
gression method, and then calculated the root mean
squared error (RMSE) for the functional estimators;
the number of training data was set at 100 and 500.
Solutions to Equation (4) were evaluated with respect
to the true function; RMSE was calculated over a grid
on the constraint space. Results are given in Table 1.
The ensemble methods produced significantly better
quality results both in terms of solution selection and
RMSE than the competing methods. The extra noise
of 2.5x smearing acted as a smoother and produced a
more accurate and stable minimum.

5. Circuit design

5.1. Geometric programming and circuit
design

Geometric programming is a mathematical optimiza-
tion problem where the objective function and con-

straints are defined in terms of monomials, posyno-
mials and generalized posynomials. A monomial g(x)
and posynomial f(x) have the forms

g(x) = cxa11 x
a2
2 . . . xapp , f(x) =

K∑
k=1

ckx
ak1
1 . . . x

akp
p ,

for x > 0. A generalized posynomial is created through
positive powers, addition, multiplication or the maxi-
mum of posynomials. A GP minimizes a generalized
posynomial subject to a set of generalized posynomial
inequality and monomial equality constraints,

min f0(x), subject to fi(x) ≤ 1, gj(x) = 1, x > 0,

where fi are generalized posynomials for i = 0, . . . ,m
and gj are monomials for j = 1, . . . , k. GPs can be
reformulated as convex optimization problems through
a change of variables, zi = log(xi),

f(x) =

K∑
k=1

ckx
ak1
1 . . . x

akp
p , f(z) =

K∑
k=1

ea
T
k z+bk .

If we take the log of the transformed function, f(z),
we get a function that is convex in z.

Many circuit design problems, both analog and digital,
can be modeled as GPs (Kim et al., 2004; Boyd, Kim,
Patil and Horowitz, 2005; Roy et al., 2007). Geometric
programming offers a fast, global solution method for
design problems that scales well even to large prob-
lems. To use geometric programming, however, de-
vices and constraints need to be modeled by general-
ized posynomials. Sometimes device models are not
known and need to be inferred from data in standard
cell libraries; other times, constraints or device models
are given, but not in a form that can be expressed as a
generalized posynomial. In each of these cases, piece-
wise linear convex regression can be used to produce
generalized posynomial representations of these mod-
els and constraints. Ensemble methods can produce
models that have lower error and are more stable in
an optimization setting than existing methods.

5.2. Device and constraint modeling with
convex regression

Functions without explicit generalized posynomial rep-
resentation occur in two settings. In the device mod-
eling setting, device parameters such as the inverse of
transconductance, gate-source voltage, the inverse of
output resistance and the intrinsic gate capacitance
need to be modeled as generalized posynomial func-
tions of input parameters such as device width, length,
terminal voltages and drain current. These relation-
ships need to be inferred from data generated by cir-
cuit simulation or contained in standard cell libraries.
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Method Prob n = 200 n = 500 n = 1, 000 n = 2, 000 n = 5, 000

CAP Syn 1.027± 0.218 0.703± 0.121 0.408± 0.050 0.332± 0.054 0.195± 0.026
MB Syn 0.699± 0.123 0.444± 0.071 0.360± 0.062 0.269± 0.047 0.178± 0.029

Sm CAP Syn 0.800± 0.106 0.421± 0.067 0.328± 0.039 0.269± 0.035 0.210± 0.022
Sm MB Syn 0.622± 0.110 0.391± 0.063 0.312± 0.048 0.234± 0.045 0.154± 0.023

Sm 2.5 CAP Syn 0.897± 0.109 0.517± 0.087 0.352± 0.041 0.292± 0.029 0.236± 0.021
Sm 2.5 MB Syn 0.807± 0.124 0.456± 0.071 0.333± 0.047 0.264± 0.041 0.184± 0.036
Bag CAP Syn 0.809± 0.113 0.432± 0.072 0.334± 0.038 0.279± 0.032 0.212± 0.023
Bag MB Syn 0.603± 0.091 0.369± 0.058 0.282± 0.036 0.216± 0.035 0.142± 0.016

RD Syn 0.807± 0.107 0.421± 0.064 0.325± 0.039 0.269± 0.035 0.211± 0.021

CAP Pow 0.144± 0.031 0.125± 0.012 0.056± 0.010 0.049± 0.010 0.024± 0.003
MB Pow 0.040± 0.014 0.019± 0.005 0.014± 0.003 0.010± 0.002 0.009± 0.002

Sm CAP Pow 0.131± 0.025 0.090± 0.013 0.052± 0.008 0.030± 0.004 0.019± 0.003
Sm MB Pow 0.038± 0.01 0.015± 0.003 0.012± 0.002 0.009± 0.001 0.007± 0.001

Sm 2.5 CAP Pow 0.135± 0.025 0.091± 0.014 0.051± 0.008 0.030± 0.004 0.019± 0.002
Sm 2.5 MB Pow 0.061± 0.019 0.049± 0.022 0.026± 0.010 0.022± 0.009 0.029± 0.015
Bag CAP Pow 0.134± 0.025 0.093± 0.013 0.053± 0.008 0.030± 0.004 0.020± 0.002
Bag MB Pow 0.042± 0.015 0.017± 0.003 0.014± 0.003 0.010± 0.002 0.007± 0.001

RD Pow 0.131± 0.025 0.092± 0.014 0.051± 0.027 0.030± 0.012 0.020± 0.007

Table 2. Root mean squared error (RMSE) plus/minus one standard error for the synthetic prediction problem in Section
4.1 (Syn) and power modeling in Section 5.3 (Pow) by approximation method and training sample size.

Log convexity of such data is not guaranteed and the
goal is to find a low error generalized posynomial ap-
proximation. In the constraint modeling setting, some
constraints, such as the power supply voltage for dif-
ferent gates, are known but do not have a generalized
posynomial form. In this case, the goal is to create a
low error generalized posynomial approximation based
on samples from the true function. While posynomials
can be directly fit through Gauss-Newton type meth-
ods, these methods only reach local optima and are
sensitive to algorithm initialization. Piecewise linear
convex regression offers a more appealing alternative.

Monomials, posynomials and generalized posynomials
are closely related to affine (linear) and convex func-
tions. Using the transformation, z = log(x), if a func-
tion f is a monomial, then log(f(ez)) is affine. If a
function f is a generalized posynomial, then log(f(ez))
is convex. Conversely, if log(f(ez)) is convex, then f
can be approximated arbitrarily well by a posynomial,
generalized posynomial or the maximum of a set of
monomials. We use this fact and piecewise linear con-
vex regression to approximate what should be posyno-
mial functions by the maximum of a set of monomials.

Let (xi, yi)
n
i=1 be a set of observations of f(x) and

let (zi, ŷi)
n
i=1 be the set of transformed observations,

zi = log(xi) and ŷi = log(yi). If a piecewise linear
convex model is fit to the transformed data,

f̂n(z) = max
k=1,...,K

αk + βTk z,

then a generalized posynomial can be constructed for
the original function,

f̃n(x) = max
k=1,...,K

eαkxβk1

1 . . . x
βkp
p .

In an ensemble setting, the coefficients can either be
constructed directly or with dummy variables.

5.3. Power modeling

Here we fit a generalized posynomial to a known, but
non-posynomial, function, the power dissipated as a
function of gate supply and threshold voltages, Vdd
and Vth; this example is studied in Boyd, Kim, Patil
and Horowitz (2005). The total power dissipated for
a gate is the sum of the average static power and the
dynamic power dissipated. The dynamic power is a
function of the gate supply voltage, Vdd,

Pdyn = f
(
Cint + CL

)
V 2
dd,

where f is the frequency, Cint is the intrinsic capaci-
tance and CL is the load capacitance. The static leak-
age is a function of the supply voltage and the average
current leakage, Ī leak, Pstat = Ī leakVdd. The average
current leakage is a function of both the supply and
threshold voltages; a standard model is

Ī leak ∝ e−(Vth−γDVdd)/V0 ,

where γD and V0 are constants, typically around 0.06
and 0.04, respectively. To get the total power dis-
sipates, we set P = Pstat + Pdyn. Note that while
Pdyn is a posynomial, Pstat is not; moreover, it is
not even convex under the log transformation. Previ-
ous methods have modeled power dissipated through
hand-tuned monomial and generalized posynomial ap-
proximations. As a numerical example, we would like
to model

P = V 2
dd + 30Vdde

−(Vth−0.06Vdd)/0.039 (5)



Ensemble Methods for Convex Regression

for 1.0 ≤ Vdd ≤ 2.0 and 0.2 ≤ Vth ≤ 0.4 with a gen-
eralized posynomial. The goal is to produce a model
that has low overall error.

We produce a generalized posynomial model using
n covariate samples that are drawn uniformly from
x1 ∈ [log(1.0), log(2.0)] and x2 ∈ [log(0.2), log(0.4)];
responses are generated by evaluating those values in
Equation (5). The number of observations was varied
between 200 and 5,000, with 10 i.i.d. training sets.
Methods were the same as in Section 4.1. All were
tested by calculating RMSE from Equation (5) on a
10,000 sample testing set. For the ensemble methods,
M = 200. Results are given in Table 2. The gains
using ensemble methods were smaller for power mod-
eling than for the synthetic problem, likely because the
power modeling problem is noiseless.

5.4. LC oscillator design

Here we compare convex regression methods for device
modeling in geometric programming based LC oscilla-
tor design. Oscillators generate an oscillating output
at a constant frequency. An LC oscillator (L and C
represent inductor and capacitor, respectively) sends
electrons from one plate of a capacitor through a coil,
or loop inductor, to reach the other plate. However,
when the electrons travel around a coil, a magnetic
field is created that generates a voltage across the coil
in the opposite direction of the electron flow. Once the
capacitor is fully discharged, the magnetic field around
the coil collapses and the voltage recharges the capac-
itor in the opposite direction. Additional voltage is
applied to compensate for that lost to resistance.

We implement the LC oscillator design problem given
in Boyd, Kim and Mohan (2005). The goal is to mini-
mize power consumption subject to upper bound con-
straints on the phase noise, area of the loop inductor
and lower bounds on the loop gain and the self res-
onance frequency, and some other loop inductor and
transistor-specific constraints. The variables to be op-
timized are the width and diameter of the loop induc-
tor, the self resonance frequency, the length and width
and maximum current of the CMOS transistor, the
differential voltage amplitude, the total capacitance
of the oscillator, the maximum switching capacitance,
the minimum variable capacitance, the bias current
and the capacitor max frequency.

We used the methods in Section 4.1 to approximate the
resistance of the loop inductor. EM-based posynomial
fitting gave

R = 0.1DW−1 + 3 · 10−6DW−0.84f0.5 (6)

+ 5 · 10−9DW−0.76f0.75 + 0.02DWf,

where f , D, W are the loop inductor frequency, di-
ameter and width. We used this model as truth to
compare the suboptimality of the regression meth-
ods in a non-trivial optimization setting. To gener-
ate approximations, we sampled uniformly across log-
transformed covariates, where −10 ≤ log(D) ≤ −5,
−13 ≤ log(W ) ≤ −10 and 22 ≤ log(f) ≤ 23 for
n = 500 and n = 5, 000, although f is fixed for op-
timization. 50 different training sets were generated
and the optimization problem was solved using the
approximated functions in ggplab (Mutapcic et al.,
2006). For all ensemble methods, M = 50 to limit the
number of non-sparse GP constraints. We compared
optimal power consumption for each model as a func-
tion of phase noise (dBc/Hz), which was varied from
−122 to −110. Due to differences in function scale,
percentage error from optimal values and percentage
deviations from the true resistance values are used in-
stead of RMSE. Results are given in Table 3.

For both methods, cross-validated smearing provided
lower error estimators and produced solutions with
comparable mean deviation and lower maximum de-
viation. Random search directions produced similar
results with CAP. The different measurement metric
highlights the differences between ensemble methods.
The Magnani and Boyd (2009) estimator became more
unstable with 2.5x standard deviation smearing. CAP
became more unstable when used with bagging. Both
of these methods likely do poorly because they add
significant noise into a noiseless situation.

6. Conclusions

In this paper, we combine convex regression (CAP
and Magnani and Boyd (2009)) and ensemble methods
to produce a piecewise linear approximation method.
CAP is a consistent, stable estimator that uses a
tree-like search to produce a piecewise linear model.
Ensemble methods like bagging, smearing and ran-
dom search directions add uncertainty in the partition
boundaries. When averaged, these uncertain estimates
produce a better fit. The Magnani and Boyd (2009)
method is an unstable estimator that can produce a
very good fit by aligning a piecewise linear model with
the data used to produce it. Smearing and bagging
average over a large number of models and reduce the
likelihood that the estimator will be determined by a
few poorly fitting models. Although device modeling
is a natural setting for ensemble convex regression, the
low computational complexity, theoretical guarantees
and strong empirical performance in optimization set-
tings, make ensemble convex regression a promising
tool for combining estimation and optimization.
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Method Mean Dev Max Dev Mean Sol Max Sol Mean Dev Max Dev Mean Sol Max Sol

n = 500 n = 5, 000

CAP 2.39± 0.01 13.29± 0.21 5.93± 0.15 7.86± 0.21 0.44± 0.02 3.68± 0.22 0.90± 0.07 2.95± 0.19
MB 6.66± 0.95 35.53± 2.74 0.60± 0.04 1.83± 0.10 2.32± 0.32 21.67± 2.36 0.70± 0.03 1.49± 0.05

Sm CAP 1.41± 0.02 12.13± 0.22 1.12± 0.07 6.50± 0.18 0.23± 0.00 3.68± 0.07 0.97± 0.02 1.39± 0.04
Sm MB 0.18± 0.02 3.61± 0.90 0.73± 0.04 1.66± 0.07 0.07± 0.00 1.26± 0.05 0.86± 0.02 1.38± 0.03

Sm 2.5 CAP 1.51± 0.02 12.57± 0.23 1.23± 0.08 7.07± 0.20 0.24± 0.00 3.82± 0.06 0.96± 0.02 1.48± 0.05
Sm 2.5 MB 2.49± 1.85 20.69± 14.23 1.44± 0.85 2.77± 1.05 3.14± 2.96 19.89± 17.74 6.53± 5.56 17.29± 15.68
Bag CAP 1.42± 0.02 12.37± 0.21 1.16± 0.08 6.61± 0.16 1.41± 0.02 12.37± 0.22 1.16± 0.08 6.75± 0.17
Bag MB 0.13± 0.00 3.26± 0.10 0.87± 0.02 1.44± 0.02 0.13± 0.00 3.21± 0.12 0.89± 0.02 1.41± 0.02

RD 1.40± 0.02 12.23± 0.22 1.15± 0.06 6.52± 0.17 0.24± 0.00 3.72± 0.06 0.96± 0.02 1.45± 0.04

Table 3. Mean and maximum percentage deviation from true resistance function (Mean Dev, Max Dev) and mean and
maximum percentage deviation from solution value using true resistance function (Mean Sol, Max Sol) plus/minus one
standard error as a function of approximation method and training sample size.
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